数字电路常用芯片应用设计

数字电路常用芯片应用设计
数字电路常用芯片应用设计

74ls138

摘要:

74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路.

引脚图:

工作原理:

当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。

内部电路结构:

功能表真值表:

简单应用:

74ls139:

74LS139功能:

54/74LS139为2 线-4 线译码器,也可作数据分配器。其主要电特性的典型值如下:型号 54LS139/74LS139 传递延迟时间22ns 功耗34mW

当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,139 还可作数据分配器。

74ls139引脚图:

引出端符号:

A、B:译码地址输入端

G1、G2 :选通端(低电平有效)

Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:

74LS139真值表:

74ls164:

164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA-QH)均为低电平。串行数据输入端(A,B)可控制数据。当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。

引脚功能:

CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端

(图1 74LS164封装图)

(图2 74LS164 内部逻辑图)

极限值电源电压7V 输入电压……… 5.5V

工作环境温度

54164………… -55~125℃

74164………… -0~70℃

储存温度……-65℃~150℃

(图3 真值表)

H-高电平L-低电平X-任意电平↑-低到高电平跳变QA0,QB0,QH0 -规定的稳态条件建立前的电平

QAn,QGn -时钟最近的↑前的电平

(图4 时序图)

16学时数字逻辑实验要求及芯片引脚图

16学时数字逻辑实验内容及要求(附录:实验用IC器件引脚图) 实验一组合逻辑及应用电路实验 1.实验目的: (1)了解并掌握基本逻辑门电路及常用组合逻辑部件的逻辑功能; (2)熟悉基本逻辑门及常用组合逻辑部件的应用; (3)学习并掌握数字逻辑实验台的使用方法。 2.实验所用器件: 四二输入端与非门,型号为:74LS00 四异或门,型号为:74LS86 双2-4线译码器74LS139 等(根据实际使用填写) 3.实验内容及要求 (1)用实验验证74LS86的逻辑功能并填写真值表。 (2)用一片74LS00实现一2输入端异或门的功能。 (3)将74LS139扩展成3-8线译码器的功能。 (4)在第(3)步的基础上再加上与非门构成一位全加器。 实验二触发器功能及应用电路实验 1.实验目的 (1)熟悉常用触发器的功能及功能互换; (2)熟悉时序逻辑电路的状态分析方法; (3)触发器的简单应用电路实验分析; (4)实验观察时序逻辑电路的初始状态对电路工作的影响; (5)了解时序逻辑电路自启动的意义。 2.实验所用器件 D触发器二片,型号为:74LS74 与非门一片,型号为:74LS00 等(根据实际使用填写) 3.实验内容及要求 (1)验证74LS74的逻辑功能,填写功能表,注意观察上升沿触发方式; (2)用D触发器和门电路模拟实现JK触发器功能并填写其功能表; (3)用D触发器和门电路模拟实现T触发器功能并填写其功能表; (4)由D触发器及门电路构成有用的四位环型计数器,实验观察并记录电路运行状态。

实验三时序电路功能组件及应用电路实验 1.实验目的 (1)熟悉中规模集成移位寄存器74LS194的逻辑功能及简单应用; (2)熟悉中规模集成计数器74LS161功能及简单应用; (3)学会使用七段字形译码器及共阴极七段LED数字显示器。 2.实验所用器件 四位二进制加法计数器1片,型号为:74LS161 寄存器1片,型号为:74LS194 等(根据实际使用填写) 3.实验内容及要求 (1)验证寄存器(74LS194)、计数器(74LS161)的逻辑功能,通过实验填写功能表;(2)用74LS161及门电路分别采用复位法和置数法构成一位8421BCD码计数显示电路;(3)用74LS194及门电路构成有用的四位环型计数器。 实验四串行加法器的设计 1.实验目的 较复杂数字逻辑电路的设计方法及实验分析。 2.实验所用器件 4位移位寄存器组件2片,型号为:74LS194 D触发器1片,型号为:74LS74 等(根据实际使用填写) 3.实验内容及要求 (1)按如下串行加法器框图设计电路图实现四位二进制的加法; 4位被加数移位寄存器 为了清楚地看到逐位相加情况,时钟脉冲应采用单脉冲,注意电路清“0”作用。 (2)任意给定X,Y,给电路加入4个单脉冲,逐一观察并记录电路工作情况; (3)4个脉冲后,X+Y的和存放在A中,X+Y的最高位即进位存放在何处。串行加法器的加法速度如何计算。

