分式方程典型易错点及典型例题分析

合集下载

易错易混:分式与分式方程中常见的易错压轴题六种模型全攻略(解析版)

易错易混:分式与分式方程中常见的易错压轴题六种模型全攻略(解析版)

专题06易错易混专题:分式与分式方程中常见的易错压轴题
六种模型全攻略
【考点导航】
目录
【典型例题】 (1)
【易错一分式值为0时求值,忽略分母不为0】 (1)
【易错二分式混合运算易错】 (5)
【易错三自主取值再求值时,忽略分母或除式不能为0】 (8)
【易错四解分式方程不验根】 (12)
【易错五分式方程无解与增根混淆不清】 (18)
【易错六已知方程的根的情况求参数的取值范围,应舍去分母为0时参数的值】 (21)
【典型例题】
【易错一分式值为0时求值,忽略分母不为0】
【变式训练】
∵2x ≠且3x ≠,
∴整数x 的值为2-或4或8.
【点睛】此题主要考查了分式无意义、分式值为零、分式的值,关键是掌握各种情况下,分式所应具备的条件.
【易错二分式混合运算易错】
【变式训练】
【易错三自主取值再求值时,忽略分母或除式不能为0】
【变式训练】
【易错四解分式方程不验根】
例题:(2023春·江苏徐州·八年级校考阶段练习)解方程:
【变式训练】
()
x x x
-+=+,
3323
x=,
3
x=是原分式方程的增根,
检验:当3
所以,原方程无解.
【点睛】本题考查解分式方程,掌握解分式方程的步骤,正确求解是解题的关键,注意要检验.【易错五分式方程无解与增根混淆不清】
【变式训练】
【易错六已知方程的根的情况求参数的取值范围,应舍去分母为0时参数的值】
【变式训练】。

分式运算常见错误示例易错点剖析.docx

分式运算常见错误示例易错点剖析.docx

分式运算常见错误示例一、概念记不准例 1 下列哪些是分式 ? 哪些是整式 ?① x 2 1② 13 ③3 a4错解:①,③是分式 ,②是整式 . ①在代数式x21中, 因为在分母中含有字母,所以是分式 ; ②在代数式13 中,因为它是二项式 , a属于整式;3是分式 . 4错解分析:分式的定义就是形如A, 其中 A 和 B 都为整式 ,分母 B B中要含有字母,① x21中的分母是常数 ,而不是字母 ; ②1 3 中a的1是分式 ,加 3 后,仍然属于分式 ; ③把分式和分数混淆了 . a正解:①, ③是整式 ,②是分式.二、直接将分式约分例2 x为何值时 , 分式x23x9有意义 ?错解 :x3x31x29x 3x3x 3. 要使分式有意义 , 必须满足x+3≠0,即x≠-3.错解分析 : 错误的原因是将x-3 约去 , 相当于分子、分母同除以一个可能为零的代数式 , 无意中扩大了字母的取值范围 , 当x=3 时, 分式无意义的条件漏掉了 .正解 : 要使分式有意义 , 必须满足x2 -9 ≠0, 解得x≠± 3. ∴当x≠±3 时,分式x23有意义 . x9三、误以为分子为零时 , 分式的值就为零例 3当 x 为何值时 , 分式x22x 4的值为零 ?错解 : 由题意 , 得| x | - 2=0, 解得 x =±2. ∴当 x =±2 时,分式x2的值为零 .2x 4错解分析 : 分式值为零的条件是分子为零而分母不为零. 本题当x =-2 时, 分母 2x +4=2×(-2)+4=0, 分式无意义 , 应舍去 .正解 : 由题意 , 得 | x | - 2=0, 解得 x =±2. 当 x =2 时, 分母 2x +4≠0; 当 x =-2 时, 分母 2x +4=2×(-2)+4=0, 分式无意义 . ∴当 x =2 时, 分式x2的值为零 .2x 4四、分式通分与解方程去分母混淆例 4化简 x 2- x -2.x2错解 : 原式 =x 2 - x ( x -2) - 2( x -2) = x 2 - x 2 +2x -2 x +4=4.错解分析 : 上述错误在于进行了去分母的运算 , 当成了解方程 ,而本题是分式的加减运算 , 必须保持分式的值不变 .正解 : x2- x -2=x 2-( x +2)=x2-x2 x 2 = x 2(x 2 4) =x 2x2 x 2x2 x 24.x 2五、颠倒运算顺序例 5 计算 a ÷b × 1 .b错解 : a ÷b × 1= a ÷1=a .b错解分析 : 乘法和除法是同级运算 , 应按从左到右的顺序进行 .错解颠倒了运算顺序 , 造成运算错误 .正解 : a ÷b × 1 = a × 1 = a.b bb b 2六、化简不彻底例 6计算2 1.x 24 2x4错解 : 原式 =21=4 x 2x 2 x 2 2 x 22 x 2 x 2 2 x 2 x 2=4 x 2=x 2.2 x 2x 2 2 x 2x 2错解分析 : 上面计算的结果 , 分子、分母还有公因式 ( x -2) 可约分 ,应继续化简 .正解 : 原式 =21=4x 2x 2 x 22 x 2 2 x 2 x 2 2 x 2 x 2=4 x 2 =x 2=1.2 x 2 x 22 x 2 x 22 x 2七、忽视“分母等于零无意义”致错1. 错在只考虑了其中的一个分母例 7 x 为何值时 ,分式1有意义 ?11x1错解:当 x + 1 ≠ 0, 得 x ≠ - 1. 所以当 x ≠ - 1时, 原分式有意义 .错解分析:上述解法中只考虑了分式1 中的分母 , 没有注意整个分1.x1式的大分母 1x 1正解:由 x + 1 ≠ 0, 得 x ≠ - 1.1由1x 1≠ 0, 得 x ≠ 0 ,因此, 当 x ≠0 且 x ≠ - 1 时, 原分式有意义 .2.错在没有把方程的两个解带到分母中去检验例 8 先化简 ,再求值 :x 2x x21,其中 x 满足 x2- 3x + 2=x1x22x10.错解: x2xx2x 21= x( x1)(x1)( x1)= x .x 12x 1x 1( x 1)2∵x 2- 3 x+ 2= 0,∴( x- 2) (x- 1) = 0.∴x= 1或 x= 2,原式=1 或 2.错解分析:只要把本题中的 x=1代入到 (x - 1)2中可知 , 分母等于 0,所以原式无意义 . 故原式只能等于 2.正解:x 2x x 21x(x1) (x1)(x 1)x ,·22x 1·(x 1)2x 1 x x 1由x2-3 x+2=0,解得 x1=2, x2=1,当x=2时, x+1≠0,x2-2 x+1≠0,当x=1时, x2-2 x+1=0,故x 只能取2,则原式 =x=2.3.错在没有考虑除式也不能为零例 9先化简1x,再选择一个恰当的 x 值代入并求值.11x2x1错解:11x=x 1 1 ( x 1)( x 1)= x+ 1.x 1x2x1x1∵ x- 1≠0, x 2- 1≠0,∴x ≠±1.当取 x= 0时代入 x+1,原式= 1.错解分析: 本题若取 x = 0,则除式 x 颠倒到分母上时 , 分式就变得无意义了 , 显然是不正确的 , 所以 x ≠- 1, 0, 1.其他值代入均可求.正解: 11 x 2x = x ·(x 1)(x 1)x 1,x 11 x 1x∵ x -1 ≠0, x 2-1 ≠0,x为除数不为 0,即 x ≠0,x 21∴x ≠± 1 且 x ≠0,当取 x =2 时,原式 =x +1=2+1=3.4. 错在“且”与“或”的混用例 10 x 为何值时 , 分式1有意义 ?( x 2)( x 3)错解:要使分式有意义 , x 必须满足分母不等于零 ,即( x - 2) ( x -3) ≠0, 所以 x ≠2 或 x ≠3.错解分析:“且”与“或”是两个完全不同的联结词 , 两件事情至少一件发生用“或”,两件事情同时发生用“且” .正解:要使分式有意义 , x 必须满足 ( x - 2) ( x - 3) ≠0, 所以 x ≠2 且 x ≠3.八、忽视分数线具有双重作用例 11 化简:x 2 1xx1错解: 原式 = x 2x 1 x 2 (x 1)(x 1) 2 x 1 .x11x 1x 1错解分析:分数线具有除号和括号的双重作用 ,在添分数线时 , 如果分数线前面是负号 , 那么所添各项都要变号 .正解:原式 =x2x 1x2( x1)( x 1) 1 .x 11x1x 1。

第06讲 分式(易错点梳理+微练习)(解析版)

第06讲 分式(易错点梳理+微练习)(解析版)

第06讲分式易错点梳理易错点梳理易错点01分式值为0时,忽略分母不为0的条件分式的值为0,必须同时满足两个条件,即分子的值为0,分母不等于0,两者缺一不可。

易错点02在分式约分过程中出现乱约分或约分不彻底的错误分式的约分是对分式的分子与分母整体进行的,分子或分母必须都是乘积的形式才能进行约分,约为要彻底,使分子、分母没有公因式。

