不动点理论在数列中的应用
数列问题不动点法的运用.
数列问题不动点法的运用
有一位名叫ZeroToss的网友给我提出下列的数列问题,问我如何解决?
其实,本题可用“不动点法”求数列的通项公式。
首先,我们要知道,什么叫做函数的“不动点”?
对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”。
巧用“不动点”法求数列的通项公式,是高考中的一种比较特殊的方法。
为了让同学们好好理解并掌握这一方法。
下面我们以典型例题来加以说明(由于篇幅的关系,我们只讲步骤和方法,至于详细的证明,同学们可以在相关的《高中数学竞赛教程中》找到)。
当函数有两个“不动点”时,请同学们看下面的几个例题,即可掌握方法。
从上面的方法中,大家可以概括总结出函数“不动点”法求数列通项公式的基本方法了吗?
其实,第二种题型,相应的函数有两个不动点的,一般是形如
a(n+1)=(pan+m)/(qan+u)这样的数列求通项.这样的数列相应的函数的不动点为f(x)=(px+m)/(qx+u)=x的解x1=u,x2=v,最后一般都化归为:数列{(an-u)/(an-v)}是等比数列来求通项的问题。
我们现在再来看网友ZeroToss提出的数列问题的解答:。
不动点法解决数列通项公式的适用条件
不动点法解决数列通项公式的适用条件
要使用不动点法解决数列通项公式,首先需要确定数列的递推关系式。
数列的递推关系式
描述了数列中每一项与前一项之间的关系,通常用一个公式来表示。
例如,Fibonacci数
列的递推关系式为:$F(n) = F(n-1) + F(n-2)$,其中$F(n)$表示第n个Fibonacci数。
在确定了数列的递推关系式之后,我们可以构造一个基于该递推关系式的函数。
这个函数
通常会包含一个参数,表示数列中的项数。
例如,对于Fibonacci数列,我们可以定义一
个函数$f(n) = f(n-1) + f(n-2)$,其中$f(n)$表示第n个Fibonacci数。
接下来,我们需要找到这个函数的不动点。
不动点就是满足$f(x) = x$的点,即在这个点上
函数的值不会发生变化。
通过迭代的方式,我们可以逼近这个不动点,从而得到数列的通
项公式。
不动点法的适用条件主要取决于数列的递推关系式和函数的性质。
在一般情况下,不动点
法适用于具有良好递推性质的数列,即数列中的每一项都能够通过前一项和前两项来计算。
此外,函数的性质也会影响不动点法的适用性,例如函数的连续性、单调性等。
总的来说,不动点法是一种有效的求解数列通项公式的方法。
通过寻找函数的不动点,我
们可以得到数列的解析表达式,从而更好地理解数列的性质和规律。
在实际应用中,不动
点法可以用于解决各种数学问题,如概率论、统计学等领域的数列求解。
高考数学复习--不动点法求数列通项
即数列
1
an
是公差为
1 2
,首项为
1 a1
1
的等差数列,
所以 1 1 1 n 1 1 n 1
an a1 2
22
an
2 n 1
.
思考:递推函数具有什么结构,能够用取倒数? 是不是递推函数是分式函数都可以取倒数!
典型例题:
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
变式 1:数列an 中, a1 1
an1
1 2 an
,求 an 的通项公式.
解:由条件 an1
1 2 an
得: an1 1
1 2 an
1
an 1 2 an
两端同时取倒数得: 1 2 an 1 1 an1 1 an 1 an 1
即数列
1 an
1
是公差为
1
,首项为
1 a1
1
高考数学复习
不动点法求数列通项
知识梳理:函数不动点的定义 函数的不动点是被这个函数映射到其自身的一个点,即如果 x0 ,使 f (x0 ) x0 ,
则称 x0 为 f (x) 的一个不动点.
⑴代数意义:若方程 f (x) x 有实数根 x0 ,则函数 f x 有不动点 x0 .
⑵几何意义:若函数 y f (x) 的图像与 y x 的图像有公共点 (x0 , y0 ) ,则 x0 为 y f (x) 的不动点.
分析:这个题目两端同时取倒数还可以吗?
1 an1 2 an
那么 an1
2an 2 an
为什么能够行?
具有什么结构特点可以取倒数?
an1
1 2 an
不动点法求数列通项公式
不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解.首,比如:◎例∵∴令∴=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x∴∵∴∵∴∴例3【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1) (n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2)【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1【重合不动点】.b[3]/b[2]=2/4【这里保留分子】b[2]/b[1]=1/3【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3∴∴∴∴∴◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2)【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴∵∴∴∴◎例,但采用求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i)【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)∴∵∴令∵θ∵∴∴a[n]=tan[(n-1)π/4+arctan2]。
数列问题不动点法的运用
数列问题不动点法的运用
有一位名叫ZeroToss的网友给我提出下列的数列问题,问我如何解决?
其实,本题可用“不动点法”求数列的通项公式。
首先,我们要知道,什么叫做函数的“不动点”?
对于一个函数f(x),我们把满足f(m)=m的值x=m称为函数f(x)的“不动点”。
巧用“不动点”法求数列的通项公式,是高考中的一种比较特殊的方法。
为了让同学们好好理解并掌握这一方法。
下面我们以典型例题来加以说明(由于篇幅的关系,我们只讲步骤和方法,至于详细的证明,同学们可以在相关的《高中数学竞赛教程中》找到)。
当函数有两个“不动点”时,请同学们看下面的几个例题,即可掌握方法。
从上面的方法中,大家可以概括总结出函数“不动点”法求数列通项公式的基本方法了吗?
