最全面人教版五年级数学下册知识点归纳总结

合集下载

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册知识点;
班级:姓名:
第一单元观察物体;;
1、由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可
能是相同的,也可能是不同的。

根据一个方向看到的图形摆立体图形,有多种摆法。

2、从同一个方向观察物体最多只能看到三个面。

几何视图一般是根据三个方向观察到的形状进行绘制。

3、根据两个方向观察到的形状能确定所用小正方体的个数。

根据三个方向观察到的
形状摆小正方体结果只有一种。

第二单元因数和倍数;
1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

因数和倍数是相互依存的,不能单独存在。


2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是自然数(一般不
包括0)
3、找因数的方法:①乘法②除法;找倍数的方法:逐次乘自然数。

4、①一个数的最小因数是1,最大因数是它本身。

一个数的最小倍数是它本身,没有最大的倍数。

②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

一个数的最大因数和最小倍数是相等的都是它本身。

③1是所有非0自然数的因数。

也是任一自然数(0除外)的最小因数。

④一个数的因数至少有1个,这个数是1。

⑤一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。

5、因数<或=它本身、倍数>或 = 它本身、最大的因数=最小的倍数=它本身。

一个数的倍数一定比它的因数大这种说法是错误的。

一个数越大它的因数个数就越
- 1 -。

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结2的倍数:个位数是0、2、4、6、8的自然数。

3的倍数:各位数字之和是3的倍数的自然数。

5的倍数:个位数是0或5的自然数。

三、分数的认识1、分数的概念:分数是一个整体被等分成若干份,其中的一份叫做分数。

2、分数的表示方法:分数线上面的数叫分子,分数线下面的数叫分母。

分数的大小表示被等分成的份数。

3、分数的基本性质:1)分子分母相等的分数相等;2)分子相等,分母越小,分数越大;3)分母相等,分子越小,分数越小;4)分子分母都除以同一个数,分数不变。

4、分数的比较:分母相等,比较分子大小;分母不等,通分后比较分子大小。

5、分数的简化和扩展:分子分母同时除以同一个数可以简化分数;分子分母同时乘以同一个数可以扩展分数。

6、分数的加减法:通分后分子相加(减),分母不变。

7、分数的乘法:分子相乘,分母相乘。

8、分数的除法:分子乘以被除数的倒数,分母乘以除数的倒数。

1)个位上是2、4、6、8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,那么这个数就是3的倍数。

3)个位上是0或5的数是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120.实际上是求30的倍数。

5)如果一个数同时是2和5的倍数,那么它的个位上的数字一定是0.6)完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

例如6、28等。

7)自然数按能不能被2整除来分:奇数、偶数。

奇数是指不能被2整除的数,即个位上是1、3、5、7、9的数;偶数是指能被2整除的数,即个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.8)奇数加减偶数等于奇数,奇数加减奇数等于偶数,偶数加减偶数等于偶数。

9)自然数按因数的个数来分:质数、合数、1、四类。

质数(或素数)是只有1和它本身两个因数的数,合数除了1和它本身还有别的因数。

1只有1个因数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3.每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

人教版五年级数学下册中知识点、易错点、易错题汇总

人教版五年级数学下册中知识点、易错点、易错题汇总

;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点。

2、性质:对称点到对称轴的距离相等。

3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。

二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。

2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。

3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。

图形旋转后,形状、大小都没有发生变化,只有位置变了。

4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。

5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2、性质:平移不改变图形的形状和大小。

3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。

(2)找出原图形的各关键点。

(3)根据题目要求将各个点依次平移,找出各个点的对应点。

(4)顺次连接平移后的各点。

◆习题:1、图形的变换包括:、、。

其中只是改变原图形位置的变换是、。

2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。

人教版五年级下册数学知识点总结、梳理

人教版五年级下册数学知识点总结、梳理

五年级下册知识点班级:五(2)班XX:X雨阳一观察物体〔三〕1、根据从一个方向观察到的平面图形不可以确定几何体的唯一形状。

1、根据从三个方向观察到的平面图形可以确定几何体的唯一形状。

3、能根据给定几何体画出前面、上面和侧面的平面图。

二因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数因数与倍数指的通常是整数,不能针对小数。

2.4×5=12,所以5是12的因数〔×〕2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1〞既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个〔2、3、5、7、11、13、17、19〕4、分解质因数:用短除法分解质因数〔一个合数写成几个质数相乘的形式〕5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