易错点03分式运算时忽视分数线的括号作用在分式的运算中遇到减法,并且减式的分子是一个多项式,当分子相减时必须给分子加上括号,因为分数线有括号的作用。

易错点04解分式方程去分母时出现漏乘现象解分式方程去分母时,方程两边的每一部分都要乘以最简公分母,当单独一个整数作为一项时,容易出现漏乘现象。

易错点05解分式方程忘记检验检验所得的解是否为增根是解分式方程的必要步骤,不可忽略。

例题分析考向01分式有意义的条件和分式值为0的条件例题1:(2021·广西贵港·中考真题)若分式15x +在实数范围内有意义,则x 的取值范围是()A .x ≠-5B .x ≠0C .x ≠5D .x >-5【答案】A【思路分析】根据分式有意义的条件列不等式求解.例题2:(2021·广西桂林·中考真题)若分式23x x -+的值等于0,则x 的值是()A .2B .﹣2C .3D .﹣3【答案】A【思路分析】根据分式的值为0的条件:分子为0,分母不为0性质即可求解.【解析】由题意可得:20x -=且30x +≠,解得2,3x x =≠-.故选A .【点拨】此题主要考查分式为零的条件,解题的关键是熟知分式的性质.考向02分式的基本性质例题3:(2021·河北安次·二模)下列各式从左到右的变形中,不正确的是()A .3322m m =--B .55n nm m -=-C .3377m mn n-=--D .3344m mn n=--【答案】C【思路分析】根据分式的基本性质进行判断即可.【解析】解:A 、改变分式本身的符号和分母的符号,其分式的值不变,此选项正确,不符合题意;B 、改变分式分子和分母的符号,其分式的值不变,此选项正确,不符合题意;C 、改变分式分母的符号,其分式的值变为原来的相反数,此选项错误,符合题意;D 、改变分式本身的符号和分母的符号,其分式的值不变,此选项正确,不符合题意,故选:C .【点拨】本题考查分式的基本性质,熟练掌握分式的基本性质,熟记分式符号变化规律是解答的关键.例题4:(2021·广东·广州市第十六中学二模)下列计算正确的是()A .()22239pq p q -=-B .22a ab b-=-C 0=D .933b b b ÷=【答案】C【思路分析】A 、根据积的乘方运算法则判断;B 、根据分式的基本性质判断;C 、根据二次根式的性质判断;D 、根据同底数幂的除法法则判断.【解析】解:A 、222(3)9pq p q -=,故本选项不合题意;B 、当a b ¹时,22a ab b-≠-,故本选项不合题意;C 、由题意可得0a =0=,故本选项符合题意;D 、936b b b ÷=,故本选项不合题意;故选:C .考向03分式的运算例题5:(2021·山东济南·中考真题)计算22111m m m m ----的结果是()A .1m +B .1m -C .2m -D .2m --【答案】B【思路分析】根据分式的减法法则可直接进行求解.【解析】解:()2221212111111m m m m m m m m m m ---+-===-----;故选B .【点拨】本题主要考查分式的减法运算,熟练掌握分式的减法运算是解题的关键.例题6:(2021·内蒙古呼伦贝尔·中考真题)下列计算正确的是()A .11b aa b ab--=B .222323y x y x+=C .()326339a b a b -=-D .22(2)4x x -=-【答案】A【思路分析】根据分式的计算法则,积的乘方计算法则和完全平方公式对每个选项进行计算即可.【解析】A :11b a b a a b ab ab ab --=-=,符合题意.B :22222222929323333y y x y x x y x x x x++=+=≠,不符合题意.C :()()()()333322636333279a b a b a b a b -=-=-≠-,不符合题意.D :222(2)444x x x x -=-+≠-,不符合题意.故选:A .【点拨】本题考查分式的计算法则,积的乘方计算法则和多项式的乘法法则,熟练掌握这些运算法则是解题关键.考向04分式方程的概念例题7:(2021·四川巴中·中考真题)关于x 的分式方程2m xx+--3=0有解,则实数m 应满足的条件是()A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2【答案】B【思路分析】解分式方程得:63m x x +=-即46x m =-,由题意可知2x ≠,即可得到68m -≠.【解析】解:302m xx+-=-方程两边同时乘以2x -得:630m x x +-+=,∴46x m =-,∴68m -≠,∴2m ≠-,故选B.【点拨】本题主要考查了分式方程的解,熟练掌握分式方程的解法,理解分式方程有意义的条件是解题的关键.例题8:(2021·广西百色·中考真题)方程1x =233x -的解是().A .x =﹣2B .x =﹣1C .x =1D .x =3【答案】D【思路分析】根据解分式方程的方法求解,即可得到答案.【解析】∵1x =233x -∴332x x -=∴3x =经检验,当3x =时,x 与33x -均不等于0∴方程1x =233x -的解是:x =3故选:D .【点拨】本题考查了解分式方程的知识点;解题的关键是熟练掌握分式方程的解法,从而完成求解.考向05分式方程的应用例题9:(2021·四川内江·中考真题)为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙进价(元/件)m10m -售价(元/件)260180若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?【答案】(1)甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【思路分析】(1)依据用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同列方程解答;(2)根据题意列不等式组解答;(3)设总利润为w ,表示出w 与x 的函数解析式,再分三种情况:①当6070a <<时,②当70a =时,③当7080a <<时,分别求出利润的最大值即可得到答案.【解析】解:(1)依题意得:3000270010m m =-,整理,得:3000(10)2700m m -=,解得:100m =,经检验,100m =是原方程的根,答:甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)设购进甲种衬衫x 件,乙种衬衫(300)x -件,根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩,解得:100110x,x 为整数,110100111-+=,答:共有11种进货方案;(3)设总利润为w ,则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+ ,①当6070a <<时,700a ->,w 随x 的增大而增大,∴当110x =时,w 最大,此时应购进甲种衬衫110件,乙种衬衫190件;②当70a =时,700a -=,27000w =,(2)中所有方案获利都一样;③当7080a <<时,700a -<,w 随x 的增大而减小,综上:当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,(2)中所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【点拨】此题考查分式方程的实际应用,不等式组的实际应用,一次函数的性质,正确理解题意熟练应用各知识点解决问题是解题的关键.例题10:(2021·山东济南·中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【思路分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.【解析】解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=,解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得:()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.【点拨】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.微练习一、单选题1.(2021·重庆八中二模)函数y =3xx-中自变量x 的取值范围是()A .x ≠﹣3B .x ≠3C .x ≤3D .x ≤﹣3【答案】B【分析】解:由题意,得3﹣x ≠0,解得x ≠3.故选:B .2.(2021·江苏·南京市金陵汇文学校一模)PM 2.5是指大气中直径小于或等0.0000025m 的颗粒物,将数据0.0000025科学记数法表示为()A .72510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯【答案】C【分析】解:0.0000025=2.5×10-6,故选:C .3.(2021·安徽·合肥市五十中学东校三模)化简2()b b a a a -÷-的结果是()A .-a -1B .a -1C .-a +1D .-ab +b【答案】B【分析】原式=(1)(1)1(1)b b b a a a a a a a a b -⎛⎫⎛⎫-÷=-⨯--=- ⎪ ⎪-⎝⎭⎝⎭,故选B .4.(2021·四川省成都市七中育才学校一模)下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是()A .1B .2C .3D .4【答案】B【分析】解:分式方程不一定会产生增根,故①错误;方程4102x -=+的根为x=2,故②正确;方程11=的最简公分母为2x(x-2),故③错误;5.(2021·重庆八中二模)若数a使关于x的不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,且使关于y的分式方程31222y ay y++--=1有正整数解,则满足条件的a的个数是()A.0个B.1个C.2个D.3个【答案】B【分析】解:解不等式组3124(2) 53x xx a-≤-⎧⎨-<⎩,解得:435xax≥-⎧⎪+⎨<⎪⎩,∵不等式组3124(2)53x xx a-≤-⎧⎨-<⎩有且仅有4个整数解,∴﹣1<35a+≤0,∴﹣8<a≤﹣3.解分式方程31222y ay y++--=1,得y=102a+,∵y=102a+≠2为整数,∴a≠﹣6,∴所有满足条件的只有﹣4,故选:B.6.(2021·黑龙江牡丹江·模拟预测)若关于x的分式方程232x bx-=-的解是非负数,则b的取值范围是()A.4b≠B.b≤6且b≠4C.b<6且b≠4D.b<6【答案】B【分析】解:去分母得,2x-b=3x-6,∴x=6-b,∵x≥0,∴6-b≥0,解得,b≤6,又∵x-2≠0,∴x≠2,即6-b≠2,b≠4,则b的取值范围是b≤6且b≠4,故选:B.7.(2021·甘肃庆阳·二模)关于x的分式方程32x a x=-的解为2x=,则常数a的值为()A.-1B.1C.2D.5【答案】A8.(2021·湖南师大附中博才实验中学一模)若解关于x的方程522x mx x-+--=1时产生增根,那么常数m的值为()A.4B.3C.﹣4D.﹣3【答案】D【分析】解:方程两边都乘以x﹣2,得:x﹣5﹣m=x﹣2,∵方程有增根,∴x=2,将x=2代入x﹣5﹣m =x﹣2,得:m=﹣3,故选D.9.(2021·福建·厦门双十中学思明分校二模)“五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.18018032x x-=+B.18018032x x-=+C.18018032x x-=-D.18018032x x-=-【答案】D【分析】解:设实际参加游览的同学共x人,根据题意得:18018032x x-=-,故选:D.10.(2021·江苏·连云港市新海实验中学二模)甲队3小时完成了工程进度的一半,为了加快进度,乙队也加入进来,两队合作1.2小时完成工程的另一半.设乙队单独完成此项工程需要x小时,据题意可列出方程为()A.1.2 1.216x+=B.1.2 1.213x+=C.1.2 1.2162x+=D.1.2 1.2132x+=【答案】C【分析】解:∵甲队3小时完成了工程进度的一半,∴甲队的工作效率为16,设乙队单独完成此项工程需要x小时,∴甲队的工作效率为1x,由题意可得,1.2 1.2162x+=,故选:C.11.(2021·福建·厦门双十中学思明分校二模)数学家裴波那契编写的《算经》中有如下问题,一组人平分10元钱,每人分得若干,若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x人,则可列方程为()A.10406x x=-B.10406x x=+【分析】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(6)x -人,依据题意:10406x x=-,故选A .12.(2021·内蒙古东胜·二模)随着市场对新冠疫苗需求越来越大,为满足市场需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产10万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产400万份疫苗所需时间少用5天,设现在每天生产x 万份,据题意可列方程()A .400500510x x =-+B .400500510x x =+-C .400500510x x =+-D .400500510x x=--【答案】B【分析】解:设更新技术后每天生产x 万份疫苗,则更新技术前每天生产(x -10)万份疫苗,依题意得,400500=510x x+-,故选:B .二、填空题13.(2021·湖南师大附中博才实验中学一模)若分式16x x --+有意义,则x 的取值范围是_________.【答案】6x ≠-【分析】解:∵分式16x x --+有意义,∴60x +¹,解得:-6x ≠,故答案为:x ≠-6.14.(2021·北京·101中学三模)242x x --分式的值等于0,则x =_______.【答案】-2【分析】解:根据题意,得x 2﹣4=(x +2)(x ﹣2)=0且x ﹣2≠0.所以x +2=0.所以x =﹣2.故答案是:﹣2.15.(2021·广东实验中学三模)代数式||11x x +-有意义时,x 应满足的条件为______.【答案】x ≠1【分析】解:根据题意得:x −1≠0,解得:x ≠1.故答案为:x ≠116.(2021·福建·模拟预测)化简1(1)(11m m +-+的结果是_____.【答案】m【分析】1(1)(1)1m m +-+11(1)()11m m m m +=+-++(1)1mm m =++m =.故答案为:m .17.(2021·湖北青山·一模)计算22168x -+的结果是______.【分析】解:221688164x x x x-+-+-()()()244844x x x x +-=---4844x x x +=---44x x -=-1=.18.(2021·黑龙江·哈尔滨市第六十九中学校一模)分式方程2152x x =+-的解是______.【答案】9x =【分析】解:2152x x =+-,方程两边同乘(5)(2)x x +-,得2(2)5x x -=+,去括号,得245x x -=+,移项得:9x =,经检验,9x =是原方程的解,故答案为:9x =.19.(2021·山东·日照市田家炳实验中学一模)已知关于x 的方程2222x m m x x +=--无解,则m 的值是___.【答案】12或1【分析】解:①当方程有增根时,方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =,故m 的值是1,②当方程没有增根时,方程两边都乘2x -,得22(2)x m m x -=-,解得221m x m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.20.(2021·广东·江门市第二中学二模)方程511x x x =+-的解是______.【答案】3【分析】解:511x x x =+-,两边同乘(x +1)(x -1)得:x (x -1)=5(x +1),解整式方程得,x=3经检验,x=3是原分式方程的解.故答案为:x=3三、解答题21.(2021·安徽·三模)解方程:24111x x x -=--.【答案】x =3【分析】解:方程的两边同乘x −1,得:()214x x --=,解这个方程,得:x =3,检验,把x =3代入x −1=3-1=2≠0,∴原方程的解是x =3.22.(2021·陕西·交大附中分校模拟预测)解分式方程:11222x x x -=---.【答案】无解知购进一次性医用外科口罩的单价比N 95口罩的单价少8元.(1)求该药店购进的一次性医用外科口罩和N 95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共1800只,预算购进的总费用不超过1万元,问至少购进一次外科口罩多少只?【答案】(1)一次性医用外科口罩的单价是2元,N95口罩的单价是10元;(2)至少购进一次性医用外科口罩1000只.【分析】解:(1)设一次性医用外科口罩的单价是x 元,则N95口罩的单价是(x +8)元,由题意可知:2000100008x x =+,解得:2x =,经检验,2x =是原方程的解,x +8=2+8=10,故一次性医用外科口罩的单价是2元,N95口罩的单价是10元;(2)设购进一次性医用外科口罩y 只,依题意有2y +10(1800-y )≤10000,解得y ≥1000,故至少购进一次性医用外科口罩1000只.24.(2021·山东·济宁学院附属中学二模)为提升青少年的身体素质,我市在全市中小学推行“阳光体育”活动,某中学为满足学生的需求,准备再购买一些篮球和足球.如果分别用800元购买篮球和足球,购买篮球的个数比足球的个数少2个,已知足球的单价为篮球单价的45.(1)求篮球、足球的单价分别为多少元?(2)学校计划购买篮球、足球共60个,总费用不多于5200元,并且要求篮球数量不能低于15个,那么应如何安排购买方案才能使费用最少,最少费用应为多少?【答案】(1)篮球每个100元,足球每个80元;(2)当篮球购买15个,足球购买45个时,费用最少,最少为5100元.【分析】解:(1)设篮球每个x 元,足球每个45x 元,由题意得:800800245x x =-,解得:x =100,经检验:x =100是原方程的解且符合题意,则足球的单价为:45x =45×100=80(元),答:篮球每个100元,足球每个80元;(2)足球m 个,总费用为w 元,则篮球(60-m )个,由题意得,w =80m +100(60-m )=-20m +6000,再由题意可得,20600052006015m m -+≤⎧⎨-≥⎩,解得,40≤m ≤45,由w =-20m +6000,∵-20<0,∴w 随m 的增大而减小,。

