二次函数求最值方法总结
解题秘诀二次函数最值的4种解法
解题秘诀二次函数最值的4种解法二次函数是高中数学中的一个重要知识点,掌握了解题的秘诀和方法,就可以更好地解决与二次函数相关的各种问题。
本文将介绍四种解法来求解二次函数的最值问题。
一、二次函数的最值根据导数解法要求解二次函数的最值,可以通过求导数的方法来解决。
具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2. 对函数进行求导,得到导函数:f'(x) = 2ax + b。
3.导函数表示了二次函数的斜率,要求函数的最值,就是要求导函数为零点时的x值。
4. 解方程2ax + b = 0,求得x = -b / 2a。
5.将求得的x值代入二次函数,计算得到对应的y值。
6.x和y的值就是二次函数的最值。
二、二次函数的最值根据顶点法解法顶点法也是求解二次函数的最值的一种方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.求出二次函数的顶点坐标,顶点的x值为-x/2a。
3.将求得的x值代入二次函数,计算得到对应的y值。
4.x和y的值就是二次函数的最值。
三、二次函数的最值根据平移法解法平移法是一种通过平移变换求解二次函数最值的方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数表示为顶点形式:f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。
3.根据函数的几何性质,二次函数的最值就是顶点的纵坐标k。
四、二次函数的最值根据因式分解解法因式分解是一种求解二次函数最值的常用方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数进行因式分解:f(x)=a(x-x1)(x-x2),其中x1和x2为二次函数的两个零点。
3.根据函数的几何性质,二次函数的最值为x轴与二次函数的拐点处的纵坐标。
通过以上四种解法,我们可以灵活地解决二次函数的最值问题。
二次函数最值问题解析
二次函数最值问题解析二次函数最值问题是数学中的一个重要概念,通过分析二次函数的图像和相关性质,我们可以求得函数的最大值或最小值,从而解决实际问题。
本文将对二次函数最值问题进行详细解析。
一、二次函数的一般形式二次函数的一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
通过这个一般形式,我们可以得到二次函数的图像特点。
二、二次函数图像的性质1. 对称性:二次函数的图像关于抛物线的对称轴具有对称性,即对于任意x,有f(x) = f(-x)。
2. 开口方向:当a > 0时,二次函数的抛物线开口向上;当a < 0时,二次函数的抛物线开口向下。
3. 最值问题:二次函数的最大值或最小值出现在抛物线的顶点处。
三、二次函数最值的求解方法求解二次函数最值可以通过几种不同的方法。
1. 利用顶点公式:二次函数的顶点公式为x = -b/2a,将此值代入原函数,即可求得最值点的纵坐标。
这种方法适用于一般情况下的二次函数最值问题。
2. 利用完全平方公式:利用完全平方公式,将一般形式的二次函数转化为顶点形式,即y= a(x - h)^2 + k。
其中,(h, k)为顶点坐标,通过对此式的分析可以求得最值点的纵坐标。
这种方法适用于需要更详细分析二次函数图像的情况。
3. 利用导数:对二次函数进行求导,求得导函数并令其等于0,然后求解方程即可得到二次函数的最值点。
这种方法适用于需要更深入研究二次函数性质的情况。
四、实例分析为了更好地理解和应用二次函数最值问题的解法,我们来看一个实际问题的例子。
例:某工厂生产碳酸饮料,每瓶售价为10元。
市场调研显示,当售价为x元时,每天的销量(单位:万瓶)由二次函数y = -2x^2 + 20x + 5表示。
问该工厂能够获得最大利润时,每瓶碳酸饮料的售价和销量分别是多少?解:我们已知二次函数的表达式为y = -2x^2 + 20x + 5,该函数的最值即为该工厂的最大利润对应的售价和销量。
二次函数求最值的三种方法
二次函数求最值的三种方法一、引言在学习高中数学时,我们会学到二次函数,并学习如何求出这个函数的最值。
这是一个非常重要的问题,因为在实际生活中,很多问题都可以用二次函数来描述,例如:投射物的运动轨迹、拱桥的设计等。
为了更好地理解和掌握这一知识点,本文将分析三种常见的方法来解决二次函数求最值的问题。
