2010-2017年高考数学全国卷试题汇编(不等式选讲部分)

合集下载

2017高考数学试题分类汇编-不等式(含文科理科及详细解析)

2017高考数学试题分类汇编-不等式(含文科理科及详细解析)

2017年高考数学试题分类汇编:不等式1(2017北京文)已知,,且x +y =1,则的取值范围是__________.【考点】3W :二次函数的性质.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】利用已知条件转化所求表达式,通过二次函数的性质求解即可. 【解答】解:x ≥0,y ≥0,且x +y=1,则x 2+y 2=x 2+(1﹣x )2=2x 2﹣2x +1,x ∈[0,1],则令f (x )=2x 2﹣2x +1,x ∈[0,1],函数的对称轴为:x=,开口向上, 所以函数的最小值为:f ()==.最大值为:f (1)=2﹣2+1=1. 则x 2+y 2的取值范围是:[,1]. 故答案为:[,1].【点评】本题考查二次函数的简单性质的应用,考查转化思想以及计算能力.2(2017浙江)已知a R ,函数在区间[1,4]上的最大值是5,则的取值范围是___________.【考点】3H :函数的最值及其几何意义.【专题】11 :计算题;35 :转化思想;49 :综合法;51 :函数的性质及应用. 【分析】通过转化可知|x +﹣a |+a ≤5且a ≤5,进而解绝对值不等式可知2a ﹣50x ≥0y ≥22x y +∈4()||f x x a a x=+-+a≤x+≤5,进而计算可得结论.【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,又因为|x+﹣a|≤5﹣a,所以a﹣5≤x+﹣a≤5﹣a,所以2a﹣5≤x+≤5,又因为1≤x≤4,4≤x+≤5,所以2a﹣5≤4,解得a≤,故答案为:(﹣∞,].【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.3(2017新课标Ⅲ文数)[选修4—5:不等式选讲](10分)f x=│x+1│–│x–2│.已知函数()f x≥1的解集;(1)求不等式()f x≥x2–x +m的解集非空,求实数m的取值范围.(2)若不等式()【考点】R4:绝对值三角不等式;R5:绝对值不等式的解法.【专题】32 :分类讨论;33 :函数思想;4C :分类法;4R:转化法;51 :函数的性质及应用;5T :不等式.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|=,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max=,从而可得m的取值范围.【解答】解:(1)∵f(x)=|x+1|﹣|x﹣2|=,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)=,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x=>﹣1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x=∈(﹣1,2),∴g(x)≤g()=﹣+﹣1=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x=<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max=,∴m 的取值范围为(﹣∞,].【点评】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.4(2017新课标Ⅲ理数).[选修4-5:不等式选讲](10分)已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.解:(1)当1x ≤-时()()()1231f x x x =-++-=-≤无解当12x -<<时()1(2)212111f x x x x x x =++-=--≥≥∴12x <<当2x ≥时()1(2)3312f x x x x =+--=>∴≥Q 综上所述()1f x ≥的解集为 [1,)+∞.(2)原式等价于存在x R ∈,使2()f x x x m -+≥ 成立,即 2max [()]f x x x m -+≥设2()()g x f x x x =-+由(1)知 2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-5(2017新课标Ⅱ文)[选修4−5:不等式选讲](10分) 已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥; (2)2a b +≤. 【解析】(1)()()()()()5565562333344222244++=+++=+-++=+-≥a b ab a ab a b b a ba b ab a b ab a b(2)因为()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b所以()3+8≤a b ,因此a+b≤2.6(2017新课标Ⅱ理)[选修4—5:不等式选讲](10分)已知330,0,2a b a b >>+=.证明:(1)55()()4a b a b ++≥; (2)2a b +≤. 【解析】(1)()()()()()5565562333344222244++=+++=+-++=+-≥a b ab a ab a b b a ba b ab a b ab a b(2)因为()()()()()33223233323+3+3+2++244a +=+++=+≤=+b a a b ab b ab a b a b a b a b所以()3+8≤a b,因此a+b≤2.7(2017新课标Ⅰ文数)[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.解:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤.所以()()f x g x ≥的解集为{|1x x -<≤. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.8(2017新课标Ⅰ理数)设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【考点】72:不等式比较大小.【专题】35 :转化思想;51 :函数的性质及应用;59 :不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z >2x >3y .解法三:对k 取特殊值,也可以比较出大小关系. 故选:D .【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.9(2017新课标Ⅰ理数).[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①10(2017天津文)若a,b∈R,0ab>,则4441a bab++的最小值为 .【考点】7F:基本不等式.【专题】34 :方程思想;4R:转化法;5T :不等式.【分析】【方法一】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【方法二】将拆成+,利用柯西不等式求出最小值.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.11(2017天津理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________. 【答案】4 【解析】442241414a b a b ab ab+++≥≥ ,当且仅当21a b ==时取等号12(2017山东文)若直线1(00)x y a b a b+=>,> 过点(1,2),则2a +b 的最小值为 . 【答案】8(7)(2017山东理)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a b a a b b +<+< (D )()21log 2a b a b a b +<+< 【答案】B【解析】221,01,1,log ()log 1,2a b a b a b ><<∴<+>= 12112log ()a b a a b a a b b b+>+>+⇒+>+ ,所以选B.13(2017江苏)某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元.要使一年的总运费与总存储费用之和最小,则的值是 ▲ .【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.14(2017年江苏卷)[选修4-5:不等式选讲](本小题满分10分)已知为实数,且证明: 【解析】由柯西不等式可得22222()()()a b c d ac bd ++≥+, 即2()41664ac bd +≤⨯=,故8ac bd +≤.15(2017北京理)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为______________________________. x 4x x ,,,a b c d 22224,16,a b c d +=+=8.ac bd +≤【考点】FC:反证法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b >c,则a+b≤c”是真命题,举例即可,本题答案不唯一【解答】解:设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题,则若a>b>c,则a+b≤c”是真命题,可设a,b,c的值依次﹣1,﹣2,﹣3,(答案不唯一),故答案为:﹣1,﹣2,﹣3【点评】本题考查了命题的真假,举例说明即可,属于基础题.16.(2017•新课标Ⅲ文数)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]【考点】7C:简单线性规划.【专题】11 :计算题;31 :数形结合;35 :转化思想;5T :不等式.【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的范围即可.【解答】解:x,y满足约束条件的可行域如图:目标函数z=x﹣y,经过可行域的A,B时,目标函数取得最值,由解得A(0,3),由解得B(2,0),目标函数的最大值为:2,最小值为:﹣3,目标函数的取值范围:[﹣3,2].故选:B.【点评】本题考查线性规划的简单应用,目标函数的最优解以及可行域的作法是解题的关键.。