解分式方程的典型错误剖析

解分式方程的典型错误剖析

解分式方程的典型错误剖析解分式方程是初中数学中一个重要的知识点,其涉及到分数的运算、代数式的化简及方程的解法。

但是,在实际的解题中,很多学生常常犯一些典型错误,导致解题的过程出现错误,无法得出正确的答案。

本文将对解分式方程中的典型错误进行剖析,以帮助同学们更好地掌握这一知识点。

错误一:忽略分母为0的情况在解分式方程的过程中,常常会涉及到分母。

如果在运算过程中忽略了分母为0的情况,就会导致错误的结果。

例如,对于方程$\frac{x}{x-1} = \frac{1}{x-1}$,如果直接将分母约掉,则会得出错误的结果$x=1$。

事实上,由于分母$x-1=0$,因此这个方程的解并不包括$x=1$ 这个值。

解决方法:在运算过程中要记得检查分母是否为0,并将分母为0时的情况特别处理。

错误二:缺乏化简步骤解分式方程的关键是将分式化简成简单的代数式,从而得到方程的解。

如果在化简过程中疏忽了某些步骤,就会导致最终的解答出现错误。

例如,对于方程$\frac{3}{2x+1}+\frac{2}{x-2}=\frac{1}{3x-2}$,如果没有进行通分和分子分母约分的步骤,就直接将分母约去,得出错误的解$x=\frac{5}{13}$。

解决方法:在解题过程中,要注重化简步骤,包括通分、约分、提公因数等操作,确保每一步都是正确的。

错误三:将不等式误解成方程在解分数方程时,有些题目实际上是不等式,但由于不熟悉题型,可能会误解成方程来解题,导致答案错误。

例如,对于不等式$\frac{1}{x-2}>1$,如果误解成方程,就会得出错误的解$x<\frac{3}{2}$。

解决方法:在解题前要分清题目是否为方程或不等式,采用正确的解题方法。

错误四:没有检查解的合法性解分式方程的最后一步是检查解的合法性,即将求得的结果带回原方程中验证是否成立。

如果忽略了这一步骤,就会导致解答错误。

例如,对于方程$\frac{x-2}{x-3}=1$,如果没有检查解的合法性,就会得出错误的解$x=2$。

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析一、错用分式得基本性质例1化简错解:原式分析:分式得基本性质就是“分式得分子与分母都乘以(或除以)同一个不等于零得整式,分式得值不变”,而此题分子乘以3,分母乘以2,违反了分式得基本性质.正解:原式二、错在颠倒运算顺序例2计算错解:原式分析:乘除就是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误、正解:原式三、错在约分例1 当为何值时,分式有意义?[错解]原式。