1----用短除法求两个数或三个数的最大公因数〔除到互质为止,把所有的除数连乘起来〕几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:〔1〕1和任何自然数互质;〔2〕相邻两个自然数互质;〔3〕两个质数一定互质;〔4〕2和所有奇数互质;〔5〕质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

小学五年级数学下册复习教学知识点归纳总结

小学五年级数学下册复习教学知识点归纳总结

小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全人教版五年级(下册)数学知识点一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同.3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度.旋转只改变物体的位置,不改变物体的形状、大小.二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数.2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找.3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数.4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数.个位上是0或5的数,是5的倍数.一个数各位上的数的和是3的倍数,这个数就是3的倍数.5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数.6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2.一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4.三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点.正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点.2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积.5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6 用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积.8、长方体的体积=长×宽×高用字母表示:V=abh 长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)正方体的体积=棱长×棱长×棱长用字母表示:V= a×a×a9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为100010、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率.12、容积:容器所能容纳物体的体积.13、容积单位:升和毫升(L和ml)1L=1000ml 1L=1000立方厘米1ml=1立方厘米14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高.四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位.3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a ÷b= (b≠0).4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.由整数部分和分数部分组成的分数叫做带分数.5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变.把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变.6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质.7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数.8、互质数:公因数只有1的两个数叫做互质数.两个数互质的特殊判断方法:①1和任何大于1的自然数互质.②2和任何奇数都是互质数.③相邻的两个自然数是互质数.④相邻的两个奇数互质.⑤不相同的两个质数互质.⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数.9、最简分数:分子和分母只有公因数1的分数叫做最简分数.10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数.12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数.②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积.14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大.15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数.五、分数的加法和减法1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减.2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算.3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算.六、打电话1、逐个法:所需时间最多;2、分组法:相对节约时间;3、同时进行法:最节约时间.1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数.不能单独说谁是倍数或因数2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的.5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的.6. 个位上是0,2,4,6,8的数,都是2的倍数,也是偶数.7. 自然数中,是2的倍数的数叫做偶数(0也是偶数).不是2的倍数的数叫奇数.8. 个位上是0或者5的数,都是5的倍数.9. 个位是0的数,既是2的倍数,又是5的倍数.10. 一个数各位上的和是3的倍数,这个数就是3的倍数.11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数.1既不是质数,也不是合数.12. 整数按因数的个数来分类:1,质数,合数.整数按是否是2的倍数来分类:奇数,偶数13. 将合数分解成几个质数相乘的形式就叫做分解质因数.分解质因数用短除法,把36分解质因数是?14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是12015. 奇数加奇数等于偶数.奇数加偶数等于奇数.偶数加偶数等于偶数.16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数.17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴19. 长方体有6个面.每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同).20. 长方体有12条棱,分为三组,相对的4条棱长度相等.21. 长方体有8个顶点.22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高23. 正方体有6个面, 6个面都是正方形,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×425. 正方体棱长之和:棱长×1226. 长方体(正方体)6个面的总面积,叫做它的表面积.27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×228. 正方体表面积=棱长×棱长×629. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m330. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m331. 长方体所含体积单位的数量就是长方体的体积.长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”.34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.例如:表示把单位“1”平均分成7份,表示这样的3份.其中表示一份的数叫做分数单位.35. 米表示(1)把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)(2)把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米36. 当整数除法得不到整数的商时,可以用分数表示除法的商.在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线.(除数不能为0)区别:分数是一种数,除法是一种运算37. 分子比分母小的分数叫真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1.38. 带分数包括整数部分和分数部分.假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变.带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变.39. A是B的几分之几?用A÷B40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.这叫做分数的基本性质.41. 几个数公有的因数,叫做这几个数的公因数.其中最大的一个叫做这几个数的最大公因数.通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数.42. 如果两个数的公因数只有1,这两个数是互质数.两个连续自然数;两个质数;1和其他自然数一定是互质数.43. 分子和分母只有公因数1的分数叫做最简分数.把一个分数化成和它相等,但分子分母比较小的分数,叫做约分.44. 几个数公有的倍数,叫做这几个数的公倍数.其中最小的一个叫做这几个数的最小公倍数.通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数.45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分.46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数.47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数.48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积.49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数.50. 分数化成小数:用分子除以分母化成小数.小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数.。