其实,第二种题型,相应的函数有两个不动点的,一般是形如
a(n+1)=(pan+m)/(qan+u)这样的数列求通项.这样的数列相应的函数的不动点为f(x)=(px+m)/(qx+u)=x的解x1=u,x2=v,最后一般都化归为:数列{(an-u)/(an-v)}是等比数列来求通项的问题。
我们现在再来看网友ZeroToss提出的数列问题的解答:。
不动点定理在数列中的应用
不动点定理在数列中的应用不动点定理(Fixed-point theorem)是数学中的一个重要定理,它在许多数学领域中都有广泛的应用。
数列是数学中一个重要的概念,在实际问题中也经常涉及到数列的应用。
下面我们就来探讨一下不动点定理在数列中的应用。
不动点定理是说,如果一个函数f在一些区间上连续,并且满足存在一个点c,使得f(c)=c,那么在这个区间上一定存在一个不动点。
而不动点就是满足f(x)=x的点。
不动点定理告诉我们,在一些条件下,可以通过寻找不动点来解决一些问题。
首先,我们来看一个简单的例子,以说明不动点定理在数列中的应用。
考虑一个数列a_1,a_2,a_3,...,a_n,假设该数列满足以下条件:a_n+1=f(a_n),其中f是一个连续函数。
我们希望找到一个数x,使得f(x)=x。
根据不动点定理,如果x是f的一个不动点,那么x必然是数列的极限点。
因此,我们可以通过数列极限点的方法来求解不动点。
现在我们来具体讨论几个应用。
1.迭代方法求解方程:当我们想求解一个方程f(x)=0时,可以采用迭代方法来逼近方程的根。
假设我们选择一个初始值x_0,然后通过不断地迭代计算x_n+1=f(x_n),直到满足其中一种停止准则。
根据不动点定理,如果迭代函数f满足一定条件,那么迭代序列{x_n}将收敛到方程f(x)=0的解。
这种方法在数值计算中经常使用,例如牛顿法、二分法等。
2.数值逼近:不动点定理可以用于数值逼近问题。
我们可以通过构造一个递推数列来逼近一些数值解。
假设我们要求解方程f(x)=c的根,我们可以选择一个初始点x_0,并通过迭代计算x_n+1=f(x_n)来逼近方程的解。
这个逼近序列可能会发散,也可能会收敛到一个数值解。
通过不动点定理,我们可以给出一些条件来保证逼近序列的收敛性,并通过不停地迭代来提高逼近的精度。
3.动力系统:不动点定理也在动力系统中有广泛的应用。
动力系统是研究一些变化随时间的系统的一个数学分支。
不动点法求数列通项详细推导过程
不动点法求数列通项详细推导过程不动点法求数列通项详细推导过程:不动点法是一种用于求解数列的方法,它要求找出一个函数,使得该函数的图像在某一区间上是“不动的”(不随x的变化而变化)。
也就是说,函数的图像在这个区间上以某一点作为中心,不断地向外扩张或收缩,但其形状不会变化。
首先,我们来看看如何使用不动点法求数列通项。
首先,我们需要找出一个函数f(x),使得它的图像在某一区间上是“不动的”。
然后,我们将该函数的图像画出来,以确定该函数在某一特定点的不动点(即该函数的图像在这个点上不再发生变化)。
根据不动点的定义,当函数的图像在某一点上不再变化时,以该点为中心,函数的图像会以相同的形状、大小和位置无限重复。
接下来,我们可以利用这种“不动”的性质,来证明f(x)是数列的通项公式。
首先,我们需要利用微积分原理,求出f(x)的导数。
具体而言,我们假设,f(x)的导数是g(x),并且我们最终可以得出g(x)=0,这意味着f(x)在某一点上是“不动的”。
接着,我们可以使用定积分法,将g(x)带入原函数f(x),从而求出f(x)的极限。
此时,我们可以发现,f(x)的极限正好是数列的通项公式。
最后,我们进一步证明,f(x)的极限就是数列的通项公式。
为了这样做,我们需要将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
总之,不动点法求数列通项详细推导过程便是:首先,找出一个函数f(x),使得它的图像在某一区间上是“不动的”;然后,利用微积分原理求出f(x)的导数,并用定积分法将g(x)带入原函数f(x),从而求出f(x)的极限;最后,将f(x)的极限代入数列的前n项,并对其进行求和,以确定求和的结果是否与数列的通项公式相等。
如果求和结果与数列的通项公式相等,则说明f(x)就是数列的通项公式。
不动点定理及其应用
不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。
不动点在数列中的应用
不动点在数列中的应用哎,你们知道吗?我这人对数学那可是又爱又恨啊。
爱的是它严谨的逻辑和无尽的奥秘,恨的就是有时候那些概念、公式绕来绕去,能把人整得晕头转向。
不过,今天咱们就聊聊数列里的一个小宝贝——不动点,这家伙可真让我在数学的海洋里找到了点乐子。
记得那天,阳光明媚,数学老师一脸神秘地走进教室,手里拿着粉笔,在黑板上写了几个大字:“不动点在数列中的应用”。
我当时心里就嘀咕:“不动点?这不是物理里讲的吗?怎么数学也来凑热闹?”老师看我们一脸懵,笑眯眯地说:“别急,咱们慢慢揭开它的面纱。
”老师先是从最基础的等差数列、等比数列讲起,然后话锋一转,说:“现在,咱们来点刺激的,看看不动点怎么在这些数列里玩花样。
”他画了个函数图像,指着一个点说:“看,这个点,无论你怎么变换,它都稳稳地待在那里,这就是不动点。
”我盯着那个点,心里琢磨:“这家伙,还真是够淡定啊。
”老师接着说:“在数列里,不动点能帮我们解决一些看似复杂的问题,比如求通项公式、判断数列的性质等等。
”我当时就来精神了,想着:“要是能用不动点解决那些让我头疼的数列题,那可真是爽歪歪啊。
”于是,我竖起耳朵,生怕错过一个字。
老师举了个例子,说有一个递推数列,每次都是前一项的某种变换加上一个常数。
他让我们试着找找这个数列的不动点。
我拿起笔,在纸上写写画画,经过一番折腾,终于找到了那个神奇的不动点。
那一刻,我仿佛看到了数学世界的另一扇门向我敞开。
接下来,老师教我们怎么用不动点来求解数列的通项公式。
我看着那些原本杂乱无章的数列项,在不动点的帮助下,竟然变得井井有条,心里别提多有成就感了。
下课后,我还拉着同学讨论:“你说,不动点是不是数列里的‘定海神针’啊?不管数列怎么变,它都能稳住大局。
”同学笑着点头:“是啊,有了它,我们解题就更有底气了。
”从那以后,我对数列的恐惧感大大减少,反而觉得它们挺有意思的。
每次遇到难题,我都会想想不动点,看看它能不能给我点启示。
有时候,我还真能从那些复杂的数列中找到一丝规律,就像是在迷雾中找到了一盏明灯。
数列中不动点的应用原理
数列中不动点的应用原理什么是数列中的不动点?在数学中,数列是由一系列有序的数构成的序列。
而不动点是指在数列中,某个数与它的后继数相等的情况。
换句话说,不动点是指一个数列中的数,在后继数列中仍然保持不变。
不动点的应用不动点在数学中有着广泛的应用。
下面将介绍一些常见的不动点应用。
1.迭代方法迭代方法是一种常见的数值计算方法。
在迭代过程中,我们从一个初始数值出发,按照特定的规则产生一系列数值。
如果存在一个不动点,即某个数在迭代过程中不变,那么我们可以通过不动点来近似求解问题。
例如,我们要求方程f(x) = x的解。
我们可以选择一个初始数x0,然后通过迭代计算来逼近方程的解。
每一步我们将计算:x1 = f(x0),x2 = f(x1),依此类推,直到找到最接近方程解的数值。
2.方程求解在实际应用中,我们经常需要求解各种复杂的方程。