由得、∴时,分式有意义、[解析]上述解法错在约分这一步,由于约去了分子、分母得公因式,扩大了未知数得取值范围,而导致错误。

[正解]由得且。

∴当且,分式有意义、四、错在以偏概全例2 为何值时,分式有意义?[错解]当,得、∴当,原分式有意义.[解析]上述解法中只考虑得分母,没有注意整个分母,犯了以偏概全得错误。

[正解],得,由,得.∴当且时,原分式有意义、五、错在计算去分母例3 计算、[错解]原式=。

[解析]上述解法把分式通分与解方程混淆了,分式计算就是等值代换,不能去分母,、[正解]原式。

六、错在只考虑分子没有顾及分母例4 当为何值时,分式得值为零.[错解]由,得。

∴当或时,原分式得值为零。

[解析]当时,分式得分母,分式无意义,谈不上有值存在,出错得原因就是忽视了分母不能为零得条件。

[正解]由由,得.由,得且。

∴当时,原分式得值为零.典例分析类型一:分式及其基本性质ﻫ1、当x为任意实数时,下列分式一定有意义得就是()ﻫA、B、C、D.2。

若分式得值等于零,则x=_______;3 ﻫ、求分式得最简公分母。

【变式1】(1)已知分式得值就是零,那么x得值就是( )A。

-1B、0 C.1D、±1ﻫ(2)当x________时,分式没有意义、ﻫ【变式2】下列各式从左到右得变形正确得就是()ﻫ A、 B. C. D.类型二:分式得运算技巧(一) 通分约分4、化简分式:【变式1】顺次相加法计算:【变式2】整体通分法计算:(二)裂项或拆项或分组运算ﻫ5。

初三数学:解分式方程的三大易混淆、易错点

初三数学:解分式方程的三大易混淆、易错点

解分式方程时易混易错点分析
易混易错点一、解分式方程忘记验根
例1(四川宜宾中考):分式方程
31329122+=---x x x 的解为()A.x=3 B.x=-3 C.无解 D.x=3或x=-3
解析:方程两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:把x=3代入
解得:1
,321-==x x 检验:当3=x 时,()03=-x x ;当1-=x 时,()0
3≠-x x ∴原分式方程的解是1
-=x 错因分析:在去分母化分式方程为整式方程时,容易出现“3-x=1”这种错误
易混易错点三、混淆分式方程无解和有增根
例3:若关于x 的方程011
1=--+x ax 无解,求a 的值.分析:先把分式方程化为整式方程,再分情况讨论
解:方程两边同乘(x-1),去分母得:()0
11=--+x ax 整理得:()0
21=+-x a 当a -1=0,即a=1时,分式方程无解
当a -1≠0时,∵方程有增根x =1,把x =1代入(a -1)x +2=0中,解得a =-1综上所述,a=1或a =-1
错因分析:本题容易出现只把增根代入求出a =-1,漏掉a=1整式方程无解的情况.。

初中数学常考易错点:2-2《分式方程》

初中数学常考易错点:2-2《分式方程》

方程组易错清单1.解方程组时,一定要先观察方程的特点,再选择适当的方法.【例1】(宁夏模拟)如果关于x,y的二元一次方程组的解满足x+y>1,那么k的取值范围是.【解析】本题可以把k当成已知数,解关于x,y的二元一次方程组,再代入x+y>1,求出k 的取值范围.但更简便的方法是直接将两个方程相加,得3x+3y=3k-3,即x+y=k-1.所以k-1>1,解得k>2.【答案】k>2【误区纠错】一般地解二元一次方程组时,先观察两个二元一次方程同一未知数的系数,若同一未知数的系数相同或相反时,则用加减消元法解;若同一未知数的系数不同并且有一方程的未知数的系数为1时,则用代入法解.2.根据条件找不全反应题意的等量关系建立方程(组).【例2】(内蒙古呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?【解析】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.【答案】设基本电价为x元/千瓦时,提高电价为y元/千瓦时,由题意,得解得则四月份电费为160×0.6=96(元),五月份电费为180×0.6+230×0.7=108+161=269(元).故这位居民四月份的电费为96元,五月份的电费为269元.【误区纠错】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.名师点拨1.能判断二元一次方程(组).2.会利用代入法、加减法进行消元.3.能区分一次函数与二元一次方程组的联系与区别.4.会根据题中等量关系列二元一次方程组并解决实际问题.提分策略用二元一次方程组解决实际问题.(1)列二元一次方程组解决古代数学问题列方程组解应用题的关键是找出实际问题中的等量关系,解题时要仔细分析,找出其中蕴含的等量关系,设出未知数,列出方程.【例1】《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上、树下的鸽子有一样多了.”你知道树上、树下各有多少只鸽子吗?【答案】设树上有x只鸽子,树下有y只鸽子,由题意,得解得故树上有7只鸽子,树下有5只鸽子.(2)列二元一次方程组解几何图形的计算问题对于图形问题的求解,要会通过对图形的观察、比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长间的关系、面积间的关系等.【例2】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x,y的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?【答案】(1)地面总面积为(6x+2y+18)m2.(2)由题意,得解得∴地面总面积为6x+2y+18=6×4+2×+18=45(m2).∵铺1m2地砖的平均费用为80元,∴铺地砖的总费用为45×80=3600(元).专项训练一、选择题1.(广西百色模拟)已知是二元一次方程组的解,则a-b的值为().A.1B.-1C.2D.32.(北京顺义区模拟)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格(单位:元)为().(第2题)A.19B.18C.16D.153.(山东德州特长展示)已知(x+2)2+|3x+y+m|=0中,y为负数,则m的取值范围为().A.m>6B.m<6C.m>-6D.m<-6二、填空题4.(安徽安庆外国语学校模拟)若方程组的解为则被遮盖的两个数分别为.5.(广东珠海一模)如果实数x,y满足方程组那么x2-y2=.三、解答题6.(江苏苏州高新区一模)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B 两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A,B两种饮料共200瓶,问A,B两种饮料各生产了多少瓶?7.(江西饶鹰联考)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过180千瓦时的部分a超过180千瓦时,但不超过350千瓦时的部分b超过350千瓦时的部分a+0.3(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?参考答案与解析1.B[解析]将方程组转化为关于a,b的二元一次方程组,求出a,b即可.2.C[解析]设笑脸和爱心两种气球的价格分别为x,y元,由题意,得解得∴2x+2y=16.3.A[解析]由题意,得所以y=-m+6.因为y为负数,所以-m+6<0,解得m>6.4.7,3[解析]将x=2代入3x-y=3,得y=3,所以2x+y=2×2+3=7.5.2[解析]由题意,得x+y=4,x-y=,∴x2-y2=(x+y)(x-y)=×4=2.6.设A种饮料生产了x瓶,B种饮料生产了y瓶,由题意,得解得故A种饮料生产了60瓶,B种饮料生产了140瓶,7.(1)根据题意,得解得(2)设该户居民用电x千瓦时,月平均电价每千瓦时不超过0.62元.由题意,得180×0.6+0.65(x-180)≤0.62x,解得x≤300.所以该户居民用电量不超过300千瓦时,月平均电价每千瓦时不超过0.62元.。