全国卷2017-2010文科数学试题及详细答案分类汇编六不等式和线性规划

全国卷2017-2010文科数学试题及详细答案分类汇编六不等式和线性规划

全国卷2017-2010文数学试题及答案分类汇编六、不等式和线性规划1、(2010全国文数1) (3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值(A)4 (B)3 (C)2 (D)12、(2010全国文数1) (13)不等式02322>++-x x x 的解集是 . 3、2010全国文数2)(2)不等式32x x -<+的解集为( )(A){|23}x x -<< (B){|2}x x <- (C){|23}x x x <->或 (D) {|3}x x >4、(2010全国文数2) (5) 若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)45、(2010全国文数3)(11)已知▱ABCD 的三个顶点为A (﹣1,2),B (3,4),C (4,﹣2),点(x ,y )在▱ABCD 的内部,则z=2x ﹣5y 的取值范围是( ) A .(﹣14,16)B .(﹣14,20) C .(﹣12,18)D .(﹣12,20)6、(2011全国文数1) (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )37、(2011全国文数1) (5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >8、设x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的取值范围为___________。

9、(2012全国文数2)(5)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) 10、(2013全国文数1)(14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______.11、(2013全国文数2)(3)设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-312、(2013全国文数2)(8)设a =log 32,b =log 52,c =log 23,则( ). A .a >c >b B .b >c >a C .c >b >a D .c >a >b 13、(2013全国文数3)(4)不等式|x 2-2|<2的解集是( ).A .(-1,1)B .(-2,2)C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)14、(2013全国文数3),(15)若x ,y 满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z =-x +y 的最小值为______.15、(2014全国文数1)(11)设x ,y 满足约束条件,且z=x+ay 的最小值为7,则a=( )A . ﹣5B . 3C . ﹣5或3D . 5或﹣3 16、(2014全国文数2)(9)设x ,y 满足约束条件,则z=x+2y 的最大值为( )A . 8B . 7C . 2D . 117、(2015全国文数1)若x ,y 满足约束条件,则z=3x+y 的最大值为 .18、(2015全国文数2)(14)若x,y 满足约束条⎪⎩⎪⎨⎧+=≤+-≥--≤-+的最大值为则y x z y x y x y x 2,012,012,05 。

高考数学全国卷试题汇编不等式选讲部分

高考数学全国卷试题汇编不等式选讲部分

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)1.【2010年新课标】设函数()241f x x =-+.(Ⅰ)画出函数()y f x =的图像; (Ⅱ)若不等式()f x ≤ax 的解集非空,求a 的取值范围.2.【2011年新课标】设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.3.【2012年新课标】已知函数()2f x x a x =++-(Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.4.【2013年新课标1】已知函数a x x x f ++-=212)(,3)(+=x x g . (Ⅰ)当2-=a 时求不等式)()(x g x f <的解集;(Ⅱ)设1->a 且当)21,2[a x -∈时)()(x g x f ≤求a 的取值范围.5.【2013年新课标2】设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥. 6.【2014年新课标1】若,0,0>>b a 且ab ba =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由. 7.【2014年新课标2】设函数()f x =1(0)x x a a a++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若()35f <,求a 的取值范围.8.【2015年新课标1】已知函数()12,0f x x x a a =+-->.(I )当1a =时,求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 9.【2015年新课标2】设,,,a b c d 均为正数,且a b c d +=+.证明:(I )若ab cd >,则a b c d +>+; (II )a b c d +>+是a b c d -<-的充要条件. 10.【2016年新课标1】 已知函数()123f x x x =+--. (I )画出()y f x =的图像; (II )求不等式()1f x >的解集. 11.【2016年新课标2】已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.(I )求M ;(II )证明:当,a b M ∈时,|||1|a b ab +<+.12.【2016年新课标3】已知函数()|2|f x x a a =-+.(I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =-.当x R ∈时,()()3f x g x +≥,求a 的取值范围.13.【2017年新课标1】已知函数2()4f x x ax =-++,()|1|1g x x x =++-.(I )当1a =时,求不等式()()f x g x ≥的解集;(II )若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围. 14.【2017年新课标2】已知220,0,2a b a b >>+=,证明:(I )()()334a b a b ++≥;(II )2a b +≤. 15.【2017年新课标3】已知函数|2||1|)(--+=x x x f .(I)求不等式1)(≥x f 的解集;(II)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.。

全国各地高考数学真题分章节分类汇编之不等式

全国各地高考数学真题分章节分类汇编之不等式

2010年全国各地高考数学真题分章节分类汇编之不等式一、填空题:1.(2010年高考陕西卷理科15)(不等式选做题)不等式的解集为.【答案】【解析】(方法一)当时,∵原不等式即为,这显然不可能,∴不适合.当时,∵原不等式即为,又,∴适合.当时,∵原不等式即为,这显然恒成立,∴适合.故综上知,不等式的解集为,即.(方法二)设函数,则∵∴作函数的图象,如图所示,并作直线与之交于点.又令,则,即点的横坐标为.故结合图形知,不等式的解集为.二、解答题:1.(2010年高考福建卷理科21)(本小题满分7分)选修4-5:不等式选讲已知函数。

(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。

【命题意图】本小题主要考查绝对值的意义、绝对值不等式等基础知识,考查运算求解能力。

【解析】(Ⅰ)由得,解得,又已知不等式的解集为,所以,解得。

(Ⅱ)当时,,设,于是=,所以当时,;当时,;当时,。

2.(2010年高考江苏卷试题21)选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。

[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。

满分10分。

(方法一)证明:因为实数a、b≥0,所以上式≥0。

即有。

(方法二)证明:由a、b是非负实数,作差得当时,,从而,得;当时,,从而,得;所以。

3. (2010年全国高考宁夏卷24)(本小题满分10分)选修4-5,不等式选讲设函数(Ⅰ)画出函数的图像(Ⅱ)若不等式≤的解集非空,求a的取值范围。

(24)解:(Ⅰ)由于则函数的图像如图所示。

(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。

故不等式的解集非空时,的取值范围为。

4.(2010年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲已知均为正数,证明:,并确定为何值时,等号成立。

2010年高考真题分类汇编(新课标)考点33 不等式选讲

2010年高考真题分类汇编(新课标)考点33 不等式选讲

2010年高考真题分类汇编(新课标)考点33 不等式选讲1(2010·辽宁高考理科·T24)已知c b a ,,均为正数,证明:36)111(2222≥+++++c b a c b a ,并确定c b a ,,为何值时,等号成立。

【命题立意】本题考查了不等式的性质,考查了均值不等式。

【思路点拨】把222111a b c a b c++++分别用均值不等式,相加后,再用均值不等式。

【规范解答】(证法一)∵,,a b c 均为正数,由均值不等式得 222233()a b c abc ++≥…………………………①131113()abc a b c-++≥, ∴223111()9()abc a b c-++≥……………………② 22222233111()3()9()a b c abc abc a b c -∴+++++≥+22333()9()abc abc -+≥=又∴原不等式成立。

当且仅当a=b=c 时,①式和②式等号成立,当且仅当22333()9()abc abc -=时,③式等号成立。

即当a=b=c =143时原式等号成立。

(证法二)∵a,b,c 都是正数,由基本不等式得 222222222a b abb c bc c a ac+≥+≥+≥ ∴222a b c ab bc ac ++≥++………………………………① 同理111111a b c ab bc ac++≥++………………………………② ∴2222111()111333a b c a b c ab bc ac ab bc ac+++++≥+++++≥∴原不等式成立当且仅当a=b=c 时,①式和②式等号成立,当且仅当a=b=c,222()()()3ab bc ac ===时,③式等号成立。