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结一、数与代数1. 因数与倍数因数和倍数是相互依存的关系哦。

比如说6÷2 = 3,我们就说6是2和3的倍数,2和3是6的因数。

这里面有个小秘密,一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

而一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数呢。

2、3、5的倍数特征也很有趣。

2的倍数特征是个位上是0、2、4、6、8的数;5的倍数特征是个位上是0或5的数;3的倍数特征是各位数字之和是3的倍数的数。

像123,1+2+3 = 6,6是3的倍数,所以123就是3的倍数啦。

质数和合数也很有讲究。

质数是只有1和它本身两个因数的数,像2、3、5、7等。

合数是除了1和它本身还有别的因数的数,4、6、8、9等都是合数。

1既不是质数也不是合数,它就像个特殊的小调皮。

2. 分数的意义和性质分数的意义可不能小瞧。

把单位“1”平均分成若干份,表示这样一份或几份的数就叫分数。

比如把一个蛋糕看作单位“1”,平均分成4份,其中的1份就是1/4。

分数的基本性质超有用。

分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

这就像魔法一样,可以把分数变得我们想要的样子,方便计算呢。

约分和通分是分数运算里的小技巧。

约分就是把分数化成最简分数,分子分母同时除以它们的最大公因数。

通分是把异分母分数化成和原来分数相等的同分母分数,通常是找分母的最小公倍数。

二、图形与几何1. 长方体和正方体长方体和正方体的特征要记牢。

长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有12条棱,相对的棱长度相等;有8个顶点。

正方体是特殊的长方体,它的6个面都是正方形,12条棱长度都相等。

表面积和体积的计算可不能搞错。

长方体表面积=(长×宽+长×高+宽×高)×2,体积= 长×宽×高。

人教版小学五年级(下册)数学知识点总结大全

人教版小学五年级(下册)数学知识点总结大全

人教版小学五年级(下册)数学知识点总结大全一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。

旋转只改变物体的位置,不改变物体的形状、大小。

二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a 的因数。

2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。

一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。

正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。

最全面人教版数学五年级下册知识点归纳总结

最全面人教版数学五年级下册知识点归纳总结

最全面人教版数学五年级下册知识点归纳总结五年级下册数学内容涵盖了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面的内容。

以下是对人教版数学五年级下册的知识点进行归纳总结:一、面积1. 长方形的面积计算公式:面积 = 长 ×宽2. 正方形的面积计算公式:面积 = 边长 ×边长3. 三角形的面积计算公式:面积 = 底边长 ×高 ÷ 24. 平行四边形的面积计算公式:面积 = 底边长 ×高5. 长方体的表面积计算公式:表面积 = 2 ×长 ×宽 + 2 ×长 ×高 + 2 ×宽 ×高二、容积1. 直接用长宽高相乘得到的数字,就是长方体的容积(即体积)。