而方程的解通常很难通过解析方法求得。
不动点的概念可以帮助我们将方程的求解转化为迭代求解问题。
例如,我们要求方程x^2 = 2的解。
我们可以将方程转化为x = f(x)的形式,其中f(x) = x - (x^2 - 2)/(2x)。
然后我们选择一个初始数x0,通过迭代计算来逼近方程的解。
3.系统稳定性分析不动点的概念在系统稳定性分析中也有重要应用。
在控制系统中,我们经常需要分析系统在各种输入条件下的稳定性。
例如,我们要分析一个线性离散时间系统x(k+1) = Ax(k) + Bu(k)的稳定性,其中x(k)为系统状态,u(k)为输入。
我们可以通过分析系统的特征值来判断系统的稳定性。
如果系统的特征值全部位于单位圆内,则系统是稳定的。
而特征值位于单位圆上或外部,则系统是不稳定的。
4.进化论不动点的概念在进化论中也有应用。
进化论研究生物的进化过程中的各种变异。
而不动点可以用来描述进化过程中的平衡状态。
例如,我们要分析某个种群在进化过程中的平衡状态。
我们可以将种群的进化过程视为不动点的过程。
数列递推与不动点
数列与不动点 1 / 10递推数列与不动点班别: 姓名: .一、 知识讲解通过之前的学习,同学们已经对数列有了进一步的认识。
大家回忆一下,我们之前学过一类由数列的递推关系式求数列的通项公式的题型.另外,在必修5的课本中谈到数列的概念的时候,特别的说到了,数列{}n a 的通项公式,可以看作定义在正整数集上函数。
本节课,我们将从函数的角度数列的递推关系的相关问题.定义 1: 非空集合X 上的函数:f X X →,数列{}n a 满足:0a X ∈,()1n n a f a +=.我们则称数列{}n a 为函数f 的一阶递推数列,函数f 称为数列{}n a 的递推函数.定义2:非空集合X 上的函数:f X X →,x X ∈,n N ∈,记()0f x x =,()()1f x f x =,()()()2f x f f x =,……,()()()n n ff x f ff x =个,我们称函数()n f x 为函数()f x 的n 次迭代.注1:根据迭代的定义,不难证明:对任意的,m n N ∈, 都有()()()()()m n n m m n f x f f x f f x +==注2:其递推数列与函数的迭代,这两个概念是等价的,令0a x =,则对任意的n N ∈,都有()n n a f x =。
定义3: 定义在非空集合X 上的函数()f x ,0x X ∈,满足:()00f x x =.则我们称0x x =为函数()f x 的不动点.注:1、考察函数()f x 的n 次迭代()n f x 的不动点,也就是设0x X ∈,且满足:()00n f x x =.则对任意的m N ∈,都有()()()()000m n m n m f x f f x f x +==,此时,()0m f x 是一个以n 为周期迭代函数..2、若0x 是函数()f x 的不动点,数列{}n a 满足:()001,n n a x a f a +==,则{}n a 是一个恒等于0x 的常数列;若0x 是函数()n f x 的不动点,数列{}m a 满足:()001,m m a x a f a +==,则{}m a 是一个以T 为周期的数列.数列与不动点 2 / 10为什么叫不动点呢?大家想想不动该怎么理解呢? 我们可以这么理解,在函数:f X X →的作用下,集合X 中的每一个x ,都与集合X 中都存在唯一的元素y 对应,也就是fx y −−→.而不动点在函数:f X X →的作用下,所得的结果没有发生变化,所以称为不动点.下面举一个生活中的例子来理解不动点的概念.如图所示,将一幅地图X ,比如中国地图,缩小得到新的地图'X ,然后任意放入原来的地图中,也就是'X X ⊆.这样的话,我们可以定义一个类似函数的对应关系:'f X X →,地图X 中的每一个点A 都对应地图'X 中的'A ,使得A 和'A 能表示同一个地点.比如,北京在地图X 中的位置与北京在地图'X 中的点对应。
巧用不动点法求数列的通项公式
巧用不动点法求数列的通项公式不动点法是解决函数方程和递归式问题的一种有效方法。
在数学中,如果一个函数f(x) 恰好等于x,那么x 就是这个函数的不动点。
巧用不动点法,我们也可以用来求解数列的通项公式。
通过这种方法,我们可以更加轻松地理解与求解数列的通项公式。
一、不动点法的概念及定理:不动点法早在古希腊数学家Euclid时代就已经被使用,但真正的发展是在20世纪50年代,康托尔和斯考特对其进行了重要的发展。
不动点法主要应用于非线性方程及函数不动点领域。
在数学中,一个函数的不动点是指一个值x,满足f(x) = x。
这个概念的重要性体现在不动点存在定理上。
这个定理告诉我们,任何连续、紧、单调的函数都有一个不动点。
这个定理的应用范围极广,包括了不少基本的方程难题。
二、利用不动点法求解数列的通项公式的思路:利用不动点法求解数列的通项公式,我们首先要找到数列中存在的不动点。
对于一个数列{a1, a2, a3, ...} ,我们可以对其进行递推求解,得到{a1, a2, a3, ...} 的确切关系式(称为递推式),然后你可以进行转化以便寻找不动点。
我们要利用某些方法来确定这个递推式的不动点,即一个数x等于这个数列中每一项。
(即满足a(x)=x)。
最终我们可以得到一个只含有x的方程,此方程就是这个数列的通项公式。
三、一个示例:举一个最简单的例子。
有一个数列{1, 2, 3, 4, 5, ...},这个数列的递推式为an = an-1 + 1,即每一项是前一项加1。
我们尝试用不动点法来计算这个数列的通项公式。
首先对这个数列进行递推,我们可以得到an = a1 + (n - 1),即第n项等于首项加上公差乘以n-1。
到这里我们已经成功地将递推式从" an = an-1 + 1 " 修改为" an = a1 + (n-1) "。
接下来,我们要寻找这个递推式的不动点。
将an+1 = a1 + n 代入an = a1 + (n - 1) 中,可以得到a1 + n = a1 + (n - 1) + 1 ,消去a1 ,我们可以得到n =n。
不动点和压缩影射的原理及其应用(5篇)
不动点和压缩影射的原理及其应用(5篇)第一篇:不动点和压缩影射的原理及其应用不动点和压缩影射的原理及其应用摘要:学习了数学分析中一些不动点问题的解题方法和递推数列的极限,将不动点和压缩映像原理运用到求一些极限问题中,使我们更容易去解决关于数列极限存在性和如何快速求出极限的值。
关键词:不动点压缩影射递推数列应用自从波兰数学家巴拿赫在1992年提出了有关压缩映像在完备的度量空间必然存在唯一的不动点的一些理论。
而后,许多数学工作者投入的大量的时间来研究,并取得了一些丰硕的成果。
今天,不动点和压缩映像原理在我们日常生活中运用十分广泛。
不动点原理在数学分析,常微方程,积分方程等很多地方都有它的应用。
而压缩映像可以用于证明一些简单的隐函数存在定理,特别是在求一些递推数列中。
然而在不少数学分析教材中一般不介绍它,这给我们带来许多问题的困扰。
建议老师将它放在微分中值定理和数列柯西收敛准则后学习,这样可以让学生更进一步了解泛函分析。
1不动点和压缩映像定义及原理定义1设X为一个非空集合,映射T是X到X的一个映射,如果存在x*X使得Tx*=x*则称x *是T的一个不动点。