数字电路实验芯片引脚图

数字电路实验一、芯片引脚图

二、组合逻辑电路实验设计题 1.举重比赛有3个裁判,一个主裁判A和两个辅裁判B和C,杠铃完全举上的裁决由每个裁判按下自己的按键来决定。当3个裁判判为成功或两个裁判(其中一个为主裁判)判为成功则成功绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 2.设输入数据为4位二进制数,当该数据能被3整除时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 3.设输入数据为4位二进制数,当该数据能被5整除时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 4.试设计一个四人表决器,当四个人中有3个人或4个人赞成时绿灯亮表示建议被通过,否则红灯亮表示建议被否决。试用74LS151设计此逻辑电路。 5.设输入数据为4位二进制数,设计由此二进制数决定的偶校验逻辑电路,即当此二进制数中有偶数个1时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。。 6.某楼道内住着A、B、C、D 四户人家,楼道顶上有一盏路灯。请设计一个控制电路,要求A、B、C、D 都能在自己的家中独立地控制这盏路灯。试用74LS151设计此逻辑电路。 7.用74LS151实现一个函数发生器,其功能是:当S1S0=00时,Y=AB;当S1S0=01时,Y=A+B;当S1S0=10时,Y=A B;当S1S0=11时,Y=。试用74LS151设计此逻辑电路。 8.试用两片74LS151实现16选1数据选择器。 三、时序逻辑电路实验设计题 1.用十进制计数-译码器CC4017设计一个8盏灯的流水灯电路。 2.用74LS161设计一个12进制的加1计数器。其代码转换图为:0000→0001→0010→…→1011循环。每循环一次产生一个进位脉冲。 3.用74LS161设计一个12进制的加1计数器。其代码转换图为:0100→0101→0110→…→1111循环。每循环一次产生一个进位脉冲。 4.用74LS161设计一个10进制的加1计数器。其代码转换图为:0000→0001→0010→…→1001循环。每循环一次产生一个进位脉冲。 5.用74LS161设计一个12进制的加1计数器。其代码转换图为:0110→0111→1000→…→1111循环。每循环一次产生一个进位脉冲。 6.用74LS161设计一个9进制的加1计数器。其代码转换图为:0000→0001→0010→…→1000循环。每循环一次产生一个进位脉冲。 7.用74LS161设计一个9进制的加1计数器。其代码转换图为:0111→1000→1001→…→1111循环。每循环一次产生一个进位脉冲。 8.用两片74LS161设计一个72进制的加1计数器。其代码转换图为:00000000→00000001→00000010→…→01001000循环。每循环一次产生一个进位脉冲。 9.用两片74LS161设计一个132进制的加1计数器。00000000→00000001→00000010→…→1000100循环。每循环一次产生一个进位脉冲。 10.用两片74LS161设计一个加1计数器。其代码转换图为:00110101→00110110→00110111→…→11111111循环。每循环一次产生一个进位脉冲。 11.用两片74LS161设计一个加1计数器。其代码转换图为:11000110→11000111→11001000→…→11111111循环。每循环一次产生一个进位脉冲。 12.用74LS151和74LS161设计一个序列信号发生器,当输入周期脉冲信号时循环输出