2. 立方体的容积计算公式:容积 = 边长 ×边长 ×边长三、数的认识和计算1. 整数:包括正整数、负整数和零。

2. 加法和减法:掌握多位数的加减法计算方法,注意进位和借位。

3. 乘法:会进行大位数的乘法计算,理解乘法的意义。

4. 除法:会进行大位数的除法计算,理解除法的意义。

5. 分数:能够简单的进行分数的加减运算,理解分数的大小比较。

6. 小数:能够进行小数的四则运算。

7. 千分数:能够进行千分数的简单计算,理解千分数的大小比较。

8. 序数词:知道如何用序数词表示年份或名次。

四、时间1. 分钟和小时:能够用时钟读出准确的时间。

2. 日历:能够根据日历进行简单的日期计算。

3. 时间的计算:能够计算时间间隔,如计算一天之前或之后的日期。

五、图形的认识和运用1. 二维图形:熟悉正方形、长方形、三角形、平行四边形、菱形、圆形等基本的图形,并了解它们的性质。

2. 三维图形:熟悉长方体、正方体、圆柱体、圆锥体、球体等基本的立体图形,并了解它们的性质。

3. 坐标系:能够在二维坐标系中表示点的位置,并进行简单的坐标计算。

总结:人教版数学五年级下册的知识点非常广泛,涉及了面积、容积、数的认识和计算、时间、图形的认识和运用等多个方面。

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册各单元知识点总结

人教版五年级数学下册各单元知识点总结班级:姓名:第一单元:观察物体1.由大小相同的小正方体组成的立体图形,从同一个方向观察,看到的图形可能相同也可能不同。

因此,同一个立体图形可以有多种摆法。

2.从同一个方向观察物体,最多只能看到三个面。

因此,几何视图一般是根据三个方向观察到的形状进行绘制。

3.根据两个方向观察到的形状,可以确定所用小正方体的个数。

但是,根据三个方向观察到的形状摆小正方体的结果只有一种。

第二单元:因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

因数和倍数是相互依存的,不能单独存在。

2.注意:为了方便,在研究因数和倍数时,我们所说的数指的是自然数(一般不包括0)。

3.找因数的方法有两种:乘法和除法。

找倍数的方法是逐次乘自然数。

4.一个数的最小因数是1,最大因数是它本身。

一个数的最小倍数是它本身,但没有最大的倍数。

一个数的因数个数是有限的,而倍数个数是无限的。

一个数的最大因数和最小倍数相等,都是它本身。

1是所有非自然数的因数,也是任一自然数(除0外)的最小因数。

一个数的因数至少有1个,这个数是1.一个数的因数都小于等于它本身,而倍数都大于等于它本身。

5.因数≤它本身,倍数≥它本身,最大的因数=最小的倍数=它本身。

一个数的倍数一定比它的因数大这种说法是错误的。

一个数越大,它的因数个数就越多,一个数越小,它的因数个数就越少,这种说法也是错误的。

6.2的倍数特征:个位上是2、4、6、8的数都是2的倍数。

自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫奇数。

7.5的倍数特征:个位上是0或5的数,都是5的倍数。

8.3的倍数特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

个位上是3、6、9的数都是3的倍数,但个位上是其他数的数不一定是3的倍数。

9.2和5的倍数特征:个位上是0的数既是2的倍数,也是5的倍数。

(就是10的倍数)。

10.2和3的倍数特征:个位上是2、4、6、8,且各个数位上的数字的和是3的倍数,这个数既是2的倍数,也是3的倍数。

人教版数学五年级下册知识点归纳总结

人教版数学五年级下册知识点归纳总结
宽、高。(所以,对于同一个物体,体积大于容积。)
【注意】长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
被浸没物体的体积等于
上升那部分水的体积
计算方法
①容器的底面积×上升那部分水的高度。
猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察
到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。
4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,
高=棱长总和÷4-长-宽h=L÷4-a-b
正方体的棱长总和=棱长×12L=a×12
正方体的棱长=棱长总和÷12a=L÷12
4、长方体或正方体6个面的总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
计量容积一般就用体积单位。计量液体的体积,如水、油等,常用容积单位升和毫升,
也可以写成L和mL。
1升=1立方分米1毫升=1立方厘米1升=1000毫升
(1 L = 1 dm
31 mL = 1 cm31 L=1000mL)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、
小单位大单位
÷进率