这些方法包括:1.利用二次函数的顶点公式求最值2.利用二次函数的导数公式求最值3.利用求根公式解二次方程求最值在下文中,我们将详细展开上述三种方法的整体流程并进行详细描述。
二、利用二次函数的顶点公式求最值二次函数的标准形式为:y=ax²+bx+c,其中a、b、c分别代表二次项系数、一次项系数和常数项。
我们可以通过求出顶点来确定二次函数的最值。
我们知道,对于标准二次函数,其顶点坐标为(-b/2a,f(-b/2a))。
使用这一公式,我们可以简单地找到二次函数的最值。
接下来,我们将细致地介绍如何使用顶点公式求二次函数的最值。
1. 将二次函数转换为标准形式。
我们有一个二次函数y=2x²+4x-5,我们可以将其转换为y=2(x²+2x)-5。
2. 现在,我们可以通过分离平方项来找到二次项x²的系数a和一次项x的系数b。
在本例中,二次项系数a为2,一次项系数b为4。
3. 接下来,我们可以使用顶点公式来计算出顶点的坐标。
根据公式,顶点的横坐标为-b/2a,若b为正数,顶点为函数的最小值,反之为最大值。
在本例中,由于一次项系数为正数,因此我们将使用公式-b/2a来计算横坐标。
(a) 横坐标=-b/2a=(-4)/(2*2)=-1(b) 将横坐标代入原函数中,可得纵坐标f(-1)=2*(-1)²+4*(-1)-5=-7(c) 顶点坐标为(-1,-7)。
4. 因其二次项系数为正数,所以这是一个开口向上的抛物线,并且其最小值为-7,在顶点的位置。
答案为f(x)=-7。
三、利用二次函数的导数公式求最值另一种方法是使用二次函数的导数公式来确定最值。
二次函数的最大值最小值怎么求二次函数的顶点坐标公式
一、二次函数最大值最小值求法设函数是y=ax²+bx+c,其中a称为二次项系数,b为一次项系数,c为常数项。
x为自变量,y为因变量。
a>0时开口向上,有最小值,当x=b/2a时,取得最小值为y=(4acb^2)/4a;a<0时开口向下,有最大值,当x=b/2a时,取得最大值为y=(4acb^2)/4a。
二次函数的一般式是y=ax的平方+bx+c,当a大于0时开口向上,函数有最小值;当a小于0时开口向下,则函数有最大值。
而顶点坐标就是(2a分之b,4a分之4acb方),把a、b、c分别代入进去,求得顶点的坐标,4a分之4acb方就是最大值或最小值。
二次函数的基本表示形式为y=ax²+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y 轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。
“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。
“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。
在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。
从函数的定义也可看出二者的差别。
二次函数简介二次函数的基本表示形式为y=ax²+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y 轴的抛物线。
二次函数表达式为y=ax²+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。
如果令y值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。
大约在公元前480年,古巴比伦人和中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数求最值方法总结
若 ,二次函数在 时的函数图像是递减的,则 时, 取最小值;则 时, 取最大值。
2、当 时,它的图象是开口向上的抛物线,数形结合可求得 的最值:
1)当 时, 时, 取最大值: ; 的最小值在 或 处取到。
2)若 ,二次函数在 时的函数图像是单调递减的,则 时, 取最小值;则 时, 取最大值。
若 ,二次函数在 时的函数图像是单调递增的,则 时, 取最小值;则 时, 取最大值。
二、二次函数最值问题常见四种考察题型:
1)对称轴定、 取值范围定;
2)对称轴定、 取值范围动;
3)对称轴动、 取值范围定;
4)对称轴动、 取值范围动。
【例题解析】
例1.当 时,求函数 的最大值和最小值.
分析ቤተ መጻሕፍቲ ባይዱ作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量 的值.
分析:由于 所给的范围随着 的变化而变化,所以需要比较对称轴与其范围的相对位置.