即当a=b=c =143时原式等号成立。

2.(2010·福建高考理科·T21)已知函数f (x )=x a -.(Ⅰ)若不等式f (x )≤3的解集为{x -1≤x ≤5},求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若f (x )+f (5x +)≥m 对一切实数x 恒成立,求实数m 的取值范围。

最新-2017年高考数学全国卷试题汇编(不等式选讲部分)

最新-2017年高考数学全国卷试题汇编(不等式选讲部分)

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)1.【2010年新课标】设函数()241f x x =-+.(Ⅰ)画出函数()y f x =的图像;(Ⅱ)若不等式()f x ≤ax 的解集非空,求a 的取值范围.2.【2011年新课标】设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.3.【2012年新课标】已知函数()2f x x a x =++- (Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.4.【2013年新课标1】已知函数a x x x f ++-=212)(,3)(+=x x g . (Ⅰ)当2-=a 时求不等式)()(x g x f <的解集;(Ⅱ)设1->a 且当)21,2[a x -∈时)()(x g x f ≤求a 的取值范围.5.【2013年新课标2】设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.6.【2014年新课标1】若,0,0>>b a 且ab ba =+11(I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.7.【2014年新课标2】设函数()f x =1(0)x x a a a ++->.(Ⅰ)证明:()2f x ≥; (Ⅱ)若()35f <,求a 的取值范围.8.【2015年新课标1】已知函数()12,0f x x x a a =+-->. (I )当1a =时,求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.9.【2015年新课标2】设,,,a b c d 均为正数,且a b c d +=+.证明: (I )若ab cd >>(II>a b c d -<-的充要条件.10.【2016年新课标1】 已知函数()123f x x x =+--. (I )画出()y f x =的图像; (II )求不等式()1f x >的解集.11.【2016年新课标2】已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.(I )求M ; (II )证明:当,a b M ∈时,|||1|a b ab +<+.12.【2016年新课标3】已知函数()|2|f x x a a =-+. (I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =-.当x R ∈时,()()3f x g x +≥,求a 的取值范围.13.【2017年新课标1】已知函数2()4f x x ax =-++,()|1|1g x x x =++-.(I )当1a =时,求不等式()()f x g x ≥的解集;(II )若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.14.【2017年新课标2】已知220,0,2a b a b >>+=,证明: (I )()()334a b a b ++≥; (II )2a b +≤.15.【2017年新课标3】已知函数|2||1|)(--+=x x x f .(I)求不等式1)(≥x f 的解集;(II)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.。

2017高考十年高考文数分项版(新课标1专版)专题07 不等式(解析版) 含解析

2017高考十年高考文数分项版(新课标1专版)专题07 不等式(解析版) 含解析

一.基础题组1。

【2011全国1,文4】2。

【2010全国1,文3】若变量x , y 满足约束条件120y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z=x -2y 的最大值为( ) A .4 B .3 C .2 D .1 【答案】:B3. 【2014全国1,文15】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________。

【答案】(,8]-∞【解析】由于题中所给是一个分段函数,则当1x <时,由12x e -≤,可解得:1ln 2x ≤+,则此时:1x <;当1x ≥时,由132x≤,可解得:328x ≤=,则此时:18x ≤≤,综合上述两种情况可得:(,8]x ∈-∞ 4. 【2012全国1,文14】若x ,y 满足约束条件10,30,330,x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则z =3x-y 的最小值为__________. 【答案】:-1【解析】:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1.5. 【2010全国1,文13】不等式2232x x x -++>0的解集是__________.【答案】:{x |-2<x <-1,或x >2}6。

【2008全国1,文13】若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 . 【答案】9【解析】如图,作出可行域,作出直线l 0:y=2x ,将l 0平移至过点A 处时,函数z=2x —y 有最大值9.7。

【2015高考新课标1,文15】若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 . 【答案】4考点:简单线性规划解法 二.能力题组1。

2010高考数学试题分类汇编----不等式(有答案)

2010高考数学试题分类汇编----不等式(有答案)

(2010福建)(7分)(3)选修4—5:不等式选讲已知函数f(x)=|x-a|.①若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;②在①的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.答案:法一:①由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以31,35,aa=⎧⎨+=⎩--解得a=2.②当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|=21,3, 5,32, 21, 2.x xxx x<⎧⎪≤≤⎨⎪+>⎩----所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].法二:①同解法一.②当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5).由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(2010湖北)15.(理)设a>0,b>0,称2aba b+为a,b的调和平均数.如图,C为线段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D.连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段______的长度是a,b的几何平均数,线段______的长度是a,b的调和平均数.答案:CD DE解析:∵△ACD∽△DCB,∴ACCD=CDCB,CD∵Rt△ECD∽Rt△COD,∴DE=2CDOD=2aba b+=2aba b+.(2010江西)3.(理)不等式|2x x->2x x -的解集是( ) A .(0,2) B .(-∞,0)C .(2,+∞)D .(-∞,0)∪(0,+∞)答案:A 2x x->2x x -,∴2x x -<0.∴0<x <2. (2010全国卷新课标)24.(10分)选修4-5:不等式选讲设函数f(x)=|2x -4|+1.(1)画出函数y =f(x)的图像;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.答案: (1)由于f (x )=⎧⎨≥⎩-2x+5,x<2,2x -3,x 2,则函数y =f (x )的图像如图所示.(2)由函数y =f (x )与函数y =ax 的图像可知,当且仅当a ≥12或a <-2时,函数y =f (x )与函数y =ax 的图像有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞). (2010山东)14.(理)若对任意x >0,231x x x ++≤a 恒成立,则a 的取值范围是________. 答案: [15,+∞) 解析:法一:当x >0时,211313x x x x x=++++ ∵x +1x≥2(当且仅当x =1时取等号)∴x+1x+3≥5∴113xx++≤15∴a≥1 5 .法二:原式 ax2+(3a-1)x+a≥0对任意x>0恒成立.显然a≤0时不恒成立.当a>0时,Δ≤0或312aaa⎧<⎪⎨⎪>⎩--,得a≥15.(2010陕西)15.A.(不等式选做题)不等式|x+3|-|x-2|≥3的解集为__________.答案:{x|x≥1}B.169C.(-1,1),(1,1)解析:A.x≥2时,|x+3|-|x-2|=5,-3≤x<2时,|x+3|-|x-2|=2x+1≥3 x≥1,x<-3时,|x+3|-|x-2|=-5,因此综上有|x+3|-|x-2|≥3的解集为{x|x≥1}.(210四川)12.(理)设a>b>c>0,则2a2+1ab+1()a a b--10ac+25c2的最小值是( )A.2 B.4C..5答案:B 因为a>b>c>0,2a2+1ab+1()a a b--10ac+25c2=a2+()a b bab a b-+-+(a-5c)2=a2+1()b a b-+(a-5c)2≥a2+212b a b+-⎛⎫⎪⎝⎭+(a-5c)2=a2+24a+(a-5c)2≥4+(a-5c)2≥4.当且仅当a2b=5c时取等号.(2010浙江)23.(10分) (1)设正实数a,b,c,满足abc≥1.求222222 a b ca b b c c a+++++的最小值;(2)已知m∈R,解关于x的不等式:1-x≤|x-m|≤1+x.答案:解:(1)因为(222222a b ca b b c c a+++++)[(a+2b)+(b+2c)+(c+2a)]≥(a+b。