定义2设X是度量空间,T是X到X中的映射,如果存在一个数c,0第二篇:管理学原理简答精华压缩1、计划工作程序:①估量机会②确定目标③确定前提条件④确定可供选择的方案⑤评价各种方案⑥选择方案⑦制订派生计划⑧用预算形式使计划数字化。
2、内部提升制优缺点:优点:1.由于对机构中的人员有较充实可靠的资料,可了解候选人的优缺点,以判断是否适合新的工作。
2.组织内成员对组织的历史和现状比较了解,能较快地胜任工作。
3.可激励组织成员的进取心,努力充实提高本身的知识和技能。
4.工作有变换机会,可提高组织成员的兴趣和士气,使其有一个良好的工作情绪。
5.可使过去对组织成员的训练投资获得回收,并判断其效益如何。
缺点:1.所能提供的人员有限,尤其是关键的管理者,当组织内有大量空缺职位时,往往会发生“表黄不接”的情况。
高考数学二轮复习考点知识与题型专题讲解14---用“不动点法”求数列的通项公式(解析版)
高考数学二轮复习考点知识与题型专题讲解 14 用“不动点法”求数列的通项公式设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理 1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cd x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n cb b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用. 【典型题型1】已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 【解析】解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 【典型题型2】已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列?【解析】解:作方程,)32(i x x +=则.5360i x +-= 要使n a 为常数,即则必须.53601i x a +-== 现在考虑一个分式递推问题(*). 定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程h rx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)(hd r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ② 将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+④ 由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n r p r n b b n λ 其中.11111λ-==a d b当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ 故21111λλ--=+++n n n a a c ,将h ra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ⑥ ∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,h ra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.【典型题型3】已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.将这问题一般化,应用特征方程法求解,有下述结果.【解析】解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ 即.N ,)5(24)5(∈-+--=n a n n n【典型题型4】已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 【解析】解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答.(1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在. 下面分两种情况给出递推数列dt c b t a t n n n +⋅+⋅=+1通项的求解通法. (1)当c=0,时, 由d t c b t a t n n n +⋅+⋅=+1db t d a t n n +⋅=⇒+1, 记k da =,c db =,则有c t k t n n +⋅=+1(k ≠0), ∴数列{n t }的特征函数为)(x f =kx+c,由kx+c=x ⇒x=k c -1,则c t k t n n +⋅=+1⇒)1(11k c t k k c t n n --=--+ ∴数列}1{kc t n --是公比为k 的等比数列, ∴11)1(1-⋅--=--n n k k c t k c t ⇒11)1(1-⋅--+-=n n k kc t k c t . (2)当c ≠0时,数列{n t }的特征函数为:)(x f =dx c b x a +⋅+⋅ 由x dx c b x a =+⋅+⋅0)(2=--+⇒b x a d cx 设方程0)(2=--+b x a d cx 的两根为x 1,x 2,则有:0)(121=--+b x a d cx ,0)(222=--+b x a d cx ∴12)(1x a d cx b -+= (1)222)(x a d cx b -+=……(2) 又设212111x t x t k x t x t n n n n --⋅=--++(其中,n ∈N *,k 为待定常数). 由212111x t x t k x t x t n n n n --⋅=--++⇒2121x t x t k x dt c b t a x d t c b t a n n n n n n --⋅=-+⋅+⋅-+⋅+⋅ ⇒212211x t x t k dx t cx b at dx t cx b at n n n n n n --⋅=--+--+……(3) 将(1)、(2)式代入(3)式得:2122221121x t x t k ax t cx cx at ax t cx cx at n n n n n n --⋅=--+--+ ⇒212211))(())((x t x t k x t cx a x t cx a n n n n --⋅=----⇒21cx a cx a k --= ∴数列{21x t x t n n --}是公比为21cx a cx a --(易证021≠--cx a cx a )的等比数列. ∴21x t x t n n --=1212111-⎪⎪⎭⎫ ⎝⎛--⋅--n cx a cx a x t x t ⇒12121111212111211--⎪⎪⎭⎫ ⎝⎛--⋅---⎪⎪⎭⎫ ⎝⎛--⋅--⋅-=n n n cx a cx a x t x t cx a cx a x t x t x x t .【典型题型5】已知数列{a n }中,a 1=2,3121+=+n n a a ,求{a n }的通项。
不动点法求数列通项的原理
不动点法求数列通项的原理
一、不动点法(特征根法)的概念