解:函数 的对称轴为 .画出其草图.
(1)当对称轴在所给范围左侧.即 时:当 时, ;
(2)当对称轴在所给范围之间.即 时:
当 时, ;
(3)当对称轴在所给范围右侧.即 时:
当 时, .
综上所述:
【变式训练】
变式2、当 时,求函数 的最小值(其中 为常数).
解:作出函数的图象.当 时, ,当 时, .
【变式训练】
变式1、当 时,求函数 的最大值和最小值.
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量 的值.
二次函数求最值方法总结
二次函数求最值方法总结二次函数是高中数学中一个非常重要的内容,它的研究主要是通过函数的图像和性质来分析。
求二次函数的最值是我们在解决实际问题时经常需要用到的一个重要问题,下面我将对二次函数求最值的几种常用方法进行总结。
一、求二次函数的最值的基本思路:求解二次函数的最大值或最小值,就是要找出二次函数图像上的顶点。
根据二次函数的解析式f(x) = ax^2 + bx + c (a ≠ 0),顶点的横坐标为 x = -b/2a,纵坐标为 f(-b/2a)。
二、二次函数的变形:通过对二次函数的变形,将其转化为标准的完全平方形式,可以更方便地求解最值。
1.完全平方形式:f(x)=a(x-h)^2+k2.平移变形:f(x)=a(x-h)^2+k+c三、利用函数图像特征求解最值:1.如果a>0,则二次函数的图像开口向上,顶点为最小值;如果a<0,则二次函数的图像开口向下,顶点为最大值。
2.如果函数的常数项c>0,则函数的最小值为c;如果函数的常数项c<0,则函数的最大值为c。
四、利用导数的方法求解最值:1. 求二次函数的一阶导数 f'(x) = 2ax + b,并令其为零,求出顶点的横坐标 x = -b/2a。
2.将顶点的横坐标代入二次函数的解析式,求出纵坐标f(-b/2a)即可得到顶点的坐标。
五、利用求根公式求解最值:求根公式是指二次函数求根的公式,即二次函数的解为 x = (-b ± √(b^2 - 4ac))/(2a)。
1. 如果二次函数的判别式Δ = b^2 - 4ac < 0,则二次函数没有实数解,从而也没有最值。
2. 如果二次函数的判别式Δ = b^2 - 4ac > 0,则二次函数有两个实数解 x1 和 x2,取其中更接近顶点的一侧的解作为最值。
3. 如果二次函数的判别式Δ = b^2 - 4ac = 0,则二次函数有且只有一个实数解 x = -b/2a,此时该解即为最值。
二次函数的最值问题
二次函数的最值问题二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0,x为自变量。
二次函数图像是一条开口朝上或朝下的抛物线,而最值问题则是指在给定范围内,函数取得的最大值或最小值。
一、二次函数的最值问题二次函数的最值问题是数学中常见的问题之一,解决这类问题的关键是找到函数的顶点。
顶点即是抛物线的极值点,对于开口朝上的抛物线,顶点表示最小值;对于开口朝下的抛物线,顶点表示最大值。
二、求解二次函数的最值步骤求解二次函数的最值问题可按以下步骤进行:1. 确定二次函数的开口方向,即判断二次系数a的正负。
2. 利用求导的方法,求得二次函数的导函数。
3. 将导函数等于零并解方程,得到函数的顶点。
4. 求得函数的顶点后,判断是最小值还是最大值。
举例说明:以二次函数f(x) = 2x^2 - 4x + 3为例,来演示求解最值的过程。
1. 开口方向的判断:由于二次系数a为正数,故函数的开口朝上,顶点表示最小值。
2. 求导:首先对函数进行求导,得到导函数f'(x) = 4x - 4。
3. 求解顶点:令导函数f'(x)等于零,并解方程得到x = 1。
4. 判断最值:将x = 1代入原始函数f(x)中,得到f(1) = 2(1)^2 - 4(1) + 3 = 1。
因此,函数f(x)的最小值为1,当x = 1时取得。