十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)

十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)

历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1文科23解答题2018 综合测试题2018年新课标1文科23解答题2017 综合测试题2017年新课标1文科23解答题2016 综合测试题2016年新课标1文科24解答题2015 综合测试题2015年新课标1文科24解答题2014 综合测试题2014年新课标1文科24解答题2013 综合测试题2013年新课标1文科24解答题2012 综合测试题2012年新课标1文科24解答题2011 综合测试题2011年新课标1文科24解答题2010 综合测试题2010年新课标1文科24历年高考真题汇编十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)1.【2019年新课标1文科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1文科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1文科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1文科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2015年新课标1文科24】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|,由此求得f(x)的图象与x轴的交点A(,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).6.【2014年新课标1文科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.7.【2013年新课标1文科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].8.【2012年新课标1文科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].9.【2011年新课标1文科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=210.【2010年新课标1文科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【解答】解:(Ⅰ)由于f(x),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题 1.已知函数()22()f x x a x a R =-+-∈.(1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围.【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】 解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩, 解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或. (2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-,由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解, 所以实数a 的取值范围是空集(或者∅).2.已知()221f x x x =-++.(1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤.【答案】(1) ()1,3- (2)见证明【解析】(1)①2x ≥时,()24133f x x x x =-++=-,由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-;(2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=,∵222m n mn +≥,222m p mp +≥,222n p np +≥,∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++又,,m n p 为正实数,∴可以解得12mn np pm ++≤.3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>.(1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围.【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解 当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<- 综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立所以()min |2||1|3t t ++-= 因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m -+∞ ∴当2m x =-时,()max 322m m f x f ⎛⎫=-= ⎪⎝⎭ 332m ∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >.(1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c a a b c++≥. 【答案】(1)2m =(2)见证明【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x m m x x ≤⎧⎨-+≤⎩化简得:3x m m x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m > ∴不等式组的解集为{}x x m ≤-2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++= 由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥ 三式相加可得:222222b c a a b c b c a a b c+++++≥++ 222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲已知函数()13f x x x a =+++(1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围.【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-, 当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤; 当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤. 综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<, 而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-,(当且仅当()()003330x x a ++≤时等号成立)由题可知min (()2|1|)1f x x ++<,即31a -<,解得实数a 的取值范围是24a <<.6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞;(II )[1,2]-【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥. 当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥;当1122x -≤≤时,12214x x -++≥,无解; 当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-; 综上,原不等式的解集为(,1][1,)-∞-+∞(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*)当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤ 即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+.(1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围. 【答案】(1)()0,2;(2)11,23⎛⎤-⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---< 当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤ 当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤ 当1x >时,不等式化为21120x x x -+---<,解得:12x <<综上,原不等式的解集为()0,2(2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤ 又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++,当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥;当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立.∵,当且仅当[1,2]x ∈-时取等号.∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞.9.已知函数()123f x x x =-+-.(Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-. 【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =.当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3,当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦. (II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增, ∴()f x 的最小值为()32f =.∴22m m +<,解得21m -<<.即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++.(Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值.【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】 (Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或;(Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32, 所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立. 所以222a b c ++的最小值为914. 11.已知函数()12f x x a x =+++.(Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值.【答案】(Ⅰ)[3,0]-;(Ⅱ)见解析.【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤综上可得解集[3,0]-. (Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值;当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-=当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-=综上:当1a <-时,()f x 无最小值;当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ;当1a >时, min ()(2)1f x f =-=;12.选修4-5:不等式选讲已知函数()|23||1|f x x x =--+.(1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析.【解析】 (1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<; 当32x > 时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤ 时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤. 13.[选修4—5:不等式选讲]已知函数()31f x x m x m =----(1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<, 所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或 解之得不等式()1f x <的解集为(,3)-∞.(2) 当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤, 当131,2m m m +==-时,不等式恒成立, 当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合, 由题得1231,3m m ≤+≥,所以m 没有解. 综上,1123m -≤≤. 14.已知()21f x x x =+-.(1)证明()1f x x +≥;(2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <.【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭ 【解析】 (1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭. 15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)1.【2010年新课标】设函数()241f x x =-+. (Ⅰ)画出函数()y f x =的图像;求a 2.【()f x =(Ⅱ{|x x3.【()f x =求a 4.【a x x x f ++-=212)(,3)(+=x x g . (Ⅰ)当2-=a 时求不等式)()(x g x f <的解集;(Ⅱ)设1->a 且当21,2[a x -∈时)()(x g x f ≤求a 的取值范围.5.【2013年新课标2】设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥. ,0,0>b 且)是否存. 设函数()35f <,知函数(I )当1a =时,求不等式()1f x >的解集;?(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.? 9.【2015年新课标2】设,,,a b c d 均为正数,且a b c d +=+.证明:? (I )若a b c d >,?(II)>是a b c d -<-的充要条件. 10.【2016年新课标1】 已知函数()123f x x x =+--. (I )画出()y f x =的图像; (II11.【(I ||a b +12.【()f x =(I )(II 13.【()f x =(()()f x g x ≥的解集;(II )若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围. 14.【2017年新课标2】已知220,0,2a b a b >>+=,证明:?(I )()()334a b a b ++≥;?(II )2a b +≤. 15.【2017年新课标3】已知函数|2||1|)(--+=x x x f .m 的解集。