数字电路课程设计文档以及元器件引脚图

课题一 红绿灯交通信号系统 一.红绿灯交通信号系统功能概述 红绿灯交通信号系统为模拟实际的十字路口交通信号灯。外部硬件电路包括:两组红黄绿灯(配合十字路口的双向指挥控制)、一组手动与自动控制开关(针对交通警察指挥交通控制使用)、倒计时显示器(显示允许通行或禁止通行时间)。 二.红绿灯交通信号系统 红绿灯交通信号系统外观示意图如图1所示。 三.任务和要求 1.在十字路口的两个方向上各设一组红黄绿灯,显示顺序为其中一方向是绿灯、黄灯、红灯;另一方向是红灯、绿灯、黄灯。 2.设置一组数码管,以倒计时的方式显示允许通行或禁止通行时间,其中一个方向上绿灯亮的时间是20s ,另一个方向上绿灯亮的时间是30s ,黄灯亮的的时间都是5s 。 3.选做:当任何一个方向出现特殊情况,按下手动开关,其中一个方向常通行,倒计时停止。当特殊情况结束后,按下自动控制开关,恢复正常状态。 4.选做:用两组数码管,实现双向倒计时显示。 倒计数 计时器 绿灯 黄灯 红灯 红 黄 绿 灯 灯 灯

课题二数字式抢答器 一.数字式抢答器功能概述 在举办各种智力竞赛活动中,常常需要确定随是第一个抢答的人。数字式抢答器利用电子器件可以准确的解决这一问题。数字式抢答器允许抢答者在规定的时间范围内进行抢答,可以用数字显示抢先者的序号,并配有相应的灯光指示和声报警功能;对犯规抢答者(指在抢答开始命令下达前抢答者),除用声、光报警外,还应显示出犯规者的序号;若规定抢答时间已过,要告示任何输入的抢答信号均无效,除非重新下达抢答命令。 二.任务和要求 设计一个数字式抢答器,具体要求如下: 1.要求至少控制四人抢答,允许抢答时间为10秒,输入抢答信号实在“抢答开始”命令后的规定时间内,显示抢先抢答者的序号,绿灯亮。 2.在“抢答开始”命令前抢答者,显示违规抢答者的序号;红灯亮。 3.选做:在“抢答开始”命令发出后,超过规定的时间无人抢答,显示无用字符(可自行确定)。 4.选做:不仅能显示抢答者的序号并且能显示抢答次序。

常用数字芯片型号解读

常用数字芯片型号解读 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的

实验一:单管放大电路及常用电子仪器的使用全解

模拟、数字及电力电子技术 实验一:单管放大电路及常用电子仪器的使用 一、实验目的: 1)学会用万用表判别三极管的类别和管脚。 2)掌握测试三级管输出特性曲线的方法。 3)基本放大电路的静态工作点测试。 二、实验设备及器材: 1)MES系列模拟电子电路实验系统 2)直流稳压电源 3)万用表 4)晶体管毫伏表 5)元器件:电阻、电位器、三极管 6)示波器等 三、实验内容及电路: 1、用示波器测量交换信号的频率 按表1-1所示频率有信号发生器输入信号,用示波器测出周期并计算,将所测试结果与已知频率作比较。 表1-1 信号频率100HZ 1*H2 扫描速度开关(t/div)开开

一个周期所占水平格数 6格 4格半 信号频率f=1/T 1/3 1/4.5 2、单管放大电路的调整与测试 1)静态工作点的测试 接通电源+12V ,调节Rw 使U EQ =2V 不变条件下,输入频率1KH2的5mV 正弦波信号,用毫伏表测出U O 的值,将测量结果记入表2-2中。 表2-2 R L 实测 实测计算 估算 Ui(mv) Uo(v) A(v)实测 Av(估算) ∞ 3.3 4 5.4 6 接入负载 3.8 5 6.2 6 3)输入电阻、输入电阻测试 表3-1输入电阻测试 实测 实测计算 估算 Us(mv) Ui(mv) Ri=RS Ui US Ui - Ri ≈r be //R b 2.9mv 3.2mv 3.6mv 3mv 表3-2输出电阻测试 实测 实测计算 估算 U ∞(v) Uo(v) Ro=(1-∞ Uo U )R L Ro ≈Rc 5mv 5.6mv 6.2mv 6mv 四、思考题 1、使用示波器时若达到如下要求应调哪些旋钮?