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。

因数和倍数是相互依存的。

例如:38=24,3和8是24的因数,24是3和8的倍数。

2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。

5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。

(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。

6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。

例如:写出30以内4的倍数。

41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。

二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。

2、个位上是0或5的数都是5的倍数。

3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。

4、同时是2、5的倍数的数末尾必须是0。

最小的两位数是10,最大的两位数是90。

同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。

最小的两位数是30,最大的两位数是90。

三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。

如:0、2、4、6、8、10、12、14、16…都是偶数。

人教版五年级下册数学知识点归纳

人教版五年级下册数学知识点归纳

人教版五年级下册数学知识点归纳一、因数与倍数。

1. 因数和倍数的概念。

- 在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

例如:12÷2 = 6,12是2和6的倍数,2和6是12的因数。

- 因数与倍数是相互依存的,不能单独说某个数是因数或倍数。

2. 找一个数的因数和倍数的方法。

- 找因数:从1开始,一对一对地找。

例如,18的因数有1、2、3、6、9、18。

- 找倍数:用这个数分别乘1、2、3……例如,3的倍数有3、6、9、12……3. 2、3、5的倍数的特征。

- 2的倍数的特征:个位上是0、2、4、6、8的数。

- 5的倍数的特征:个位上是0或5的数。

- 3的倍数的特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

例如,123各位数字之和1 + 2+3=6,6是3的倍数,所以123是3的倍数。

4. 奇数和偶数。

- 奇数:不是2的倍数的数叫奇数,个位上是1、3、5、7、9。

- 偶数:是2的倍数的数叫偶数,个位上是0、2、4、6、8。

- 奇数+奇数 = 偶数;偶数+偶数 = 偶数;奇数+偶数 = 奇数。

5. 质数和合数。

- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

例如,2、3、5、7等。

- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

例如,4、6、8、9等。

- 1既不是质数也不是合数。

二、长方体和正方体。

1. 长方体和正方体的认识。

- 长方体:有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。

- 正方体:正方体是特殊的长方体,它的6个面都是正方形,12条棱长度都相等。

2. 长方体和正方体的表面积。

- 长方体表面积=(长×宽 + 长×高+宽×高)×2,用字母表示S=(ab +ah+bh)×2。

(完整版)人教版五年级数学下册知识点归纳总结

(完整版)人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。

2、不可能一次看到长方体或正方体相对的面。

注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。

2)站在任意一个位置,最多只能看到长方体的3个面。

3)从不同的位置观察物体,看到的形状可能是不同的。

4)从一个或两个方向看到的图形是不能确定立体图形的形状的。

5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结

部编人教版小学五年级数学下册知识点总结五年级下册数学重点知识总结第一单元《因数和倍数》因数和倍数的意义:(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数数和商的倍数,除数和商是被除数的因数。

(2)如果a×b=c(a、b、c都不为的整数),那么a、b就是c的因数,c就是a、b的倍数。

数与倍数的关系:因数和倍数是相互依存的。

找一个数的因数的方法:用这个数除以1、2、3…..能整除时,所得的商和除数就是这个数的因数。

找一个数的倍数的方法:求一个数的倍数,就是用这个数,依次与1、2、3…..相乘,所得积就是这个数的倍数。

一个数倍数的特征:倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数因数的特征:因数的个数是有限的,最小的因数是1,最大的因数是它本身。

注:一个数最小倍数和最大因数都是它本身2、3、5的倍数的特征2的倍数的特征:个位上是、2、4、6、8的数都是2的倍数。

5的倍数的特征:个位上是或5的数都是5的倍数.。

3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数既是2又是5的倍数的特征:个位上是数都是2、5的倍数.。