不动点法,又称特征根法,是一种用于解决数列求通项的有效方法,该方法通过求解特征根或不动点来求出数列通项。
二、不动点法(特征根法)的原理
不动点法,是把数列的运算转化为求解特征根的问题。
特征根,是指使得其中一特定数列值不变的数。
通常情况下,当一个数列的通项具有对数函数的形式时,它的公式可以求出,但如果它具有指数函数的形式时,就不能用常规的方法求出。
此时,可以用不动点法来求出该数列的通项。
不动点法的基本步骤为:
(1)将数列的前n项归纳成一个大的等比数列;
(2)建立等比数列的递推关系式;
(3)求解递推关系式的特征根;
(4)根据特征根求出数列的通项。
例如,解数列{an}的通项
要解这个数列的通项,可以先将数列归纳成一个大的等比数列,即显然,等比数列 {an} 的公比 = q = 3 ,自然数 n 的取值范围是0 ≤ n ≤ 7
接下来,建立等比数列的递推关系式:
an+1=3·an
可以把它写成递推公式的一般形式:an+1-3an=0
特征方程可以由上式求出:
lamda^2-3lamda+1=0
两个根分别是
lamda_1=1
lamda_2=3
这样,就可以求出数列通项,即
an=A·1^n + B·3^n
设a0=7
则有A+B=7,a1=21,则有3A+B=21。
[实用参考]不动点定理及其应用(高考)
摘要本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用.关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性.AbstractThisarticlefirstlPintroducedtheFiGpointTheoreminBanachspace,theone-dimensionaleGtende dformoftheFiGpointTheoreminotherlineartopologicalspaceandtheeGtendedformingeneralcomplete metricspace.Then,wesummarizedtheproblemonsequenceofnumberusingFiGpointTheorem,analPzin gthecharacteristicsoftestsemergedonmathpapersofallpartsofourcountrPrecentPears,includingthepro blemofgeneraltermandboundednessofasequenceofnumber.Atlast,attractivefiGpointandrejectionfiG pointinFiGpointTheoremwereintroducedwhichcansolvetheproblemaboutthemonotonicitPandastrin gencPofsequenceofnumber.KePwords:BanachfiGedpointtheorem,Sequence,Boundedness,MonotonicitPConvergence.目录第1章绪论 (1)1.1导论 (1)1.1.1 选题背景 (1)1.1.2 选题意义 (2)1.1.3 课题研究内容 (2)1.2 研究现状 (2)1.3本章小结 (3)第2章不动点定理 (4)2.1 有关概念 (4)2.2 不动点定理和几种推广形式 (4)2.3 本章小结 (7)第3章不动点定理在数列中的应用 (8)3.1 求数列的通项公式 (8)3.2 数列的有界性 (9)3.3 数列的单调性及收敛性 (11)3.3.1数列的单调性、收敛性的重要结论 (11)3.3.2数列的单调性、收敛性的证明 (14)3.4 本章小结 (17)第6章结束语 (18)参考文献 (19)第1章绪论1.1导论不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].不动点理论一个发展方向是只限于欧氏空间多面体[5]上的映射,不动点理论的另一个发展方向是不限于欧氏空间中多面体上的映射,而考察一般的距离空间或线性拓扑空间上的不动点问题.最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像原理发展了迭代思想,并给出了Banach 不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、积分方程、隐函数理论等中的许多存在性与唯一性问题均可以归结为此定理的推论.1.1.1选题背景不动点定理在微分方程、函数方程、动力系统理论等中有极为广泛的应用.函数的"不动点"理论虽然不是中学教材的必修内容,但是它的存在确实使一些数学问题在无法想象中得到了解决.已知递推公式求其数列通项,数列有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.因此,它就自然成为各类数学竞赛和选择性考试必选的内容之一,尤其在近年的高考中对该定理的应用越来越频繁.1.1.2选题意义利用“不动点”法巧解高考题,递推公式求数列的通项,证明数列的有界性、数列的单调性及收敛性等,历来是高考的重点和热点题型,那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此本文对函数“不动点”问题的研究结果,来简化求数列的通项公式、数列的有界性、数列的单调性及收敛性等问题具有指导意义和理论意义.1.1.3课题研究内容本文通过介绍不动点定理的证明,不动点定理的迭代思想和不动点定理的推论,研究了以下的内容:①利用不动点定理的迭代思想,简化求递推数列的通项问题.②以不动点定理为指导思想,证明数列的有界性.③利用不动点及特征函数的性质研究数列的单调性及收敛性,并借此解决一些高考题.1.2研究现状不动点理论一直是一个既比较古老的问题,又比较有新生命力的领域,它的历史悠久,却又是近现代一个发展较快的理论定理.自不动点理论问世以来,特别是最近的二三十年来,由于学术上的不断发展和数学工作者的不懈努力,这门学科的理论及应用的研究已经取得了重要的进展,不断有新的不动点理论研究成果涌现,并日臻完善.不动点的有关理论是泛函分析中最重要的原理之一,它依据于著名的巴拿赫(Banach )压缩映射定理,如今已广泛应用于数学分析的各个方面.许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()f x ()f x 把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x ∈,使00()f x x =.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题.近年来,有不少人研究中学数学中所涉及到的不动点问题,将拓扑学不动点定理的一些基本思想,采用通俗易懂的语言和形象生动的例子运用到初等数学中去,扩大中学生的知识领域,加深中学生对数学基础知识的掌握.在中学中,不动点有关知识常常用来解决一些初等数学中的问题,例如以“不动点”为载体、将函数、数列、不等式、方程以及解析几何等知识有机地交汇在一起的数学问题,从而体现了用不动点有关知识来求解这些问题有时是非常简单和巧妙的.1.3本章小结本章介绍了选题的背景和意义,并对课题的要求和研究内容作了分析,对不动点定理的现况作了概要性的说明,是不动点定理及其应用的前期研究基础.