电子设计常用芯片

741 运算放大器 2063A JRC杜比降噪 20730 双功放 24C01AIPB21 存储器 27256 256K-EPROM 27512 512K-EPROM 2SK212 显示屏照明 3132V 32V三端稳压 3415D 双运放 3782M 音频功放 4013 双D触发器 4017 十进制计数器/脉冲分配器4021 游戏机手柄 4046 锁相环电路 4067 16通道模拟多路开关 4069 游戏机手柄 4093 四2输入施密特触发器 4098 41256 动态存储器 52432-01 可编程延时电路 56A245 开关电源 5G0401 声控IC 5G673 八位触摸互锁开关 5G673 触摸调光 5G673 电子开关 6116 静态RAM 6164 静态RAM 65840 单片数码卡拉OK变调处理器7107 数字万用表A/D转换器74123 单稳多谐振荡器 74164 移位寄存器 7474 双D触发器 7493 16分频计数器 74HC04 六反相器 74HC157 微机接口 74HC4053 74HCU04 六反相器 74LS00 与门 74LS00 4*2与非门 74LS00 四2与非门 74LS00 与门 74LS04 6*1非门 74LS08 4*2与门 74LS11 三与门 74LS123 双单稳多谐振荡器 74LS123 双单稳多谐振荡器 74LS138 三~八译码器 74LS142 十进制计数器/脉冲分配器74LS154 4-16线译码器 74LS157 四与或门74LS161 四2计数器 74LS161 十六进制同步计数器 74LS161 四~二计数器 74LS164 数码管驱动 74LS18 射频调制器 74LS193 加/减计数器 74LS193 四2进制计数器 74LS194 双向移位寄存器 74LS27 4*2或非门 74LS32 四或门 74LS32 4*2或门 74LS374 八位D触发器 74LS374 三态同相八D触发器 74LS377 74LS48 7位LED驱动 74LS73 双J-K触发器 74LS74 双D触发器 74LS85 四位比较器 74LS90 计数器 75140 线路接收器 75141 线路接收器 75142A 线路接收器 75143A 线路接收器 7555 时钟发生器 79MG 四端负稳压器 8051 空调单片机 8338 六反相器 A1011 降噪 ACVP2205-26 梳状滤波视频处理 AD536 专用运放 AD558 双极型8位D-A(含基准电压)变换器AD558 双极型8位D-A(含基准电压)变换器AD574A 12比特A/D变换器 AD650 AD670 8比特A/D变换器(单电源)1995s-2、15 AD7523 D-A变换器1994x-125 AD7524 D-A变换器1994x-126 AD7533 模数转换器1994x-141 AD7533 模数转换器1995s-184 ADC0804 8比特A/D变换器1995s-2、20 ADC0809 8CH8比特A/D 1995s-2、23 ADC0833 A/D变换4路转换器1995s-2 ADC80 12比特A/D变换器1995s-2、8 ADC84/85 高速12比特A/D变换器1995s-2 AG101 手掌游戏机1993x-155 AM6081 双极型8位D-A变换器1994x-127 AMP1200 音频功放皇后1993s-104 AN115 立体声解码1991-135 AN2510S 摄象机寻象器1994x-109 AN2661NK 影碟机视频1995s-45

数字电路常用芯片应用设计

74ls138 摘要: 74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路. 引脚图: 工作原理: 当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。 内部电路结构:

功能表真值表: 简单应用:

74ls139: 74LS139功能: 54/74LS139为2 线-4 线译码器,也可作数据分配器。其主要电特性的典型值如下:型号54LS139/74LS139 传递延迟时间22ns 功耗34mW 当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,139 还可作数据分配器。 74ls139引脚图:

引出端符号: A、B:译码地址输入端 G1、G2 :选通端(低电平有效) Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:

74LS139真值表: 74ls164: 164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA -QH)均为低电平。串行数据输入端(A,B)可控制数据。当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。 引脚功能: CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端 (图1 74LS164封装图)