八年级数学分式和分式方程易错题精选附答案

八年级数学分式和分式方程易错题精选附答案

分式和分式方程易错题精选第1节 分式一、分式的概念和性质易错点:忽略分母不为零的条件1、若分式242+-x x 的值等于0,则x 的值为( )A .-2或2B .2C .-2D .02、若分式2)1(3-+x x 的值为正数,则x 的取值范围是_____________.3、【变式1】当x=2时,分式mx kx +-的值为0,则k 和m 必须满足的条件是_______________.4、【变式2x )1)(3(||26-+-x x x 】当取何值时,分式的值为0?5、【变式3】当x 取何值时,分式22||+-x x 满足下列要求:(1)有意义; (2)无意义; (3)值为0.6、【变式4】若分式23xx -的值为负数,则x 的取值范围是_________. 参考答案 1、B2、13≠->x x 且3、2=k ,2-≠m4、3=x5、(1)2-≠x ;(2)2-=x ;(3)2=x6、03≠<x x 且易错点:分式基本性质理解不全面1、下列从左到右的变形正确的是__________(填序号).①ab a b a 2=;②2a ab b a =;③babc ac =;④)1()1(22++=x b x a b a ;2、【变式1】下列从左到右的变形正确的是( )A .)1()1(22--=x b x a b aB .11++=b a b a C .)2)(3(231+-+=-x x x x D .31)2)(3(2-=+-+x x x x 参考答案 1、③④ 2、D二、约分易错点:不理解约分的条件1、约分:ababa 222+2、【变式1】约分:x xxy 392-3、【变式2】约分:yxy x 392+-参考答案1、b b a 22+2、392-y3、y x 3-三、通分易错点:找最简公分母就直接乘1、下列各题中,所求最简公分母正确的是( )A .x 31和261x 的最简公分母是218xB .c b a b a 32326121与的最简公分母是c b a 326C .42121-x x 与的最简公分母是)42(2-x xD .11112-+a a 与的最简公分母是)1)(1(2-+a a 参考答案 1、B易错点:不会处理分母中互为相反数的项1、下列各题中,所求最简公分母正确的是( )A .11-m 与m -11的最简公分母是2)1(--mB .)(1y x a -与)(1x y b -的最简公分母是))((x y y x ab --C .n m -1与n m +1的最简公分母是))((n m n m +-D .b a -1与a b -1的最简公分母是b a -参考答案 1、CD第2节 分式的运算一、分式的乘除易错点:没考虑到除数不能为零1、使2132-+÷-+x x x x 有意义的条件是________. 2、【变式1】先化简:222)2(3443-+÷+-+x xx x x x ,然后为x 选取一个合适的数代入求值. 3、【变式2】先化简,再求值:)11()1541(2aa a a a a --÷---+,其中a 从-2,0,1,2中选一个你喜欢的数代入求值.参考答案1、1-≠x 且2≠x 且3≠x2、x 1,只要x 不取0,-3和2,取其它数都可以.3、)2(-a a ,当a 取0,1,2时分母或除数为0,原只能a=-2,原式=8. 易错点:被诱导弄错运算顺序 1、计算:)1(11-⋅-÷x x x2、【变式1】计算:)1(3)1(+⋅+÷x x x3、【变式2】计算:)(1)(1)(122222n m n m n m -÷-÷+ 4、【变式3】计算:yx x x y x y x +⋅+÷+)( 参考答案1、x x x +-2322、1232++x x x3、222n mn m +-4、y x x +2 二、分式的加减 易错点:忽视分式中的隐藏括号 1、计算:xyy x xy x +--22、【变式1】计算:y x yx x y x y x 2222+---++参考答案 1、2--y2、1易错点:整式与分式加减时添括号出错1、计算:2a ab a b --- 2、【变式1】计算:x y y x y +-- 3、【变式2】阅读下列计算过程,回答问题: 1121121)1(1)1(111 222222++=+++-=++-+=+-+=+-+x x x x x x x x x x x x x x x x (1)以上过程有两处错误,分别在第几行? (2)请写出正确的结果.参考答案1、b a b -22、yx y xy x -+-22223、第二行和第四行有错,正确结果是11+x .三、分式的混合运算 易错点:误以为除法有分配律1、计算:)131(12-+-÷--x x x x 2、计算:24)22(-÷+--x x x x x x 3、【变式1】计算:)1(1x x x x -÷- 4、【变式2】计算:12)131(--÷--+x xx x 参考答案1、4222+--x x x2、21+x3、11+x4、2--x 四、整数指数幂易错点:负整数指数幂概念不清 1、下列各式计算正确的有__________(填序号).①3)3(1=--;②2233-=-;③2231)31(=--;④169)34(2=--;④1)14.3(0=-π;⑥823-=- 2、【变式1】计算:222)21(22---+3、【变式2】计算:102)31()4(2--+-+-π参考答案 1、④④2、41 3、-6第3节 分式方程易错点:去分母时漏乘没有分母的项1、解方程:yy y y 13112-=+- 2、【变式1】解方程:1213-+=+x x x 3、【变式2】解方程:12324+-=-xx x参考答案1、31=y2、53-=x3、35-=x易错点:分式方程忘记检验1、解方程:)2)(1(311-+=-+x x x x 2、【变式1】解方程:3911332-=-+x x x参考答案 1、无解 2、无解易错点:考虑问题不全面1、若关于x 的分式方程3222=-+-+xmx m x 的解为正实数,则实数m 的取值范围是__________.2、【变式1】若关于x 的分式方程3122=--x a x 的解为非负数,则实数a 的取值范围是__________.3、【变式2】若关于x 的分式方程xkx --=+-21221的解为正实数,则实数k 的取值范围是__________.4、【变式3】若关于x 的分式方程211=---x nx x 的解为非正实数,则实数n 的取值范围是__________. 参考答案1、26≠<m m 且2、432≠≥a a 且3、22≠->k k 且4、2≥n易错点:分不清分式方程无解和有增根 1、若关于x 的分式方程011=--x x m 有增根,则m 的值为_________. 2、若关于x 的分式方程011=--x x m 无解,则m 的值为_________.3、【变式1】若关于x 的分式方程454-+=-x ax x 有增根,则a 的值为_________. 4、【变式2】若关于x 的分式方程131212-=--+x x x m 有增根,则m 的值为_________. 5、【变式3】若关于x 的分式方程x x x m 2132=--+无解,则m 的值为_________.6、【变式4】若关于x 的分式方程2)2(321x ax x --=-无解,则a 的值为_________. 7、【变式5】若关于x 的分式方程332+-=++x kx x 无解,则k 的值为_________. 参考答案 1、0 2、0或1 3、44、23-5、21-或23-6、1或237、1。

中考数学复习指导:分式方程常见错解例析

中考数学复习指导:分式方程常见错解例析

分式方程常见错解例析求解分式方程,通常要经历去分母、去括号、移项、合并同类项、检验增根等重要的运算过程,因此,它比求解整式方程更容易出现这样或者那样的错误,为帮助同学们尽快走出解题误区,现将分式方程解题中的几种常见错误分类举例如下,供大家学习和参考.(一)误区一:解方程时忘记验根例1.解方程:.错解:等号两边同乘以,得,去括号,得,解之,得.∴原方程的解为.评析:本题最后没有进行验根从而将增根误认为是原方程的根,从而导致解题错误(用去分母的方法将分式方程转化为整式方程,需要用方程中各个分母的最简公分母去乘方程的两边,如果去分母后所得的解恰好使得最简公分母的值为零,则这个解即为原方程的增根,应该将其舍去).因此,为避免错误,解分式方程最后必须进行验根.正解:等号两边同乘以,得,去括号,得,解之,得.检验:把代入得.∴是原方程的增根,原方程无解.(二)误区二:解方程时约简漏根例2.解方程:.错解:等号两边通分相减,得,方程两边同除以,得,∴.去括号,得,解之,得.经检验不是原方程的增根,∴原方程的解为.评析:本题在方程两边同除以多项式时失去了根,从而导致解题错误(只有当时,上述解法才成立;而当时,原方程还有一解为).因此,在没有其它条件约定的情况下,方程两边不能同时除以含未知数的整式.正解:等号两边通分相减,得,去分母,得,移项并整理,得,即:,∴,.经检验,都不是原方程的增根,∴原方程的解为,.(三)误区三:解方程时忽略分母有意义的条件例3.解方程:.错解:等号两边同乘以,得,两边同时减去,得,即等式恒成立且等号两边的值与未知数x的取值无关.∴原方程的解为全体实数.评析:本题由于没有考虑分式的分母不能为零从而导致解题错误(一个分式有意义的条件是分式的分母不能为零,如果分母为零,则分式就会没有意义).正解:去分母,得,两边同时减去,得,即等式恒成立且等号两边的值与未知数x的取值无关.∵当时,方程中的分母,此时分式无意义,∴原方程的解为的所有实数.(注意:本题同样可以采用验根的方法来排除这种情况)(四)误区四:去分母时忘记加括号例4.解方程:.错解:等号两边同乘以,得,移项并合并同类项,得.经检验不是原方程的增根,∴原方程的解为.评析:本题在去分母时没有将分式的分子用括号括起来,从而导致解题错误(分式中的分数线本身具有括号作用,去掉分母时就必须把分子中的多项式用括号括起来).正解:等号两边同乘以,得,去括号并整理,得.经检验不是原方程的增根,∴原方程的解为.(五)误区五:去分母时漏乘不含分母的项例5.解方程:.错解:等号两边同乘以,得,即.经检验不是原方程的增根,∴原方程的解为.评析:本题在去分母时没有将等号右边的整数2也乘以最简公分母,从而导致解题错误(在将分式方程去分母转化为整式方程的过程中,方程两边所乘的最简公分母应乘遍等号前后的每一项).正解:等号两边同乘以,得,解之,得经检验不是原方程的增根,∴原方程的解为.。

分式方程及方程组应用易错点解析_分式方程计算题400道

分式方程及方程组应用易错点解析_分式方程计算题400道

分式方程及方程组应用易错点解析_分式方程计算题400道一、去分母时常数漏乘公分母例1解方程=-2、错解:方程两边同乘以(-3),得2-=-1-2,解这个方程,得=5、错因分析:解分式方程应先去分母,根据等式的性质,在方程两边同乘以(-3)时,应注意乘以方程的每一项。

错解在去分母时,常数项没有乘以(-3),另外求得结果没有代入原方程中检验。

正解:方程两边同乘以(-3),得2-=-1-2(-3),解得=3、检验:将=3代入原方程,可知原方程的分母等于0,所以=3是原方程的增根,所以原方程无解。

点拨:解分式方程的基本思路是将分式方程转化为整式方程。

化为整式方程的关键做法是去分母,即方程两边同乘最简公分母,将其化为已学过的整式方程来解。

二、去分母时,分子是多项式未加括号例2解方程-=0。

错解:方程化为-=0,方程两边同乘以(+1)(-1),得31=0,解得=2、所以方程的解=2、错因分析:当分式的分子是一个多项式,在去掉分母时,应将多项式用括号括起来。