同时是2、3、5倍数的特征:(1)个位上是的数,(2)个数各位上的数的和是3的倍数。

按是不是2的倍数可分为:奇数和偶数偶数:是2的倍数的数叫做偶数,(或个位上是、2、4、6、8的数),最小的偶数是。

奇数:不是2的倍数的数叫做奇数。

(或个位上是1、3、5、7、9的数)最小的奇数是1.注:自然数中除了偶数就是奇数。

数的奇偶性:奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数(大减小),奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

质数和合数按因数的个数把自然数(除外)可分为:质数、1、合数三类质数:一个数,假如只要1和它本身两个因数,如许的数叫做质数(或素数);合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

新人教版小学五年级数学下册知识点归纳

新人教版小学五年级数学下册知识点归纳

新人教版小学五年级数学下册知识点归纳新人教版小学五年级下册数学知识点归纳第一单元观察物体1.从任意一个位置观察长方体,最多只能看到3个面。

2.从不同的位置观察物体,可能看到的形状不同。

3.从一个或两个方向看到的图形不能确定立体图形的形状。

4.从物体的右面观察和从左面观察看到的不一定完全相同。

第二单元因数和倍数1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

2.因数和倍数是相互依存的,不能单独存在。

3.一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数的最大因数与最小倍数都是这个数本身。

4.1是所有非零自然数的因数。

5.2、3、5的倍数特征:1) 个位上是2、4、6、8的数都是2的倍数。

2) 一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3) 个位上是0或5的数是5的倍数。

4) 如果一个数同时是2和5的倍数,那它的个位上的数字一定是0或5.6.自然数可以分为偶数和奇数两类。

偶数:是2的倍数的数叫做偶数,2是最小的偶数。

奇数:不是2的倍数的数叫做奇数,1是最小的奇数。

关系:奇数+偶数=奇数奇数+奇数=偶数偶数+偶数=偶数奇数x奇数=奇数奇数x偶数=偶数偶数x偶数=偶数7.按因数的个数对自然数分类,可以分为质数、合数、1三类。

1) 质数(或素数):一个数,如果只有1和它本身两个因数,这样的数叫质数。

合数:一个数,如果除了1和它本身还有别的因数,至少有三个因数,这样的数叫合数。

2) “1”不是质数,也不是合数。

3) 最小的质数是2,最小的合数是4,连续的两个质数是2和3.4) 20以内的质数有8个:2、3、5、7、11、13、17、195) 关系:质数x质数=合数第三单元长方体和正方体1.长方体有6个面,12条棱,8个顶点。