常用实验器件引脚图

常用实验器件引脚图 1. 四2输入正与非门74LS00 Y=AB VCC 4B 4Y 3B 3A 3Y 4A 1A 1B 1Y 2A 2B 2Y GND 2. 四2输入正或非门 74LS02 Y=A+B VCC 4Y 4B 4A 3Y 3B 3A 1Y 1A 1B 2Y 2A 2B GND 3. 六反向器 74LS04 Y=A VCC 6A 6Y 5A 5Y 4A 4Y 1A 1Y 2A 2Y 3A 3Y GND

Y=AB VCC 4B 4A 4Y 3B 3A 3Y 1A 1B 1Y 2A 2B 2Y GND 5. 双4输入正与非门 74LS20 Y=ABCD VCC 2D 2C NC 2B 2A 2Y 1A 1B NC 1C 1D 1Y GND 6. 双与或非门74LS51 2Y=(2A2B)+VCC 1B 1C 1D 1E 1F 1Y 1A 2A 2B 2C 2D 2Y GND (2C2D) 1Y=(1A1B1C)+(1D1E1F)

1Y=A VC C 4B 4A 4Y 3B 3A 3Y 1A 1B 1Y 2A 2B 2Y GND ⊕ B=AB+A B 8. 4位二进制计数器 74LS93 输入NC QA QD GND QB QC 输入NC V NC NC A B R 0(1R 0(2

注:A. 对BCD计数,输出QA连接输入B。 B. 对二五混合进制计数,输出QD连接输入A。 C. 输出QA连接输入B。 D. H=高电平L=低电平X=无关

9. 四2-1线数据选择器/多路开关74LS157 V C C G 4A 4B 4Y 3A 3B 3Y S 1A 1B 1Y 2A 2B 2Y GND 10. 74LS181 B0A0S3S2S1S0CN M GND F0F1F2VCC A1CM+4P A=B B1A2B2 A3B3G F3

单片机常用芯片引脚图

单片机常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口 无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O接口,第二功能作为为单片机的控 制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件资源,适 用于要求较高的实时控制场合。它分为48引脚和 68引脚两种,以48引脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发送和接受 引脚,同时也作为P2口的两条口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有两个和 HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V)RST INT0/P3.2 INT1/P3.3 WR/P3.6 RD/P3.7 V SS

数字逻辑实验内容及芯片引脚图

数字逻辑实验计划及要求(附录:实验所用芯片引脚图及功能说明) 实验一逻辑门功能验证及应用电路实验 1.实验目的: (1)了解并掌握基本逻辑门电路的逻辑功能; (2)熟悉基本逻辑门电路的应用; (3)熟悉三态门和OC门电路的应用; (4)学习实验台的使用方法。 2.实验所用器件: 四二输入端与非门组件2片,型号为:74LS00 四二输入端与非门(OC)组件1片,型号为:74LS01 四二输入端或非门组件1片,型号为:74LS02 二与或非门组件1片,型号为:74LS51 四异或门组件1片,型号为:74LS86 四三态门组件1片,型号为:74LS125 排电阻(上拉电阻) 3.预习要求: (1)查出实验用器件引脚功能,画出实验电路图; (2)复习TTL各逻辑门电路的工作原理; (3)按实验内容要求设计电路。 4.实验内容 (1)测试实验所用器件的逻辑功能,填写真值表。 (2)用一片74LS00实现一2输入端异或门的功能。 (3)用一片74LS01及排电阻实现芯片74LS51的功能,做(AB+CD)’一组。 (4)用三态门组成两路总线传输电路。 5.实验要求 记录各实验观察结果并与理论所得各真值表进行比较。 6.思考 任何一逻辑电路均可分别用与非门,或非门,与或非门实现,为什么? 实验二组合电路功能验证及应用电路实验 1.实验目的: (1)熟悉常用组合逻辑芯片的功能; (2)掌握组合逻辑电路的设计方法。 2.实验所用器件 3-8线译码器一片,型号为:74LS138 8路数据选择器一片,型号为:74LS151 4位数码比较器一片,型号为:74LS85 四输入端与非门一片,型号为:74LS20 3.实验内容 (1)74LS85,74LS151的功能。 (2)用一片74LS85及一片74LS00组成5位二进制数值比较器。