错解在没有用括号将(-1)括起来,出现符号上的错误,而且最后没有检验。

正解:方程两边同乘以(+1)(-1),得3-(-1)=0,解这个方程,得=4、检验:当=4时,原方程的分母不等于0,所以=4是原方程的根。

点拨:方程两边同乘以最简公分母化为整式方程时,如果方程中的其中一项的分子是多项式的,要及时添上括号,因为原来的分数线具有括号的作用。

三、方程两边同除以可能为零的整式例3解方程=。

错解:方程两边同除以3-2,得=,去分母得+3=-4,所以3=-4,即方程无解。

错因分析:错解的原因是在没有强调(3-2)是否等于0的条件下,方程两边同除以(3-2),结果导致方程无解。

正解:方程两边同乘以(-4)(+3),得(3-2)(+3)=(3-2)(-4),所以(3-2)(+3)-(3-2)(-4)=0。

即(3-2)(+3-+4)=0。

所以7(3-2)=0。

解得=。

检验:当=时,原方程的左边=右边=0,所以=是原方程的解。

“分式方程”中典型错解举例分析

“分式方程”中典型错解举例分析

例5 解方程
【错解】化简,得卑学2 =2,
停-3卜3
即:鳥=2。
方程两边同乘(x-9),得x+4=2(x-9)0 解这个—元_次方程,得x=22o 检验:当x=22时,x-9^0, x=22是原方程 的解。 [剖析】此题化简时用到分式的基本性质。 分式的基本性质是分式的分子和分母都乘(或 除以)同一个不等于0的整式,分式的值不 变。这一题是分子乘2,而分母乘3,所以分式 的值发生了改变。
李青
分式方程是初中阶段重要的知识点之一,
它是整式方程的拓展与延伸,但是分式方程的
相关运算与整式方程相比较,运算步骤繁复,
解题方法灵活多样,在学习和运用的过程中更
容易出错。下面就析,希望对同学们的学习能够有
所帮助。
一、对分式方程的概念理解不透
例1下列各式是分式方程的是______ 。
【错解】方程两边同乘G-3),得:
x-2=-l-2o
解这个一元一次方程,得X=- 1 O
检验:当X=-1时,X-3^O,所以X=-1是原
方程的解。
【剖析】这一题去分母时,违反了等式的基
本性质,常数项-2漏乘了公分母(x-3)o
【正解】方程两边同乘(x-3),得:
x~2=~1~2(x—3)o
解这个一元一次方程,得X=jo
例7 已知关于%的方程斗=2-泸一
x-5
5-X
的解为正数,求m的取值范围, 【错解】方程两边同乘(x-3),得: x=2(%-3)+m。 解这个一元一次方程,得x=6~mo 由原方程的解为正数,得%>0,即6-
m>0o 解得mv6。 所以当mv6时,原方程的解为正数。 【剖析】解决这种问题时,不仅要考虑“方
程的解为正数”这个条件,还要考虑%-3弄0这 个隐含的条件。这一题的错解就忽略了%-3M 0这个隐含的条件。

分式计算题的四种典型错

分式计算题的四种典型错

分式计算题的四种典型错误初学分式运算与分式方程,同学们总是感觉十分复杂,解题困难.有时受旧知识的影响,有时是概念理解不彻底,使分式计算走上各种歧途.下面将分式计算题四种典型错误分析如下:一、错路:新旧内容混淆,错去分母.例1、计算 41-x -41+x错解:原式=)())((4441+-+∙x x x -)())((4441-+-∙x x x=)(4+x -)(4-x =x+4-x+4=8分析:由于受方程中去分母的影响,导致分式计算中随意去分母.一定注意:解方程去分母时,两边同时乘以最简公分母可以去分母,而在分式加减计算中通分后不能直接去掉分母.所以正确的解法:原式=)())((4441+-+∙x x x -)())((4441-+-∙x x x =))(())((4444-+--+x x x x =))((448-+x x =1682-x二、弯路:对概念理解模糊,弄简为繁.例2:计算 --11x 112-x错解:原式=))((11122---x x x -))((1112---x xx=))(())((111122-----x x x x =))((111122--+--x x x x=))((1122---x x x x =)())((1112---x x x x=12-x x分析:有些异分母分式通分时,最简公分母正好是所有分母的乘积.例如11-x +x +11,ab c -cd a 等.有些同学把它当成现成的模式,走上弯路.确定最简公分母应先把分母分解因式,然后根据分母确定.所以例2中最简公分母为(x+1)(x-1).三、短路:方程两边乘最简公分母时,丢项.例3、 解分式方程43--x x +x -41=1 错解:43--x x +x -41=1整理,得43--x x -41-x =1去分母,得3-x-1=1整理,把系数化成1,得x=1经检验:x=1不是原方程的解.分析:按正常思路解答,x=1应是原方程的解,经检验,为什么不是呢?简直像电路中出现了短路.原因是,去分母时,方程左右两边应同时乘以最简公分母,而有些同学只考虑有分母的项乘以最简公分母,而落下整式项.正确的方法两也各项包括1,都乘以最简公分母而去分母.四、半路:解题过程中出现化简不彻底,而导致结果错误.例4: 计算:--422x x21-x 错解:原式=))((--+222x x x )())((2221+-+∙x x x=)())((2222-++-x x x x=))((222-+-x x x=422--x x分析:计算到))((222-+-x x x 时,应先考虑约分所以,原式=21+x。