第2章不动点定理2.1有关概念函数的不动点,在数学中是指被这个函数映射到其自身的一个点,即函数()f x 的取值过程中,如果有0x ,使0()f x x =.就称0x 为()f x 的一个不动点.对此定义,有两方面的理解:⑴代数意义:若方程00()f x x =有实数根0x ,则00)(x x f =有不动点0x . ⑵几何意义:若函数)(x f y =与x y =有交点),(00y x ,则0x 为()y f x =的不动点.为了介绍不动点的一般概念,本文先介绍以下相关概念.定义1[7]度量空间:设X 是一个集合,R X X →⨯:ρ.如果对于任何X z y x ∈,,,有 ⑴(正定性)(,)0x y ρ≥,并且(,)0x y ρ=当且仅当y x =;⑵(对称性)(,)(,)x y y x ρρ=;⑶(三角不等式)(,)(,)(,)x z x y y z ρρρ≤+,则称ρ是集合X 的一个度量,偶对()ρ,X 是一个度量空间.定义2[7]压缩映射:给定()ρ,X 如果对于映射T :X X →存在常数K ,10<<K 使得(,)(,)Tx Ty K x y ρρ≤,(,)x y X ∀∈则称T 是一个压缩映射.定义3[7]CauchP 列:给定(,)X ρ,{}n x X ⊂,若对任取的0>ε,有自然数N 使对εN n m >∀,,都成立(,)m n x x ρε<则称序列{}n x 是CauchP 列.定义4[7]完备度量空间:给定(,)X ρ,若X 中任一CauchP 列都收敛,则称它是完备的.定义5[8]不动点:给定度量空间(,)T ρ及X X →的映射T 如果存在X x ∈*使**xTx =则称*x 为映射T 的不动点.定义6[9]凸集:设X 是维欧式空间的一点集,若任意的两点X x X x ∈∈21,的连线上的所有的点)10(,)1(21≤∂≤∈∂-+∂X x x ;则称X 为凸集.2.2不动点定理和几种推广形式不动点理论是关于方程的一种一般理论.数学里到处要解方程,诸如代数方程、微分方程、函数方程等,种类繁多,形式各异,但是它们常能改写成()f x x =的形状这里的x 是某个适当的空间X 中的点,f 是X 到X 的一个映射,把每个x 移到()f x .方程()f x x =的解恰好就是在f 这个映射下被留在原地不动的点,故称不动点,于是解方程的问题就是化成了找不动点的这个几何问题,不动点理论就是研究不动点的有无、个数性质与方法.首先,本文介绍Banach 不动点定理的证明定理l (Banach 不动点定理——压缩映射原理[10])设(,)X ρ是一个完备的度量空间T 是(,)X ρ到其自身的一个压缩映射,则T 在X 中存在惟一的不动点.证明首先,证明T 存在不动点取定X x ∈0以递推形式n n Tx x =+1确定一序列{}n x 是CauchP 列.事实上,由1111221210(,)(,)(,)(,)(,)(,)m m m m m m m m m m m x x Tx Tx K x x K Tx Tx K x x K x x ρρρρρρ+------=≤=≤≤≤任取自然数n m ,,不妨设n m <那么 1111101010(,)(,)(,)()(,)1()(,)(,)11m m n m n m m n n n m mm x x x x x x K K K x x K K K x x x x K Kρρρρρρ-----≤++≤+++-=≤-- 从而知{}n x 是一CanchP 列,故存在X x ∈*使*x x n →且*x 是T 的不动点,因为******1(,)(,)(,)(,)(,)()n n n n x Tx x x x Tx x x K x x n ρρρρρ-≤+=+→→∞故**(,)0x Tx ρ=,即**x Tx =,所以*x 是T 的不动点.其次,下证不动点的惟一性设T 有两个不动点*1*,x x ,那么由**x Tx =及*1*1x Tx =有 ******111(,)(,)(,)x x Tx Tx K x x ρρρ=≤设*1*x x ≠,则**1(,)0x x ρ>,得到矛盾,从而*1*x x =,唯一性证毕. 作为Brouwer 不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder 不动点定理I :定理2设E 是Banach 空间,X 为E 中非空紧凸集,X X f →:是连续自映射,则f 在X 中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意X x ∈,()x f 是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集,有下面定理,我们称其为Schauder 不动点定理II :定理3设E 是Banach 空间,X 为E 中非空凸集,X X f →:是紧的连续自映射,则f 在X 中必有不动点.定义6设E 是线性拓扑空间,如果E 中存在由凸集组成的零邻域基,则称E 是局部凸的线性拓扑空间,简称局部凸空间.1935年,TPehonoff 进一步将Sehauder 不动点定理I 推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为TPehonoff 不动点定理:定理4设E 是局部凸线性拓扑空间,X 是其中的非空紧凸集,X X f →:是连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.1950年,Hukuhara 将Schauder 不动点定理II 与TPehonoff 不动点定理结合起来得到下面的定理,我们称其为Sehauder--TPchonoff 不动点定理:定理5设E 是局部凸线性拓扑空间,X 是其中的非空凸集,X X f →:是紧连续自映射,则f 必有不动点,即存在X x ∈0,使得00()f x x =.从20世纪30年代起,人们开始关注集值映射的不动点问题.所谓集值映射的不动点, 定义如下:定义7设X 是拓扑空间,X X T 2:→是集值映射,其中X2表示X 的所有非空子集的集合.若存在X x ∈0,使00()x T x ∈,则称0x 是T 的不动点.1941年,kllcIltani 把Bmuwer 不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani 不动点定理:定理6设m R X →是凸紧集,且X X T 2:→是具闭凸值的上半连续集值映射,则T 必有不动点.1950年,Botmenblust ,Karlin 把Sehauder 不动点定理I 推广到集值映射的情形: 定理7设E 是Banach 空间,X 是E 中的非空紧凸集,X X T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点.1952年,Fan ,Glicksberg 分别把TPehonoff 不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg 不动点定理或K-F —G 不动点定理.即: 定理8设E 是局部凸的Hausdorff 线性拓扑空间,X 是E 中的非空紧凸集,XX T 2:→是具有闭凸值的上半连续集值映射,则T 必有不动点. 