数字电路知识点汇总(精华版)

数字电路知识点汇总(东南大学)第1章数字逻辑概论 一、进位计数制 1.十进制与二进制数的转换 c.分配律:) A? ?=+ B (C A? A C ?B A+ B + +) ? = C )() ) (C A B A 3)逻辑函数的特殊规律 a.同一律:A+A+A b.摩根定律:B A+ B ? A = A B A? = +,B

b.关于否定的性质A=A 二、逻辑函数的基本规则 代入规则 在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则 B⊕ C A 解:先用摩根定理展开:AB=B A+再用吸收法 L=E AB+ + B A =E A+ + B + B D A =) A A+ D + + ( ) (E B B =) A A+ + D + ) 1( 1(E B B

=B A + 3)消去法 利用B A B A A +=+ 消去多余的因子 例如,化简函数L=ABC B A B A A +++ 解: L=ABC E B A B A B A +++ B A B A B A =)()()(BC A C B A C B A C B C B A B A +++?++? =)()1()1(B B C A A C B C B A +++++? =C A C B B A ++? 2.应用举例 将下列函数化简成最简的与-或表达式

1)L=A D DCE BD B A +++ 2) L=AC C B B A ++ 3) L=ABCD C B C A AB +++ 解:1)L=A D DCE BD B A +++ =DCE A B D B A +++)( A B B =)()(C B A C A ABCD C AB AB ++++ =)1()1(B C A CD C AB ++++ =C A AB + 四、逻辑函数的化简—卡诺图化简法: 卡诺图是由真值表转换而来的,在变量卡诺图中,变量的取值顺序是按循环码

常用基本数字集成电路应用设计

课程设计题目:常用基本数字集成电路应用设计 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间: 课程设计评分: 常用基本数字集成电路应用设计 1.多谐振荡器概述 多谐振荡器是一种自激振荡器,它不需要输入触发信号,接通电源后就可自动输出矩形脉冲。由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称为多谐振荡器。 1.1非门电路构成的多谐振荡器设计

1.1.1基本原理 门电路构成多谐振荡器 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作 原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 (1)不对称多谐振荡器 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1=RC, tw2=1.2RC, T=2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改 变电位器R实现输出频率的细调。 图1为不对称多谐振荡器,为了使电路产生振荡,要求U1A和U1B两个反向器都工作在电压传输特性的转折区,即工作在放大区。 (2)对称型多谐振荡器 电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值, 可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R1=R2=1KΩ,C1=C2=100pf~100μf时,f可在几Hz~MHz 变化。

脉冲宽度tw1=tw2=0.7RC,T=1.4RC. 图2中,U1A和U1B两个反向器之间经电容C1和C2耦合形成正反馈回路。 (3) 石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要 求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用来 为微型计算机等提供时钟信号。 图3所示为常用的晶体稳频多谐振荡器。(a)、 (b)为TTL器件组成的晶体振荡电路;(c)、 (d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。 图3(c)中,门1用于振荡,门2用于缓冲整形。Rf是反馈电阻,通常在几十兆欧之 间选取,一般选22MΩ。R起稳定振荡作用,通常取十至几百千欧。C1是频率微调电容器, C2用于温度特性校正。

51单片机常用芯片引脚图

常用芯片引脚图 一、 单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O 接口,第二功能作为为单片机的控 制信号。 ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1 P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7 EA/V PP ALE/PROG PSEN P2.7/A 15P2.6/A 14P2.5/A 13 P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751

实验一 常用数字逻辑门电路的研究

实验一常用数字逻辑门电路的研究 1.实验目的 a.熟悉数字电路实验箱的正确使用方法; b.熟悉常用门电路的逻辑符号及逻辑功能; c.测量逻辑门电路的时延参数 2.实验原理 a.CMOS常用门电路 CD4001(四2输入或非门)引脚图 CD4069(六反相器)引脚图