相交于一个顶点的三条棱分别是长方体的长、宽、高。

2.长方体最多有6个面是长方形,至少4个面是长方形,最多2个面是正方形。

2023年新人教版五年级数学下册各单元知识点总结

2023年新人教版五年级数学下册各单元知识点总结

人教版五年级数学下册知识点班级:姓名:第一单元观测物体1、由几种大小相似旳小正方体摆成旳立体图形,从同一种方向观测,看到旳图形也许是相似旳,也也许是不一样旳。

根据一种方向看到旳图形摆立体图形,有多种摆法。

2、从同一种方向观测物体最多只能看到三个面。

几何视图一般是根据三个方向观测到旳形状进行绘制。

3、根据两个方向观测到旳形状能确定所用小正方体旳个数。

根据三个方向观测到旳形状摆小正方体成果只有一种。

第二单元因数和倍数1、在整数除法中,假如商是整数而没有余数,我们就说被除数是除数旳倍数,除数是被除数旳因数。

因数和倍数是互相依存旳,不能单独存在。

)2、注意:为了以便,在研究因数和倍数时候,我们所说旳数指旳是自然数(一般不包括0)3、找因数旳措施:①乘法②除法;找倍数旳措施:逐次乘自然数。

4、①一种数旳最小因数是1,最大因数是它自身。

一种数旳最小倍数是它自身,没有最大旳倍数。

②一种数旳因数旳个数是有限旳,一种数旳倍数旳个数是无限旳。

一种数旳最大因数和最小倍数是相等旳都是它自身。

③1是所有非0自然数旳因数。

也是任一自然数(0除外)旳最小因数。

④一种数旳因数至少有1个,这个数是1。

⑤一种数旳因数都不不小于等于他自身,一种数旳倍数都不小于等于他自身。

5、因数<或=它自身、倍数>或 = 它自身、最大旳因数=最小旳倍数=它自身。

一种数旳倍数一定比它旳因数大这种说法是错误旳。

一种数越大它旳因数个数就越多,一种数越小它旳因数个数就越少。

这种说法是错误旳。

6、2旳倍数特性:个位上是0、2、4、6、8旳数都是2旳倍数。

自然数中,是2旳倍数旳数叫做偶数(0也是偶数),不是2旳倍数旳数叫奇数。

7、5旳倍数特性:个位上是0或5旳数,都是5旳倍数。

8、3旳倍数旳特性:一种数各位上旳数旳和是3旳倍数,这个数就是3旳倍数。

个位上是3、6、9点数都是3旳倍数是错误旳说法。

9、2和5旳倍数特性:个位上是0旳数,既是2旳倍数,也是5旳倍数。

人教版数学五年级下册1-4单元知识点总结

人教版数学五年级下册1-4单元知识点总结

人教版数学五年级下册1-4单元知识点总结人教版数学五年级下册1-4单元知识点总结第一单元图形的变换图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

五年级下册数学知识点总结人教版

五年级下册数学知识点总结人教版

五年级下册数学知识点总结人教版五年级下册数学知识点总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法; ⑵进一法; ⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级数学下册知识点归纳总一、图形的变换图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数二、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位..上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

自奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

然数偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1三类.质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数6、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4;最小的自然数是:0;7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法...分解质因数(一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7 两个合数的互质数:8和9一质一合的互质数:7和8两数互质的特殊情况:⑷1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;(6)一个质数与一个合数(合数不是质数的倍数)互质。

9、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法用12和16来举例1、求法一:(列举求同法)最大公因数的求法:12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4最小公倍数的求法:12的倍数有:12、24、36、48、…16的倍数有:16、32、48、…最小公倍数是482、求法二:(分解质因数法)12=2×2×316=2×2×2×2最大公因数是:2×2=4 (相同乘)最小公倍数是:2×2 ×3×2×2= 48 (相同乘×不同乘)三长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a +b +h )×4长=棱长总和÷4-宽 -高 a=L ÷4-b -h宽=棱长总和÷4-长 -高 b=L ÷4-a -h高=棱长总和÷4-长 -宽 h=L ÷4-a -b正方体的棱长总和=棱长×12 L=a ×12正方体的棱长=棱长总和÷12 a=L ÷124、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab +ah +bh )无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab +ah +bh )-ab S=2(ah +bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah +bh ) 贴墙纸正方体的表面积=棱长×棱长×6 S=a ×a ×6 用字母表示: S= 6a 2生活实际:油箱、罐头盒等都是6个面 游泳池、鱼缸等都只有5个面 水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。

(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V ÷b ÷h宽=体积÷长÷高 b=V ÷a ÷h高=体积÷长÷宽 h= V ÷a ÷b正方体的体积=棱长×棱长×棱长V=a ×a ×a = a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a )长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高 用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L 和ml 。

1升=1立方分米 1毫升=1立方厘米 1升=1000毫升(1 L = 1 dm 3 1 ml = 1 cm 3)长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。

(所以,对于同一个物体,体积大于容积。

)注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:V 物体 =V 现在-V 原来也可以 V 物体 =S ×(h 现在- h 原来)V 物体 = S ×h 升高8、【体积单位换算】 大单位 小单位 小单位 大单位进率: 1立方米=1000立方分米=1000000立方厘米 (立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米×进率÷进率1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

相关文档
最新文档