2017高考数学不等式真题汇编

2017高考数学不等式真题汇编

2017年高考数学《不等式》真题汇编1.(全国卷Ⅰ)设z y x 、、均为正数,且235x y z==,则(D )A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 2(全国卷Ⅰ)已知函数2()4,()|1||1|f x x ax g x x x =-++=++-(1)当1a =时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.解:(1)当时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤ ①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤; 当1x >时,①式化为240x x +-≤,从而11712x -+<≤ 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤(2)当[1,1]x ∈-时,()2g x = 所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤ 所以a 的取值范围为[1,1]-3.(全国卷Ⅱ)已知330,0,2a b a b >>+=,证明:(1)55()()4a b a b ++≥;(2)2a b +≤.解:(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++ 2224()ab a b =+-4≥(2)因为33223()33a b a a b ab b +=+++23()ab a b =++1a =23()2()4a b a b +≤++33()24a b +=+ 所以3()8a b +≤,因此2a b +≤.4.(全国卷Ⅲ)已知函数()||||f x x x =+1--2.(1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.解:(1)3,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤;当2x >时,由()1f x ≥解得2x >,所以()1f x ≥的解集为{|1}x x ≥(2)由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+54≤ 且当32x =时,25|1||2|4x x x x +---+=,故m 的取值范围为5(,]4-∞5.(山东卷(理))若0a b >>,且1ab =,则下列不等式成立的是(B )(A )()21log 2a b a a b b +<<+(B )()21log 2a b a b a b<+<+ (C )()21log 2a b a a b b +<+<(D )()21log 2a b a b a b +<+< 6.(山东卷(文))若直线1(00)x y a b a b +=>,> 过点(1,2),则2a b +的最小值为8 7.(天津卷(理))已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =, (3)c g =,则a ,b ,c 的大小关系为(C )(A )a b c <<(B )c b a <<(C )b a c << (D )b c a <<8.(天津卷(理))若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________4 9.(江苏卷)已知,,,a b c d 为实数,且22224,16a b c d +=+=,证明:8ac bd +≤. 证明:由柯西不等式可得:22222()()()ac bd a b c d +≤++,因为22224,16a b c d +=+=所以2()64ac bd +≤,因此8ac bd +≤10.(浙江卷)已知数列{x n }满足:1111,ln(1)(*)n n n x x x x n N ++==++∈证明:当n ∈N*时,(Ⅰ)10n n x x +<<; (Ⅱ)1122n n n n x x x x ++-≤; (Ⅲ)121122n n n x ++≤≤ 证明:(Ⅰ)用数学归纳法证明:0n x >当1n =时,110x =>假设n k =时,0k x >,那么1n k =+时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>因此*0()n x n N >∈,所以111ln(1)n n n n x x x x +++=++> 因此*10()n n x x n N +<<∈(Ⅱ)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++ 记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥22()ln(1)0(0)1x x f x x x x +'=++>>+, 函数()f x 在[0,)+∞上单调递增,所以()(0)0f x f ≥=,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥, 故*112()2n n n n x x x x n N ++-≤∈ (Ⅲ)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥,由1122n n n n x x x x ++≥-得 111112()022n n x x +-≥->, 所以12111111112()...2()2222n n n n x x x ----≥-≥≥-=, 故212n n x -≤ 综上,*1211()22n n n x n N --≤≤∈。

2017年高考试题分类汇编(不等式)

2017年高考试题分类汇编(不等式)

2017年高考试题分类汇编(不等式)考点1 解不等式或不等式的证明 考法1 解不等式1.(2017·全国卷Ⅰ·文科)已知集合{}2A x x =<,{}320B x x =->,则A .32AB x x ⎧⎫=<⎨⎬⎩⎭ B.A B =∅C .32A B x x ⎧⎫=<⎨⎬⎩⎭ D.A B R =2.(2017·全国卷Ⅰ·理科)已知集合{}1A x x =<,{}31x B x =<,则 A.{|0}A B x x =< B.A B R = C.{|1}A B x x => D.A B =∅ 3.(2017·全国卷Ⅰ·理科)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 4.(2017·天津卷·文科)设x ∈R ,则“20x -≥”是“|1|1x -≤”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 考法2不等式的证明1.(2017·全国卷Ⅰ·理科)设,,x y z 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z <<2.(2017·天津卷·理科)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则,,a b c 的大小关系为A.a b c <<B.c b a <<C.b a c <<D.b c a << 3.(2017·北京卷·文科)能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为_____________.4.(2017·山东卷·理科)已知命题p :任意0x >,ln(1)0x +>;命题q :若a b >,则22a b >.下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝5.(2017·山东卷·理科)若0a b >>,且1ab =,则下列不等式成立的是A .21log ()2a b a a b b +<<+B .21log ()2a b a b a b <+<+C .21log ()2a b a a b b +<+<D .21log ()2a ba b a b +<+<6.(2017·山东卷·文科)已知命题p :存在x R ∈:210x x -+≥;命题q :若22a b <,则a b <.下列命题为真命题的是A.p q ∧B.C.p q ⌝∧D.p q ⌝∧⌝ 考点2 简单线性规划1.(2017·全国卷Ⅰ·理科)设,x y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .2.(2017·全国卷Ⅲ·理科)若x ,y 满足约束条件y 0200x x y y -≥⎧⎪+-≤⎨⎪≥⎩,则z 34x y=-的最小值为____.3.(2017·全国卷Ⅲ·文科)设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A.[]3,0-B.[]3,2-C.[]0,2D.[]0,34.(2017·北京卷·文理科)若,x y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则2x y +的最大值为 A.1 B.3 C.5 D.95.(2017·全国卷Ⅱ·文理科)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .1D .96.(2017·天津卷·理科)设变量,x y 满足约束条件2022003x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩,则目标函数z x y =+的最大值为A.23B.1C.32D.3 7.(2017·山东卷·理科)已知,x y 满足约束条件3035030x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最大值是A .0B .2C .5D .68.(2017·山东卷·文科)已知,x y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值是A.3-B.1-C.1D.39.(2017·浙江卷)若,x y 满足约束条件03020x x y x y ≥⎧⎪+->⎨⎪-≤⎩,则2z x y =+的取值范围是A.[]0,6B.[]0,4C.[)6,+∞D.[)4,+∞10.(2017·全国卷Ⅰ·文科)设,x y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为A .0B .1C .2D .3 考点3 不等式选讲1.(2017·全国卷Ⅰ·文理科)已知函数2()4f x x ax =-++,()11g x x x =++-. (Ⅰ)当1a =时,求不等式()()f x g x ≥的解集;(Ⅱ)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.2.(2017·全国卷Ⅱ·文理科)已知0a >,0b >,332a b +=,证明: (Ⅰ)55()()4a b a b ++≥; (Ⅱ)2a b +≤.3.(2017·全国卷Ⅲ·文理科)已知函数()12f x x x =+--. (Ⅰ)求不等式()1f x ≥的解集;(Ⅱ)若不等式2()f x x x m ≥-+的解集非空,求m 的取值范围.。

(新课标全国I卷)2010-近年学年高考数学真题分类汇编专题18不等式选讲文(含解析)(最新整理)

(新课标全国I卷)2010-近年学年高考数学真题分类汇编专题18不等式选讲文(含解析)(最新整理)

(新课标全国I卷)2010-2019学年高考数学真题分类汇编专题18 不等式选讲文(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标全国I卷)2010-2019学年高考数学真题分类汇编专题18 不等式选讲文(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标全国I卷)2010-2019学年高考数学真题分类汇编专题18 不等式选讲文(含解析)的全部内容。