CD4070(四异或门)引脚图 CD4011(四2输入与非门)引脚图

CURSOR为光标测量功能按键。 光标类型:电压、时间 电压/时间测量方式 光标a或光标b将同时出现,由 SELECT键选择调整哪一个光标。 由多功能旋钮控制器来调整光标在屏幕上的位置。 显示的读数即代表的物理量。 Va:a光标对被测通道地的电压。 Vb:b光标对被测通道地的电压。 Detail V:为被测通道两个光标之间的电压值。 Ta:a标对水平参考点的时间。 Tb:b光标对水平参考点的时间 Detail T:为两个光标之间的时间值。 3.实验内容 a.用逻辑箱观测4070的逻辑功能并完成下表

b.测量六反相器CD4069的时延参数 将CD4069中的六个非门依次串联连接,在输入端输入250KHz的TTL信 号,用双踪示波器观测输入、输出的波形。并将波形展开测试传输延迟 时间Td的值。 4.实验要求 若出现故障,可利用仪器进行以下检测 1.用示波器或万用表检测器件电源及地引脚电压是否正确。 2.用示波器或万用表检测各集成块输入输出引脚是否正常。(一级一级检 查到集成块引脚,注意不要造成引脚短路。) 1.按要求完成原始数据记录 2.回答实验课后思考题 3.总结实验结论 4.完成实验报告 5.实验数据

常用数字电路单元的结构

第3章常用数字单元电路结构 3.1 引言 本章介绍CMOS数字电路中常用单元电路的结构。本章暂不考虑电路性能问题,因此可将MOS管看成受电压控制的开关。 3.2 互补静态CMOS逻辑 互补静态逻辑是CMOS电路中最重要的逻辑系列,目前多数CMOS逻辑电路采用这种方法设计,其一般结构如图3-1。 互补静态逻辑的任何单元电路都是由一个连接VDD的pMOS上拉网络和一个连接GND的nMOS下拉网络构成。所谓互补关系指这样一种对应关系,在上拉网络中的PMOS管个数与下拉网络中NMOS管个数相等,且在nMOS网络中串联的晶体管,必须对应pMOS网络中的并联晶体管,nMOS网络中的并联晶体管必须对应pMOS网络中的串联晶体管。满足这种关系时,对于任何输入组合,必有一个网络导通,而另一个网络截止。这种CMOS逻辑门在输入稳定时,不会有从VDD到GND的电流,因此,其静态功耗很低,这是CMOS电路的主要优点。静态CMOS逻辑门的另一个重要优点是,在任何输入组合下,输出端或者通过pMOS网络上拉到VDD,或者通过nMOS网络下拉到GND,输出逻辑状态比较稳定,有较强的抗干扰能力。 3.1.1互补静态逻辑基本CMOS逻辑门

图3-2是一些基本的CMOS 逻辑门,可以看出,这些基本CMOS 门都符合互补关系。 互补静态CMOS 逻辑门的pMOS 网络和nMOS 网络的导通逻辑恰好相反,如果用F N 表示nMOS 网络的导通逻辑,F P 表示pMOS 网络的导通逻辑,则必须有 P N F F = (3-1) 例如,在与非门中, AB F N = AB B A F P =+= 整个门的逻辑关系与pMOS 网络的导通逻辑相同,但观察nMOS 网络的导通条件更容易些。这种关系也可以推广到更复杂的电路。 CMOS 逻辑门总是含有反相关系,nMOS 下拉网络总是在部分或全部输入为“1”时导通,从而使输出为“0”。对于任何互补CMOS 逻辑门,判断逻辑关系的方法是:根据nMOS 网络的导通逻辑,再加上“非”逻辑,就可以得到整个门的逻辑关系。 在互补静态CMOS 逻辑门中,只有反相器、与非门和或非门是最基本的逻辑门,而与门和或门要利用上述基本逻辑门实现,也就是说,一个与门的晶体管数相当于相同输入的与非门的晶体管数加2。

常用芯片引脚图[1]