1968年,Browder 又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder 不动点定理:定理9设X 是Hausdorff 线性拓扑空间E 中的非空凸紧子集,集值映射XX S 2:→满足:(1)对任意X x ∈,()S x 是X 中的非空凸集(2)对任意{}1,():()y X S y x X y S x -∈=∈∈是Z 中的开集则存在X x ∈0,使00()x S x ∈.本章小结本章详细介绍了Banach 不动点定理及其证明,概况了对不动点定理的几种推广形式.第3章不动点定理在数列中的应用在高考试题中,数列向所对应函数的不动点收敛的问题,常可以用单调性结合数学归纳法的方法来解决.“不动点”问题虽不是高考大纲的要求,但在函数迭代、力程、数列、解析几何中都有重要的价值和应用,在历年的高考中也经常看到“不动点”的影子以全国卷I 为例,20PP 年,20PP 年、20PP 年高考的压轴题都是可以用“不动点”的方法比较容易地去解决.用“不动点”的方法在学生平时解题中主要是求数列的通项公式、数列的单调性、有界性及收敛性等.3.1求数列的通项公式定理10已知数列{}n x 满足()()d cx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,设p 是()x f 唯一的不动点,则数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 证明因为p 是()x f 唯一的不动点,所以p 是方程d cx b ax x ++=,亦即p 是一元二次方程()02=--+b x a d cx 的唯一解.得ap cp pd b cd a p -=--=2,2 所以 ()()()()d cx p x pc a dcx ap cp x pc a d cx pd b x pc a p d cx b ax p x n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111()()()()p x cp a cp d pc a c px cp d p x c pc a p x pc a d cx p x n n n n n n --++-=-++--=--+=------11111111把cd a p 2-=代入上式,得: px d a c p x n n -++=--1121 令d a c k +=2,可得数列⎭⎬⎫⎩⎨⎧-p x n 1是一个等差数列. 在初等数学中经常会遇到求这类问题,已知数列{}n x 的首项,数列的递推关系,求数列的通项,这类问题往往难度很大,通过不定点定理,大大降低了此类问题的难度.例1若1121,1--=-=n n a a a (*N n ∈,且2≥n )求数列{}n a 的通项公式. 解根据迭代数列121--=n n a a ,构造函数()x x f -=21,易知()x f 有唯一的不动点1=p ,根据定理可知2,1,1,0=-===d c b a ,则111111-+-=--n n a a 即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项21-,公差为1-的等差数列.则对应的通项公式为 ()()n n a n -=--+-=-21112111 解得nn a n 2123--= 又11-=a 也满足上式.所以{}n a 的通项公式为nn a n 2123--=. 对于此类形式的数列,已知数列{}n x 满足()()dcx b ax x f x f x n n ++==-,1,其中0,0≠-≠bc ad c ,求其通项.运用不动点定理,可以简单快捷地解答.即数列⎭⎬⎫⎩⎨⎧-11n a 是以首项1a ,公差为da c +2的等差数列. 推论已知数列{}n x 满足()()b ax x f x f x n n +==-,1,其中0≠a ,设p 是()x f 唯一的不动点,则数列{}p x n -是一个公比为a 等比数列例2若32,111+=-=-n n a a a ,(*N n ∈,且2≥n ),求数列{}n a 的通项公式.解根据迭代数列321+=-n n a a ,构造函数()32+=x x f ,易知()x f 有唯一的不动点3-=p ,根据推论可知3,2==b a ,则()()()3231--=---n n a a所以()3231+=+-n n a a所以{}3+n a 是以231=+a 为首项,2为公比的等比数列,则当2≥n 时,有n n a 23=+,故32-=n n a又11-=a 也满足上式.所以{}n a 的通项公式为32-=n n a .在高中阶段,学生在学习了数列之后,经常会遇到已知1a 及递推公式,求数列()n n a f a =+1的通项公式的问题,很多的题目令人感到非常棘手.而不动点定理给出了一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题.3.2数列的有界性在高考中会经常出现证明数列有界性的问题,不等式问题是高考中的一个难点,数列与不等式结合,使得这类问题更加的棘手了,而不动点定理却给了我们思想上的一个指导,即解决这类问题,我们可以先求出不动点,然后用数学归纳法证明.例3(20PP 年全国II )函数()x x x x f ln -=.数列{}n a 满足()n n a f a a =<<+11,10.证明:11<<+n n a a .分析函数()x x x x f ln -=的不动点是1=x 显然此题就是要证明数列向不动点1=x 收敛证明当()1,0∈x 时,()0ln '>-=x x f ,所以()x f 在区间()1,0内是增函数;又101<<a ,所以()()11ln 111121=<-==<f a a a a f a a ;。
泛函分析中不动点理论及其应用
目录内容摘要 (1)关键词 (1)Abstract (1)Key Words (1)1.引言 (1)2.不动点定义及定理介绍 (2)2.1不动点相关定义 (2)2.2不动点思想 (2)2.3不动点相关定理 (6)3.不动点思想在其他学科的应用 (8)3.1在求数列通项公式中的应用 (8)3.2在求方程解中的应用 (11)3.3在求函数解析式中的应用 (12)4.不动点定理在证明中的应用 (14)4.1 应用不动点定理证明数列极限 (14)4.2 应用不动点定理证明隐函数定理 (15)4.3 应用不动点定理证明微分方程解的存在性定理 (17)4.4 应用不动点定理证明积分方程解的存在性定理 (17)4.5 不动点定理在图论中的证明 (14)参考文献 (18)致谢 (19)内容摘要:本文简要介绍了不动点思想及相关定理,对Banach不动点定理做了一些简单的推论,应用不动点思想解决数列通项公式、方程的解、函数的解析式等问题。
并对隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理做出了证明。
关键词:不动点不动点思想不动点定理应用Abstract:Key words:1.引言泛函分析是本世纪出才逐渐形成的一个新的数学分支,以其高度的统一性和广泛的应用性,在现代数学领域占有重要的地位。
在泛函分析中。
许多分散在各个数学分支中的事实都得到了统一的处理,例如隐函数定理、微分方程解的存在性定理、积分方程解的存在性定理,在泛函分析中都归结为一个定理——不动点定理。
这正是抽象的结果。