专题18 不等式选讲不等式选讲大题:10年10考,而且是作为2个选做题之一出现的,主要考绝对值不等式的解法(出现频率太高了,应当高度重视),偶尔也考基本不等式.全国卷很少考不等式小题,如果说有考的话,可以认为在其它小题中考一些解法之类的问题.不等式作为一种工具,解题经常用到,不单独命小题显然也是合理的.不等式的证明一般考在函数与导数综合题中出现.1.(2019年)已知a,b,c为正数,且满足abc=1.证明:(1)1a+1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解析】(1)要证1a+1b+1c≤a2+b2+c2;因为abc=1.就要证:abca+abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故1a+1b+1c≤a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2(b+c(c+a当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.(2018年)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解析】(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=2,12,11 2,1xx xx>⎧⎪-≤≤⎨⎪-<-⎩,由f(x)>1,∴2111xx>⎧⎨-≤≤⎩或211x>⎧⎨>⎩,解得x>12,故不等式f(x)>1的解集为(12,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<2a,∴a<2x,∵2x>2,∴0<a≤2,故a的取值范围为(0,2].3.(2017年)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解析】(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=12的二次函数,g(x)=|x+1|+|x﹣1|=2,12,11 2,1x xxx x>⎧⎪-≤≤⎨⎪-<-⎩,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,12];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,12];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需()()2211201120a a ⎧-⨯-≤⎪⎨--⨯--≤⎪⎩,解得﹣1≤a ≤1, 故a 的取值范围是[﹣1,1].4.(2016年)已知函数f (x )=|x +1|﹣|2x ﹣3|. (1)在图中画出y =f (x )的图象; (2)求不等式|f (x )|>1的解集.【解析】(1)f (x )=4,1332,1234,2x x x x x x ⎧⎪-≤-⎪⎪--<<⎨⎪⎪-≥⎪⎩,由分段函数的图象画法,可得f (x )的图象,如图:(2)由|f (x )|>1,可得当x ≤﹣1时,|x ﹣4|>1,解得x >5或x <3,即有x ≤﹣1;当﹣1<x <32时,|3x ﹣2|>1,解得x >1或x <13,即有﹣1<x <13或1<x <32;当x ≥32时,|4﹣x |>1,解得x >5或x <3,即有x >5或32≤x <3.综上可得,x <13或1<x <3或x >5.则|f (x )|>1的解集为(﹣∞,13)∪(1,3)∪(5,+∞).5.(2015年)已知函数f (x )=|x +1|﹣2|x ﹣a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】(1)当a =1时,不等式f (x )>1,即|x +1|﹣2|x ﹣1|>1,即()11211x x x <-⎧⎪⎨---->⎪⎩①,或()111211x x x -≤<⎧⎪⎨+-->⎪⎩②,或()11211x x x ≥⎧⎪⎨+-->⎪⎩③.解①求得x ∈∅,解②求得23<x <1,解③求得1≤x <2.综上可得,原不等式的解集为(23,2).(2)函数f (x )=|x +1|﹣2|x ﹣a |=12,1312,112,x a x x a x a x a x a --<-⎧⎪+--≤≤⎨⎪-++>⎩,由此求得f (x )的图象与x 轴的交点A (213a -,0),B (2a +1,0), 故f (x )的图象与x 轴围成的三角形的第三个顶点C (a ,a +1), 由△ABC 的面积大于6,可得12[2a +1﹣213a -](a +1)>6,求得a >2.故要求的a 的范围为(2,+∞).6.(2014年)若a >0,b >0,且1a +1bab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.【解析】(1)∵a >0,b >0,且1a +1b abab 1a +1b≥1ab ab ≥2,当且仅当a =b 2时取等号. ∵a 3+b 3≥()3ab 3242,当且仅当a =b 2时取等号,∴a 3+b 3的最小值为42(2)∵2a +3b ≥223a b ⋅=6ab 2a =3b 时,取等号. 而由(1)可知,26ab 12436, 故不存在a ,b ,使得2a +3b =6成立.7.(2013年)已知函数f (x )=|2x ﹣1|+|2x +a |,g (x )=x +3. (1)当a =﹣2时,求不等式f (x )<g (x )的解集;(2)设a >﹣1,且当x ∈[2a -,12]时,f (x )≤g (x ),求a 的取值范围.【解析】(1)当a =﹣2时,求不等式f (x )<g (x )化为|2x ﹣1|+|2x ﹣2|﹣x ﹣3<0.设y =|2x ﹣1|+|2x ﹣2|﹣x ﹣3,则y =15,212,1236,1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,它的图象如图所示:结合图象可得,y <0的解集为(0,2),故原不等式的解集为(0,2).(2)设a >﹣1,且当x ∈[2a -,12]时,f (x )=1+a ,不等式化为1+a ≤x +3,故x ≥a ﹣2对x ∈[2a -,12]都成立.故2a-≥a ﹣2,解得a ≤43,故a 的取值范围为(﹣1,43].8.(2012年)已知函数f (x )=|x +a |+|x ﹣2| (1)当a =﹣3时,求不等式f (x )≥3的解集;(2)f (x )≤|x ﹣4|若的解集包含[1,2],求a 的取值范围. 【解析】(1)当a =﹣3时,f (x )≥3 即|x ﹣3|+|x ﹣2|≥3,即 2323x x x ≤⎧⎨-+-≥⎩,可得x ≤1; 23323x x x <<⎧⎨-+-≥⎩,可得x ∈∅;3323x x x ≥⎧⎨-+-≥⎩,可得x ≥4. 取并集可得不等式的解集为 {x |x ≤1或x ≥4}.(2)原命题即f (x )≤|x ﹣4|在[1,2]上恒成立,等价于|x +a |+2﹣x ≤4﹣x 在[1,2]上恒成立,等价于|x +a |≤2,等价于﹣2≤x +a ≤2,﹣2﹣x ≤a ≤2﹣x 在[1,2]上恒成立. 故当 1≤x ≤2时,﹣2﹣x 的最大值为﹣2﹣1=﹣3,2﹣x 的最小值为0, 故a 的取值范围为[﹣3,0].9.(2011年)设函数f (x )=|x ﹣a |+3x ,其中a >0. (1)当a =1时,求不等式f (x )≥3x +2的解集(2)若不等式f (x )≤0的解集为{x |x ≤﹣1},求a 的值. 【解析】(1)当a =1时,f (x )≥3x +2可化为|x ﹣1|≥2. 由此可得x ≥3或x ≤﹣1.故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤﹣1}. (2)由f (x )≤0得|x ﹣a |+3x ≤0,此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩或30x a a x x <⎧⎨-+≤⎩,即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x <⎧⎪⎨≤-⎪⎩,因为a >0,所以不等式组的解集为{x |x 2a ≤-},由题设可得2a-=﹣1,故a =2.10.(2010年)设函数f (x )=|2x ﹣4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.【解析】(1)由于f(x)=25,2 23,2x xx x-+<⎧⎨-≥⎩,函数y=f(x)的图象如图所示.(2)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥12时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[12,+∞).。

(完整word)2011—2017高考全国卷Ⅰ文科数学不等式选讲汇编,推荐文档

(完整word)2011—2017高考全国卷Ⅰ文科数学不等式选讲汇编,推荐文档

新课标全国卷I文科数学汇编不等式选讲」、解答题【2017, 23】已知函数f x X2ax 4,g x |x 1 x 1 .(1 )当a 1时,求不等式f x g x的解集;(2)若不等式f x g x的解集包含1,1,求a的取值范围.【2016, 23】已知函数f(x) x 1 2x 3 .(I)在答题卡第(24)题图中画出y f (x)的图像;(n)求不等式f(x) 1的解集.(i)当a 1时求不等式f x 1的解集;(II)若f x的图像与x轴围成的三角形面积大于6,求a的取值范围【2015, 24】已知函数x x 1 2 x a, a 0.【2014, 24)】若a 0,b 0,且丄丄job.a b(i )求a3b3的最小值;(n)是否存在a,b,使得2a 3b 6?并说明理由【2013,24】已知函数f(x)=|2x—1|+ |2x+ a|, g(x) = x+ 3.(1)当a=—2时,求不等式f(x)v g(x)的解集;a 1⑵设a>—1,且当x€ 二丄时,f(x)駕(x),求a的取值范围.2 2(n)若不等式f(x) 0的解集为x|x 1 ,求a的值。