您的数字ID 是:463099 您的密码是:1.8667 附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。 ALE/PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 XTAL1、XTAL2:内部振荡器反相器输 P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS

常用单片机及其它芯片引脚图

一、 单片机类 1、MCS‐51 芯片介绍:MCS‐51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS‐51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O接口,第二功能作为为单片机的控制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS‐96 芯片介绍:MCS‐96系列单片机是美国Intel公司继MCS‐51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件资源,适用于要求较高的实时控制场合。它分为48引脚和68引脚两种,以48引脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V) VREF:A/D转换器基准电源引脚(+5V) AGND:A/D转换器参考地引脚

实验电路结构图及芯片引脚对应表

实验电路结构图及芯片引脚对应表 NO.0 实验电路结构图 HEX PIO2PIO3PIO4PIO5PIO7PIO6D1 D2 D3 D4 D5 D6 D7 D8 D16 D15 D14 D13 D12 D11 数码1 数码2 数码3 数码4 数码5 数码6 数码7 数码8 S P E A K E R 扬声器 译码器译码器译码器译码器译码器译码器译码器译码器 FPGA/CPLD PIO15-PIO12 PIO11-PIO8PIO7--PIO2HEX 键1 键2 键3键4键5键6键7键8PIO47-PIO44 PIO43-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16目标芯片 附图2-2 实验电路结构图NO.0

附图2-3 实验电路结构图NO.1 附图2-4 实验电路结构图NO.2

êμ?éμ??·?á11í? NO.3 ò????÷ ò????÷ò????÷ò????÷ò????÷ò????÷ò????÷ò????÷D9 D16D15D14D13D12D11D10 D8D7D6D5D4D3D2D1PIO8 PIO9 PIO10 PIO11 PIO12 PIO13 PIO14 PIO15 S P E A K E R ??éù?÷ 1 2 3 4 5 6 7 8 ??±êD???FPGA/CPLD PIO0 PIO1PIO2PIO3PIO4PIO5PIO6PIO7?ü1 ?ü2?ü3?ü4?ü5?ü6?ü7?ü8PIO15-PIO8PIO47-PIO44 PIO43-PIO40PIO39-PIO36PIO35-PIO32PIO31-PIO28PIO27-PIO24PIO23-PIO20PIO19-PIO16 附图2-5 实验电路结构图NO.3 附图2-6 实验电路结构图NO.4

常用数字集成电路集锦

门电路 四2输入或非门 4001/7402 复合门电路 4007 四2输入与非门 4011 /7408 双4输入与非门4012/7420 三3入与非门4023/7410 四异或门4030/4070/4077/7486 4输入可扩展多功能门4048 八输入与非门/与门4068 六反相器4069/4049 六反相器7404/7405/7406 8输入或非门/或门 4078 四2输入与门4081/7408 双4输入与门4082/7421 其它 4085/4086/4530等 触发器 双主-从D型触发器4013/7474 双J-K触发器4027/74111~74114 四锁存D型触发器4042 4三态R-S锁存触发器4043 四2输入施密特触发器4093/40106 3输入端J-K触发器4095/4096 8位可寻址锁存器4099/4599

六锁存D型触发器40174/40175 双4位锁存D型触发器 4508 六锁存D型触发器74174/74175 8D锁存器74273/74373 时基延时分频电路 通用定时电路555 无稳态/单稳态多谐振荡器4047 “N”分频计数器4059 二进制比例乘法器 4089 24级分频器4521 BCD比例乘法器4527 单稳态多谐振荡器74121~74123 单稳态多谐振荡器74221 其它 MM5369/MN6041/MC14451 计数器 脉冲分配器/计数器 4017、4022 二进制串行计数器 4020、4024、4040、4060;74161、74162、74163; 可预置4位二进制/BCD加减计数器 4029 可预置4位BCD/二进制计数器40161、40162、40163; 可预置4位可逆计数器40192、40193;74190-74193 可预置4位可逆计数器4510、4516 双4 位BCD/二进制同步加计数器4518、4520 可预置同步1/N计数器 4522、4526

相关文档
最新文档