不动点定理实际上是算子方程T x x =的求解问题,是分析学的各个分支中存在和唯一性定理的重要基础,它是关于具体问题解的存在唯一性的定理,其中Banach 不动点定理,亦称压缩映射原理,它提供了线性方程解的最佳逼近程序,给出了近似解的构造,在常微分方程、积分方程等领域中也有着广泛的应用,在现代数学发展中有着重要的地位和作用。
2.不动点相关定义及定理介绍2.1不动点相关定义定义1 设X 为非空集合,:T X X ®是一个映射,如果x X $ 使得T x x =成立,则称x 为映射T 的一个不动点。
不动点法求数列通项原理
不动点法求数列通项原理
不动点法是一种常用的数学方法,它可以用来求解数列的通项。
它的原理就是让数列经过一次变换后,重复多次变换直到满足不动点的性质,从而求得通项。
不动点法的具体推导步骤如下:
(1)确定数列元素
将通项表示为n或x的某个多项式表达式。
(2)计算
根据多项式的定义,计算出x0(即第一项)、x1(即第二项)、x2(即第三项)、 (x)
(即第n项)。
(3)准备不动点
根据多项式的定义,将第n+1项用元素xn、xn-1、xn-2、…、x1、x0来表示,再把元素转式到xn表达式,得到不动点。
(4)寻找不动点
通过次方程求解找到不动点。
(5)求解多项式的值
当找到不动点后,将该不动点转移到x1中,通过次方程求出通项的多项式的表达式,得到数列的通项。
以上就是不动点法的基本原理。
它的优点是能够有效地将数列简化,并以有规律的数列表达式来求解数列的通项,比直接利用原数列推导方式更简单。
不动点法是一种推理方式,它既可以用来求解数列的通项,也可以用来求解其他复杂数学问题。
它可以将复杂问题简化,提高求解的效率,这使得不动点法广泛运用于科学技术领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不动点理论在数列中的应用
四川省宜宾市南溪第一中学校 潘昌明
摘要:理解度量空间下的不动点原理,同时研究其在递推数列中的应用,获得数学思维的提升,展望高考压轴题新方向。
关键字:不动点原理;连续函数;递推数列;通项公式;不等式。
Fixed point theory in the sequence of application
Abstract : Understand metric space under the fixed point principle, and
study its application in recursion sequence, the promotion prospects, mathematical thinking problem new direction launchs entrance.
Key words : Fixed point principle;Continuous function; Recursion sequence;The general formula; Inequality.
1预备知识
1.1 定义 设X 是度量空间,T 是X 到X 的映射,若存在数)10<<αα(,使得对所有X y x ∈,,成立
()()y x d Ty Tx d ,,α≤,
(()y x d ,表示实数直线R 上任何两点y x ,之间的距离) 则称T 是压缩映射。
压缩映射从几何角度来说,就是点x 和y 经T 映射后,它们的像的距离缩短了,不超过()y x d ,的)10<<αα(倍。
1.2 定理及其证明
定理 1 设X 是完备的度量空间,T 是X 上的压缩映射,那么在X 内必
X x ∈∃,使得x Tx =。
证明:设0x 是X 中的任意一点,令01Tx x =,...0212===x T Tx x ,
n n n Tx Tx x ==-1,…..
以下证明点列{}n x 是X 中的柯西点列
事实上,()()()111,,,--+≤=m m m m m m x x d Tx Tx d x x d α
而()()()()01212211,.....,,,x x d x x d Tx Tx d x x d m m m m m m m αααα≤≤≤=----- 由三点不等式知,当m n >时,
()()()()n n m m m m n m x x d x x d x x d x x d ,.....,,,1211-++++++≤
(
)
()()10101
1
,11,.....x x d x x d m
n m
n m m α
ααα
α
α--=+++≤--+
10<<αΘ 11<-∴-m n α
故:()()()m n x x d x x d m
n m >-≤
10,1,αα 所以当+∞→m 时,()0,→n m x x d 即{}n x 是X 中的柯西点列
由X 的完备性,则,X x ∈∃使得)(+∞→→m x x m 则:()()()()()x x d x x d Tx x d x x d Tx x d m m m m ,,,,,1-+≤+≤α 当+∞→m 时,上式右端趋于0,故()0,=Tx x d ,即x Tx = 故:X x ∈∃,使得x Tx =.
从以上的证明可以看出,由于T 映射下的点列是柯西点列,而柯西点列是收敛的数列,所以不论X 怎么变化,始终X x ∈∃,使得x Tx =成立。
于是就有下面的
2 问题的提出
定义:方程()x x f =的根称为函数()x f 的不动点。
设R D f →:,其中D 是R 的一个区间,数列{}n a 满足D a ∈1,
()()21≥=-n a f a n n ,若f 是连续的且{}n a 收敛于r ,则
()()r f a f a f a r n n n n n n =⎪⎭
⎫
⎝⎛===-∞→-∞→∞→11lim lim lim
这样数列{}n a 的收敛问题就和函数()x f 的不动点紧密联系起来。
然而数列
{}n a 可以看作是定义在自然数集合上的特殊函数,则()1-=n n a f a 可借助于递推
数列()n f 的不动点将某些递推关系式所确定的数列化为熟知的等差、等比或降为阶数较低的递推数列。
3 递推数列的通项公式
3.1 一阶线性递推数列
设一阶线性递推数列由递归方程)0(1≠+=-p q pa a n n 给出
当0=q 时,)2(1≥=-n pa a n n (1) 若首项01≠a ,则(1)等价于以1a 为首项,p 为公比的等比数列。
当0≠q 时,)2(1≥+=-n q pa a n n (2) 设()q px x f +=,则(2)由递推数列()1-=n n a f a ,只需把(2)转化为(1)的情形
设λ+=n n b a 得: (λ为待定系数)
()q b p b n n ++=+-λλ1,即)(1q p pb b n n +-+=-λλ
为要使}{n b 满足(1),故:0=+-q p λλ,则p
q
-=1λ 即λ是函数()q px x f +=的不动点。
于是有
定理2 若λ是函数())1,0(≠+=p q px x f 的不动点,则一阶递推数列(2)等价于()λλ-=--1n n a p a (3)
由定理2易知(2)所确定的数列的通项公式为())2(11≥+-=-n p a a n n λλ 例1:已知数列{}n a 满足,11=a ,()22311≥+=--n a a n n n ,求{}n a 的通项公式。
解:由1123--+=n n n a a 得:
3
1
332311+•=--n n n n a a ,。