中考数学常考易错点:2.2《分式方程》及答案解析

中考数学常考易错点:2.2《分式方程》及答案解析

分式方程易错清单1.解分式方程时为什么容易出错?【例1】(2014·新疆)解分式方程:+=1.【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.【答案】方程两边都乘以(x+3)(x-3),得3+x(x+3)=x2-9,去括号,得3+x2+3x=x2-9,解得x=-4.检验:把x=-4代入(x+3)(x-3)≠0,∴x=-4是原分式方程的解.【误区纠错】最简公分母找错,加重计算负担,导致出错;在计算中,注意常数项要乘以最简公分母,不要漏乘.【例2】(2014·内蒙古呼和浩特)解方程:-=0.【解析】先去分母,化为整式方程求解即可.本题最简公分母是x(x+2)(x-2).【答案】去分母,得3x-6-x-2=0,解得x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【误区纠错】解分式方程产生增根,忘记验根.【例3】(2014·贵州黔西南州)解方程:=.【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.【答案】方程两边都乘以(x+2)(x-2),得x+2=4,解得x=2,经检验,x=2不是分式方程的解,故原分式方程无解.【误区纠错】增根不是分式方程的根,本题学生常犯错误是,漏写最后一句话:“原分式方程无解”.2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2014·云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经检验,x=30是原方程的根.故第一批盒装花每盒的进价是30元.【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师点拨1.会利用分式方程的定义判断分式方程.2.能利用最简公分母将分式方程化为整式方程,会利用换元思想解分式方程.3.会利用检验思想判断分式是否存在增根.4.会利用分式方程解决实际问题,并且注意求出的方程的解是否存在实际意义.提分策略1.分式方程的解法.解分式方程常见的误区:(1)忘记验根;(2)去分母时漏乘整式的项;(3)去分母时,没有注意符号的变化.【例1】解方程:+=1.【解析】根据解分式方程的一般步骤,将分式方程化为整式方程求解,最后再验根即可.【答案】方程两边都乘以(x+2)(x-2),得2+x(x+2)=x2-4,去括号,得2+x2+2x=x2-4,解得x=-3.检验:把x=-3代入(x+2)(x-2)≠0,∴x=-3是原分式方程的解.2.利用分式方程解决实际问题.列分式方程解决实际问题,是近几年中考的热点问题.在列方程之前,应先弄清问题中的已知数与未知数,以及它们之间的数量关系,用含未知数的式子表示相关量,然后再用题中的主要相等关系列出方程.求出解后,必须进行检验,既要检验是否为所列方程的解,又要检验是否符号题意.【例2】几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解析】设票价为x元,根据图中所给的信息可得小伙伴的人数为,根据小伙伴的人数不变,列方程求解.【答案】设票价为x元,由题意,得=+2,解得x=60,经检验,x=60是原方程的根,则小伙伴的人数为=8.故小伙伴们的人数为8人.专项训练一、选择题1. (2014·四川简阳模拟)全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为().A. +2=+0.5B. -=2-0.5C. -=2-0.5D. -=2+0.52. (2013·广西钦州四模)将分式方程1-=去分母,整理后得().A. 8x+1=0B. 8x-3=0C. x2-7x+2=0D. x2-7x-2=0二、填空题3. (2014·四川峨眉山二模)已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程是.4. (2014·北京平谷区模拟)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,则A型机器人每小时搬运千克化工原料.5. (2014·甘肃天水模拟)已知分式值为0,那么x的值为.6. (2013·广东珠海一模)方程=的解是.7.(2013·浙江锦绣·育才教育集团一模)已知关于x的方程=5的解是正数,则m的取值范围为.三、解答题8. (2014·宁夏银川外国语学校模拟)解方程:-1=.9. (2014·安徽安庆一模)甲、乙两个工程队都有能力承包一项筑路工程,乙队单独完成的时间比甲队单独完成多5天,若先由甲、乙两队合作4天后,余下的工程再由乙队单独完成,一共所用时间和甲队单独完成的时间恰好相等.则甲、乙两队单独完成此项任务各需要多少天?10. (2014·江苏南京二模)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?11. (2013·浙江湖州模拟)解方程:+=2.12. (2013·上海长宁区二模)解方程:-=.13.(2013·广东惠州惠城区模拟)小红家星期六到惠东巽寮湾游玩,从家到目的地全程80km,由于周末车流量较大,实际行驶速度是原计划的,结果实际比原计划多用了15分钟,求原计划的行驶速度是多少.14.(2013·安徽芜湖一模)2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5,6月份药品价格的月平均增长率是多少?参考答案与解析1. C[解析]自行车队的时间减去长跑队的时间=(2-0.5)小时.2. D[解析]去分母,得x(x+1)-(5x+2)=3x,去括号,得x2+x-5x-2=3x,整理,得x2-7x-2=0.3.+= [解析]若甲队单独完成需x天,则乙队单独完成需(2x-10)天,根据两人合作的工作效率等于,可列出方程.4. 100[解析]设A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x-20)千克.依题意,得=,解得x=100.经检验,x=100是方程的解且符合实际意义.5.-1[解析]根据题意,得x2+3x+2=0,解得x1=-1,x2=-2(使分母等于零,所以舍去).6.x= [解析]化为整式方程,得5(2-x)=3(x+2),解得x=.经检验,x=是原方程的根.7.m>-10且m≠-4[解析]原方程化为整式方程,得2x+m=5x-10,解得x=(10+m),因为解为正数,所以(10+m)>0,解得m>-10.同时要保证分母不为零,所以m≠-4.8.去分母,得x(x+2)-(x-1)(x+2)=2x(x-1),整理,得2x2-3x-2=0,解得x1=-,x2=2.检验:把x1=-,x2=2代入(x-1)(x+2)≠0,∴原方程的根是x1=-,x2=2.9. (1)设甲队单独完成此项任务需要x天,则乙队单独完成此项任务需要(x+5)天.根据题意,得4+=1,去分母,得4(x+5)+4x+x(x-4)=x(x+5).解得x=20.经检验,x=20是原方程的解,则x+5=25(天).所以甲队单独完成此项任务需要20天,乙队单独完成此项任务需要25天.10.设原来报名参加的学生有x人,依题意,得-=4.解得x=20.经检验,x=20是原方程的解且符合题意.故原来报名参加的学生有20人.11.去分母,得x-1=2(x-3),去括号,得x-1=2x-6,解得x=5.经检验,x=5是原方程的根.12.去分母,得3(x+1)-(x-1)=x(x+5),整理,得x2+3x-4=0,解得x1=1,x2=-4.经检验,x1=1是原方程的增根,x2=-4是原方程的根,∴x=-4是原方程的根.13.设原计划的行驶速度为x千米/小时.根据题意,得-=.解得x=80.经检验,x=80是原方程的解.故原计划的行驶速度为80千米/小时.14. (1)设该药品的原价格是x元/盒,则下调后每盒价格是x元/盒.根据题意,得=+2,解得x=15.经检验,x=15是原方程的解.∴x=15,x=10.故该药品的原价格是15元/盒,则下调后每盒价格是10元/盒. (2)设5,6月份药品价格的月平均增长率是a.根据题意,得10(1+a)2=14.4,解得a1=0.2=20%,a2=-2.2(不合题意,舍去).故5,6月份药品价格的月平均增长率是20%.。

分式方程解法易错点分析

分式方程解法易错点分析

分式方程解法易错点分析一、去分母时常数漏乘公分母【例1】解方程23132--=--xx x 错解:方程两边都乘以(-3),得2-=-1-2,解这个方程,得=5错解分析:解分式方程需要去分母,根据等式的性质,在方程两边同乘以(-3)时,应注意乘以方程的每一项错解在去分母时,-2这一项没有乘以(-3),另外,求到=5没有代入原方程中检验正解:方程两边都乘以(-3),得2-=-1-2(-3),解得=3检验:将=3代入原方程,可知原方程的分母等于0,所以=3是原方程的增根,所以原方程无解二、去分母时,分子是多项式不加括号【例2】解方程011132=+--x x 错解:方程化为011)1)(1(3=+--+x x x ,方程两边同乘以(+1)(-1),得3--1=0,解得=2所以方程的解为=2错解分析:当分式的分子是一个多项式,去掉分母时,应将多项式用括号括起来错解在没有用括号将(-1)括起来,出现符号上的错误,而且最后没有检验正解:方程两边都乘以(+1)(-1),得3-(-1)=0,解这个方程,得=4.检验:当=4时,原方程的分母不等于0,所以=4是原方程的根三、方程两边同除可能为零的整式【例3】解方程323423+-=--x x x x 错解:方程两边都除以3-2,得3141+=-x x , 所以3=-4,所以3=-4,即方程无解错解分析:错解的原因是在没有强调(3-2)是否等于0的条件下,方程两边同除以(3-2),结果导致方程无解.正解:方程两边都乘以(-4)(3),得(3-2)(3)=(3-2)(-4),所以(3-2)(3)-(3-2)(-4)=0.即(3-2)(3-+4)=0.所以7(3-2)=0.解得=32检验:当=32时,原方程的左边=右边=0,所以=32是原方程的解四、忽视“双重”验根【例4】解方程627132+=++x x x 错解 去分母,得4+1=7.程的根.错解分析:这里求出方程的根之后,又经过检验,似乎没有问题.但只母的过程中,把方程两边都乘以最简公分母2+3,没有将2+3与1相乘,因而所得的方程与原方程不同解了.那么,为什么“检验”没有发现呢这是因为这种验根方法必须以解题过程没有错误为前提,否则,即使将求得的未知数的值代入所乘的整式,整式的值不为零,也不能断定未知数的这个值是原方程的根.正确解法 去分母,得4+2+6=7.说明解分式方程时要注意的是:检验未知数的值是不是原方程的根,不仅要检验是否有增根代入公分母,而且要代入原方程,检验原方程两边的值是否相等.。