【2012, 24】已知函数f(x) |x a |【2011, 24】设函数f (x) x a 3x ,其中a 0。

(i)当a 1时,求不等式f(x) 3x 2的解集;|x 2|。

(1)当 a 3时,求不等式f(x)3的解集;(2 )若f(x) |x 4|的解集包含[1 , 2],求a 的取值范围。

、解答题【2017, 23】已知函数f x x2ax 4,(1)当a 1时,求不等式f x的解集;【解析】( 若不等式f X g x的解集包含1 )当a 1 时,f x上单调递增,1, 1 时,g x,1 时,gx2 x 42x, x 12 , 1 w x w 1,当2x, x 11,1 ,求a的取值范围.是开口向下,对称轴x (1,)时,令x2x -的二次函数.2上单调递减,•••此时fX单调递减,f X综上所述,f X > g x解集(2)依题意得:x2 ax 4 > 2 在1, 12 /1 a 12 w 0 则只须 21 a ,解出:1 2 w 0单调递增,且g 1恒成立.即x ax4 2x,解得x号',gx在解集为1,旦21, 1恒成立.1 w a w 1.故a取值范围是1, 1【2016, 23】已知函数f(x) x 1 2x 3 .(I)在答题卡第(24)题图中画出y f (x)的图像;(n)求不等式f(x) 1的解集.【解析】:⑴如图所示:(n)若不等式f(x) 0的解集为x|x 1 ,求a的值。

2010年高考数学试题分类汇编——不等式

2010年高考数学试题分类汇编——不等式

2010年高考数学试题分类汇编——不等式一、选择题1、(2010某某文数)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是( )(A )1. (B )32. (C )2. (D )3. 解析:当直线z x y =+过点B(1,1)时,z 最大值为22、(2010某某理数)(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2-(B )1- (C )1 (D )2解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题3、(2010全国卷2理数)(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C4、(2010全国卷2文数)(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =5、(2010全国卷2文数)(2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵32x x -<+,∴23x -<<,故选A6、(2010某某理数)3.不等式 22x x xx -->的解集是( ) A.(02), B.(0)-∞, C.(2)+∞, D.(0)∞⋃+∞(-,0), 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。

(整理)全国各地高考数学真题分章节分类汇编之不等式

(整理)全国各地高考数学真题分章节分类汇编之不等式

2010年全国各地高考数学真题分章节分类汇编之不等式一、填空题:1.(2010年高考陕西卷理科15)(不等式选做题)不等式的解集为.【答案】【解析】(方法一)当时,∵原不等式即为,这显然不可能,∴不适合.当时,∵原不等式即为,又,∴适合.当时,∵原不等式即为,这显然恒成立,∴适合.故综上知,不等式的解集为,即.(方法二)设函数,则∵∴作函数的图象,如图所示,并作直线与之交于点.又令,则,即点的横坐标为.故结合图形知,不等式的解集为.二、解答题:1.(2010年高考福建卷理科21)(本小题满分7分)选修4-5:不等式选讲已知函数。

(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。

【命题意图】本小题主要考查绝对值的意义、绝对值不等式等基础知识,考查运算求解能力。

【解析】(Ⅰ)由得,解得,又已知不等式的解集为,所以,解得。

(Ⅱ)当时,,设,于是=,所以当时,;当时,;当时,。

2.(2010年高考江苏卷试题21)选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。

[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。

满分10分。

(方法一)证明:因为实数a、b≥0,所以上式≥0。

即有。

(方法二)证明:由a、b是非负实数,作差得当时,,从而,得;当时,,从而,得;所以。

3. (2010年全国高考宁夏卷24)(本小题满分10分)选修4-5,不等式选讲设函数(Ⅰ)画出函数的图像(Ⅱ)若不等式≤的解集非空,求a的取值范围。

(24)解:(Ⅰ)由于则函数的图像如图所示。

(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。

故不等式的解集非空时,的取值范围为。

4.(2010年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲已知均为正数,证明:,并确定为何值时,等号成立。

2017年全国卷高考数学复习专题——不等式选讲

2017年全国卷高考数学复习专题——不等式选讲

2017年全国卷高考数学复习专题——不等式选讲考点一不等式的性质和绝对值不等式1.(2014广东,9,5分)不等式|x-1|+|x+2|≥5的解集为. 答案{x|x≤-3或x≥2}2.(2014湖南,13,5分)若关于x的不等式|ax-2|<3的解集为x-53<x<13,则a= .答案-33.(2014重庆,16,5分)若不等式|2x-1|+|x+2|≥a2+12a+2对任意实数x恒成立,则实数a的取值范围是.答案-1,124.(2014课标Ⅰ,24,10分)选修4—5:不等式选讲若a>0,b>0,且1a +1b=ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.解析(1)由ab=1a +1b≥ab,得ab≥2,且当a=b=2时等号成立.故a3+b3≥23b3≥42,且当a=b=2时等号成立. 所以a3+b3的最小值为4.(2)由(1)知,2a+3b≥2由于43>6,从而不存在a,b,使得2a+3b=6.5.(2014课标Ⅱ,24,10分)选修4—5:不等式选讲设函数f(x)= x+1a+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解析(1)证明:由a>0,得f(x)= x+1a +|x-a|≥ x+1a-(x-a)=1a+a≥2.所以f(x)≥2.(2)f(3)=3+1a+|3-a|.当a>3时,f(3)=a+1a ,由f(3)<5得3<a<5+212.当0<a≤3时,f(3)=6-a+1a ,由f(3)<5得1+52<a≤3.综上,a的取值范围是1+52,5+212.6.(2014福建,21(3),7分)选修4—5:不等式选讲已知定义在R 上的函数f(x)=|x+1|+|x-2|的最小值为a. (1)求a 的值;(2)若p,q,r 是正实数,且满足p+q+r=a,求证:p 2+q 2+r 2≥3. 解析 (1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3, 当且仅当-1≤x≤2时,等号成立, 所以f(x)的最小值等于3,即a=3.(2)证明:由(1)知p+q+r=3,又因为p,q,r 是正实数, 所以(p 2+q 2+r 2)(12+12+12)≥(p×1+q×1+r×1)2 =(p+q+r)2=9, 即p 2+q 2+r 2≥3.7.(2014辽宁,24,10分)选修4—5:不等式选讲设函数f(x)=2|x-1|+x-1,g(x)=16x 2-8x+1,记f(x)≤1的解集为M,g(x)≤4的解集为N. (1)求M;(2)当x∈M∩N 时,证明:x 2f(x)+x[f(x)]2≤14. 解析 (1)f(x)=3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x≥1时,由f(x)=3x-3≤1得x≤43,故1≤x≤43; 当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1. 所以f(x)≤1的解集为M= x |0≤x ≤43 . (2)证明:由g(x)=16x 2-8x+1≤4得16 x -14 2≤4,解得-14≤x≤34.因此N= x |-14≤x ≤34 ,故M∩N= x |0≤x ≤34 . 当x∈M∩N 时, f(x)=1-x,于是x 2f(x)+x·[f(x)]2 =xf(x)[x+f(x)]=x·f(x)=x(1-x)=14- x -12 2≤14.考点二 不等式的证明8.(2014江苏,21D,10分)选修4—5:不等式选讲 已知x>0,y>0,证明:(1+x+y 2)(1+x 2+y)≥9xy. 证明 因为x>0,y>0, 所以1+x+y 2≥3 xy 23>0, 1+x 2+y≥3 x 2y 3>0,故(1+x+y 2)(1+x 2+y)≥3 xy 23·3 x 2y 3=9xy.9.(2014天津,19,14分)已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnq n-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t∈A,s=a1+a2q+…+anq n-1,t=b1+b2q+…+bnq n-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.解析(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t∈A,s=a1+a2q+…+anq n-1,t=b1+b2q+…+bnq n-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)q n-2+(an-bn)q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=(q-1)(1-q n-1)1-q-q n-1=-1<0. 所以s<t.。