初3数学- 中考数学常考易错点:2-2《分式方程》

初3数学- 中考数学常考易错点:2-2《分式方程》

分式方程易错清单1.解分式方程时为什么容易出错?【例1】(2014·新疆)解分式方程:+=1.【解析】先将分式方程转换为整式方程,再求出整式方程的解,最后检验后判定分式方程解的情况.【答案】方程两边都乘以(x+3)(x-3),得3+x(x+3)=x2-9,去括号,得3+x2+3x=x2-9,解得x=-4.检验:把x=-4代入(x+3)(x-3)≠0,∴x=-4是原分式方程的解.【误区纠错】最简公分母找错,加重计算负担,导致出错;在计算中,注意常数项要乘以最简公分母,不要漏乘.【例2】(2014·内蒙古呼和浩特)解方程:-=0.【解析】先去分母,化为整式方程求解即可.本题最简公分母是x(x+2)(x-2).【答案】去分母,得3x-6-x-2=0,解得x=4,经检验,x=4是原方程的根,故x=4是原方程的解.【误区纠错】解分式方程产生增根,忘记验根.【例3】(2014·贵州黔西南州)解方程:=.【解析】将分式方程转化为整式方程时易产生增根,所以要检验,检验时只要代入最简公分母中即可.【答案】方程两边都乘以(x+2)(x-2),得x+2=4,解得x=2,经检验,x=2不是分式方程的解,故原分式方程无解.【误区纠错】增根不是分式方程的根,本题学生常犯错误是,漏写最后一句话:“原分式方程无解”.2.运用分式方程解决实际问题时,关键是找出等量关系.【例4】(2014·云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【解析】设第一批盒装花的进价是x元/盒,则第一批进的数量是,第二批进的数量是,再根据等量关系:第二批进的数量=第一批进的数量×2,可得方程.【答案】设第一批盒装花的进价是x元/盒,由题意,得2×=,解得x=30.经检验,x=30是原方程的根.故第一批盒装花每盒的进价是30元.【误区纠错】题目中的相等关系不明显,倍数关系易出错,学生找不到相等关系而无法得到对应的分式方程.运用分式方程解决实际问题的关键是确定问题中的相等关系.名师点拨1.会利用分式方程的定义判断分式方程.2.能利用最简公分母将分式方程化为整式方程,会利用换元思想解分式方程.3.会利用检验思想判断分式是否存在增根.4.会利用分式方程解决实际问题,并且注意求出的方程的解是否存在实际意义.提分策略1.分式方程的解法.解分式方程常见的误区:(1)忘记验根;(2)去分母时漏乘整式的项;(3)去分母时,没有注意符号的变化.【例1】解方程:+=1.【解析】根据解分式方程的一般步骤,将分式方程化为整式方程求解,最后再验根即可.【答案】方程两边都乘以(x+2)(x-2),得2+x(x+2)=x2-4,去括号,得2+x2+2x=x2-4,解得x=-3.检验:把x=-3代入(x+2)(x-2)≠0,∴x=-3是原分式方程的解.2.利用分式方程解决实际问题.列分式方程解决实际问题,是近几年中考的热点问题.在列方程之前,应先弄清问题中的已知数与未知数,以及它们之间的数量关系,用含未知数的式子表示相关量,然后再用题中的主要相等关系列出方程.求出解后,必须进行检验,既要检验是否为所列方程的解,又要检验是否符号题意.【例2】几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解析】设票价为x元,根据图中所给的信息可得小伙伴的人数为,根据小伙伴的人数不变,列方程求解.【答案】设票价为x元,由题意,得=+2,解得x=60,经检验,x=60是原方程的根,则小伙伴的人数为=8.故小伙伴们的人数为8人.专项训练一、选择题1. (2014·四川简阳模拟)全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为().A. +2=+0.5B. -=2-0.5C. -=2-0.5D. -=2+0.52. (2013·广西钦州四模)将分式方程1-=去分母,整理后得().A. 8x+1=0B. 8x-3=0C. x2-7x+2=0D. x2-7x-2=0二、填空题3. (2014·四川峨眉山二模)已知某项工程由甲、乙两队合做12天可以完成,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的2倍少10天.甲、乙两队单独完成这项工程分别需要多少天?设甲队单独完成需x天,根据题意列出的方程是.4. (2014·北京平谷区模拟)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,则A型机器人每小时搬运千克化工原料.5. (2014·甘肃天水模拟)已知分式值为0,那么x的值为.6. (2013·广东珠海一模)方程=的解是.7. (2013·浙江锦绣·育才教育集团一模)已知关于x的方程=5的解是正数,则m的取值范围为.三、解答题8. (2014·宁夏银川外国语学校模拟)解方程:-1=.9.(2014·安徽安庆一模)甲、乙两个工程队都有能力承包一项筑路工程,乙队单独完成的时间比甲队单独完成多5天,若先由甲、乙两队合作4天后,余下的工程再由乙队单独完成,一共所用时间和甲队单独完成的时间恰好相等.则甲、乙两队单独完成此项任务各需要多少天?10. (2014·江苏南京二模)某学校准备组织部分学生到少年宫参加活动,刘老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?11. (2013·浙江湖州模拟)解方程:+=2.12. (2013·上海长宁区二模)解方程:-=.13.(2013·广东惠州惠城区模拟)小红家星期六到惠东巽寮湾游玩,从家到目的地全程80km,由于周末车流量较大,实际行驶速度是原计划的,结果实际比原计划多用了15分钟,求原计划的行驶速度是多少.14.(2013·安徽芜湖一模)2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5,6月份药品价格的月平均增长率是多少?参考答案与解析1. C[解析]自行车队的时间减去长跑队的时间=(2-0.5)小时.2. D[解析]去分母,得x(x+1)-(5x+2)=3x,去括号,得x2+x-5x-2=3x,整理,得x2-7x-2=0.3.+= [解析]若甲队单独完成需x天,则乙队单独完成需(2x-10)天,根据两人合作的工作效率等于,可列出方程.4.100[解析]设A型机器人每小时搬运化工原料x千克,则B型机器人每小时搬运(x-20)千克.依题意,得=,解得x=100.经检验,x=100是方程的解且符合实际意义.5.-1[解析]根据题意,得x2+3x+2=0,解得x1=-1,x2=-2(使分母等于零,所以舍去).6.x= [解析]化为整式方程,得5(2-x)=3(x+2),解得x=.经检验,x=是原方程的根.7.m>-10且m≠-4[解析]原方程化为整式方程,得2x+m=5x-10,解得x=(10+m),因为解为正数,所以(10+m)>0,解得m>-10.同时要保证分母不为零,所以m≠-4.8.去分母,得x(x+2)-(x-1)(x+2)=2x(x-1),整理,得2x2-3x-2=0,解得x1=-,x2=2.检验:把x1=-,x2=2代入(x-1)(x+2)≠0,∴原方程的根是x1=-,x2=2.9. (1)设甲队单独完成此项任务需要x天,则乙队单独完成此项任务需要(x+5)天.根据题意,得4+=1,去分母,得4(x+5)+4x+x(x-4)=x(x+5).解得x=20.经检验,x=20是原方程的解,则x+5=25(天).所以甲队单独完成此项任务需要20天,乙队单独完成此项任务需要25天.10.设原来报名参加的学生有x人,依题意,得-=4.解得x=20.经检验,x=20是原方程的解且符合题意.故原来报名参加的学生有20人.11.去分母,得x-1=2(x-3),去括号,得x-1=2x-6,解得x=5.经检验,x=5是原方程的根.12.去分母,得3(x+1)-(x-1)=x(x+5),整理,得x2+3x-4=0,解得x1=1,x2=-4.经检验,x1=1是原方程的增根,x2=-4是原方程的根,∴x=-4是原方程的根.13.设原计划的行驶速度为x千米/小时.根据题意,得-=.解得x=80.经检验,x=80是原方程的解.故原计划的行驶速度为80千米/小时.14. (1)设该药品的原价格是x元/盒,则下调后每盒价格是x元/盒.根据题意,得=+2,解得x=15.经检验,x=15是原方程的解.∴x=15,x=10.故该药品的原价格是15元/盒,则下调后每盒价格是10元/盒. (2)设5,6月份药品价格的月平均增长率是a.根据题意,得10(1+a)2=14.4,解得a1=0.2=20%,a2=-2.2(不合题意,舍去).故5,6月份药品价格的月平均增长率是20%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程典型易错点及典型例题分析
一、错用分式的基本性质
例1化简
错解:原式
分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.
正解:原式
二、错在颠倒运算顺序
例2计算
错解:原式
分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.
正解:原式
三、错在约分
例1 当为何值时,分式有意义?
[错解]原式.
由得.
∴时,分式有意义.
[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.
[正解]由得且.
∴当且,分式有意义.
四、错在以偏概全
例2 为何值时,分式有意义?
[错解]当,得.
∴当,原分式有意义.
[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.
[正解] ,得,
由,得.
∴当且时,原分式有意义.
五、错在计算去分母
例3 计算.
[错解]原式
=.
[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,.
[正解]原式
.
六、错在只考虑分子没有顾及分母
例4 当为何值时,分式的值为零.
[错解]由,得.
∴当或时,原分式的值为零.
[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.
[正解]由由,得.
由,得且.
∴当时,原分式的值为零.
典例分析
类型一:分式及其基本性质
1.当x为任意实数时,下列分式一定有意义的是()
A. B. C. D.
2.若分式的值等于零,则x=_______;
3.求分式的最简公分母。

【变式1】(1)已知分式的值是零,那么x的值是()
A.-1B.0C.1D.±1
(2)当x________时,分式没有意义.
【变式2】下列各式从左到右的变形正确的是()
A.B.C.
D.
类型二:分式的运算技巧
(一) 通分约分
4.化简分式:
【变式1】顺次相加法计算:
【变式2】整体通分法计算:
(二)裂项或拆项或分组运算
5.巧用裂项法
计算:
【变式1】分组通分法
计算:
【变式2】巧用拆项法计算:
类型三:条件分式求值的常用技巧
6.参数法已知,求的值.
【变式1】整体代入法已知,求的值.
【变式2】倒数法:在求代数式的值时,有时出现条件或所求分式不易变形,但当分式的分子、分母颠倒后,变形就非常的容易,这样的问题适合通常采用倒数法.
已知:,求的值.
【变式3】主元法:当已知条件为两个三元一次方程,而所求的分式的分子与分母是齐次式时,通常我们把三元看作两元,即把其中一元看作已知数来表示其它两元,代入分式求出分式的值.
已知:,求的值.类型四:解分式方程的方法
解分式方程的基本思想是去分母,课本介绍了在方程两边同乘以最简公分母的去分母的
方法,现再介绍几种灵活去分母的技巧.
(一)与异分母相关的分式方程
7.解方程=
【变式1】换元法 解方程:
32121---=-x x x (二)与同分母相关的分式方程
8.解方程3
323-+=-x x x 【变式1】解方程87178=----x x x 【变式2】解方程125552=-+-x
x x 类型五:分式(方程)的应用
9.甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?
【变式1】 甲开汽车,乙骑自行车,从相距180千米的A 地同时出发到B .若汽车的速度是自行车的速度的2倍,汽车比自行车早到2小时,那么汽车及自行车的速度各是多少?
【变式2】 A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车原来的速度和乙车的速度.
【主要公式】1.同分母加减法则:()0b c b c a a a a
±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bd a d a c ac
÷=•= 4.同底数幂的加减运算法则:实际是合并同类项
5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n
6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn
7.负指数幂: a -p =1
p a a 0
=1 8.乘法公式与因式分解:平方差与完全平方式
(a+b)(a-b)= a 2- b 2 ;(a ±b)2= a 2±2ab+b 2。

相关文档
最新文档