2010年高考数学不等式测试(含详解)

2010年高考数学不等式测试(含详解)

2010年高考数学不等式测试(含详解)2、已知集合{1,1}M =-,11{|22,}4x N x x Z -=<<∈则M N = ( )(A) {1,1}- (B) {1}-(C) {1} (D) {1,0}-3、设a ,b 是两个实数,且a ≠b ,①22(3)2611a a a +>++;②)1(222--≥+b a b a ;③3322a b a b ab +>+;④2>+a b b a 。

上述4个式子中恒成立的有 ( ) (A )1个 (B )2个 (C )3个 (D )4个4、对于实数a b 、,“()0b b a -≤”是“1ab≥”成立的( )(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分又不必要条件5、若关于x 的不等式4)1(42+≤+k x k 的解集是M ,则对任意实数k ,总有 ( )A .2∈M ,0∉MB .2∉M ,0∉MC .2∉M ,0∈MD .2∈M ,0∈M6、函数y =)3(2log x x -的定义域是( )(A ){x ∣0<x <3} (B ){x ∣x<0或x >3} (C ){x ∣x ≤0或x≥3} (D ){x ∣0≤x ≤3} 7、已知则且,2,0,0=+≥≥b a b a ( ) (A)21≤ab (B) 21≥ab (C) 322≤+b a(D) 222≥+b a8、若不等式f (x )=2ax x c -->0的解集{}|21x x -<<,则函数y =f (-x )的图象为( )9.若直线)0,(022>=+-b a by ax 始终平分圆014222=+-++y x y x 的周长,则ba11+的最小值是( )A .4B .2C .41 D .2110、若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( )A .34B .1C .74D .511、若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤B .221a b +≥C .22111ab+≤ D .22111ab+≥12、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为( ) (A )165 (B )83 (C )85 (D )87二、填空题13、集合{}2|430A x x x =-+<,{}|(2)(4)0B x x x =--<,则A B = . 14、已知,,x y z R +∈,230x y z -+=,则2yxz的最小值 .15、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为___16、若不等式142x x a +--≥0在[1,2]上恒成立,则a 的取值范围为 .三、解答题17、记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围.18、如图,某单位用木料制作如图所示的框架,框架的下部是边长分别为,x y (单位:米)的矩形,上部是斜边长为x 的等腰直角三角形,要求框架围成的总面积为8平方米. (Ⅰ)求,x y 的关系式,并求x 的取值范围; (Ⅱ)问,x y 分别为多少时用料最省?x19、某物流公司购买了一块长30AM =米,宽20AN =米的矩形地块A M P N ,规划建设占地如图中矩形ABC D 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线M N 上,B 、D 分别在边AM 、A N 上,假设AB 长度为x 米.(1)要使仓库占地ABC D 的面积不少于144平方米,AB 长度应在什么范围内?(2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)20、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水 处理设备?21、命题:p 实数x 满足22430x ax a -+<,其中0a <,命题:q 实数x 满足260x x --≤或2280x x +->,且p ⌝是q ⌝的必要不充分条件,求a 的取值范围.22、某建筑的金属支架如图所示,根据要求AB 至少长2.8m ,C 为AB 的中点,B 到D 的距离比C D 的长小0.5m ,60BCD ∠=,已知建筑支架的材料每米的价格一定,问怎样设计,A B C D 的长,可使建造这个支架的成本最低?参考答案(祥解)一、选择题BACD 地面1 2 3 4 5 6 7 8 9 10 11 12 BCABDADBACDC解:由11224x -<<,得211222x --<<,即,-2<x -1<1,即-1<x <2,又x ∈Z ,所以x 为0,1,即N ={0,1},故可选(C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2017年高考数学全国卷试题汇编(不等式选讲部分)
1.【2010年新课标】设函数()241f x x =-+.
(Ⅰ)画出函数()y f x =的图像;
(Ⅱ)若不等式()f x ≤ax 的解集非空,求a 的取值范围.
2.【2011年新课标】设函数()3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.
3.【2012年新课标】已知函数()2f x x a x =++- (Ⅰ)当3a =-时,求不等式()3f x ≥的解集;
(Ⅱ)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.
4.【2013年新课标1】已知函数a x x x f ++-=212)(,3)(+=x x g . (Ⅰ)当2-=a 时求不等式)()(x g x f <的解集;
(Ⅱ)设1->a 且当)2
1
,2[a x -∈时)()(x g x f ≤求a 的取值范围.
5.【2013年新课标2】设,,a b c 均为正数,且1a b c ++=,证明:
(Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥.
6.【2014年新课标1】若,0,0>>b a 且ab b
a =+1
1
(I )求33b a +的最小值; (II )是否存在b a ,,使得632=+b a ?并说明理由.
7.【2014年新课标2】设函数()f x =1(0)x x a a a ++->.
(Ⅰ)证明:()2f x ≥; (Ⅱ)若()35f <,求a 的取值范围.
8.【2015年新课标1】已知函数()12,0f x x x a a =+-->. (I )当1a =时,求不等式()1f x >的解集;
(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.
9.【2015年新课标2】设,,,a b c d 均为正数,且a b c d +=+.证明: (I )若ab cd >,则a b c d +>+;
(II )a b c d +>+是a b c d -<-的充要条件.
10.【2016年新课标1】 已知函数()123f x x x =+--. (I )画出()y f x =的图像; (II )求不等式()1f x >的解集.
11.【2016年新课标2】
已知函数11
()||||22
f x x x =-++,M 为不等式()2f x <的解集.
(I )求M ; (II )证明:当,a b M ∈时,|||1|a b ab +<+.
12.【2016年新课标3】已知函数()|2|f x x a a =-+. (I )当2a =时,求不等式()6f x ≤的解集;
(II )设函数()|21|g x x =-.当x R ∈时,()()3f x g x +≥,求a 的取值范围.
13.【2017年新课标1】已知函数2()4f x x ax =-++,()|1|1g x x x =++-.
(I )当1a =时,求不等式()()f x g x ≥的解集;
(II )若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围.
14.【2017年新课标2】已知220,0,2a b a b >>+=,证明: (I )()()334a b a b ++≥; (II )2a b +≤.
15.【2017年新课标3】已知函数|2||1|)(--+=x x x f . (I)求不等式1)(≥x f 的解集;
(II)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.。

相关文档
最新文档