通过以上步骤,我们可以求解二次函数的最值问题。
然而,在实际问题中,最值问题往往还涉及到函数的定义域和范围等约束条件。
因此,在解决最值问题时,需要充分考虑这些条件,以确保结果的准确性和合理性。
总结:二次函数的最值问题是数学中常见而重要的问题。
通过分析二次函数的开口方向,并利用导数等工具求解顶点,我们能够准确地确定函数的最大值或最小值。
然而,在实际问题中,我们还需要注意约束条件的考虑,以确保最终结果的可行性。
只有在深入理解二次函数的特性和运用相应的求解方法时,才能更好地解决二次函数的最值问题。
二次函数最值模型总结
二次函数最值模型总结二次函数是数学中一种基本的函数形式,其形式为f(x) = ax^2 +bx + c,其中a、b、c为常数,且a ≠ 0。
二次函数有着许多重要的特点和性质,其中一个重要的应用就是最值模型。
最值模型能够帮助我们求解二次函数的最值问题,如最大值、最小值等。
在这篇文章中,我将对二次函数最值模型进行总结,以帮助读者更好地理解和应用这一概念。
首先,我们先回顾一下二次函数的一般形式f(x) = ax^2 + bx + c。
其中a决定了二次函数的开口方向,a>0时开口向上,a<0时开口向下;b和c则决定了二次函数在坐标系中的位置。
为了简化分析,我们通常假设a>0。
在最值模型中,我们通常要求解二次函数的最大值和最小值。
最大值对应二次函数的开口向下的情况,最小值对应二次函数的开口向上的情况。
接下来,我们将分别讨论这两种情况下的最值模型。
首先,考虑开口向下的情况,即a<0。
对于这种情况,我们可以通过求导数来找到二次函数的最大值。
一般来说,设f(x) = ax^2 + bx + c,其中a<0,我们可以先求导数f'(x) = 2ax + b。
接着,我们令f'(x) = 0,解得x = -b / (2a)。
将x带入原本的函数f(x)中,我们可以找到对应的最大值。
需要注意的是,由于二次函数是一个抛物线,所以在开口向下的情况下,最大值一定存在。
这是因为当x趋向于正无穷或负无穷时,二次函数的值趋向于负无穷,而当x = -b / (2a)时,二次函数的值最大。
接下来,我们来看开口向上的情况,即a>0。
对于这种情况,我们无法直接通过求导数来找到最小值。
不过,我们可以通过另一种方法来求解,即利用二次函数的顶点。
二次函数f(x) = ax^2 + bx + c的顶点坐标可以通过公式(-b / (2a), f(-b / (2a)))求得。
那么,最小值就是最顶点的纵坐标。
二次函数最值求解方法
二次函数最值求解方法在数学中,“二次函数”是常见的一个重要概念,其形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
这里的x为自变量,y为因变量,而f(x)则表示y,也就是函数的输出值。
二次函数是一类非常特殊的函数,它在数学和物理等领域中都有着重要的应用。
求解二次函数在一定区间内的最值,可以帮助我们更好地理解和应用它们。
确定二次函数的开口方向在求解二次函数最值的过程中,第一步通常是要明确函数的开口方向。
对于一般形式的二次函数,如果a > 0,则函数的开口朝上;如果a < 0,则函数的开口朝下。
因此,在求解最值时,我们需要先判断二次函数的开口方向,以便选择正确的求解方法。
求解二次函数最值的方法一:配方法配方法也叫作配方法消元法,是一种传统的求解二次函数最值的方法。
其基本思想是通过配方,将原函数变形为完全平方的形式,从而求出最值。
具体的步骤如下:1. 将二次项系数与自变量平方项相乘,将一次项系数乘以2,将常数项加上一个适当的数,使得方程左侧变为二次项的完全平方,即a(x + b)^2 + c2. 化简相加的三项到二项,化简完毕后即可得到二次函数的顶点坐标和最值。
这种方法简单易行,但适用范围有限。
在解Quadratic Equation时,如果存在两个根,该方法无法得到所有的根。
且在教育教学中呈现该种方法的时候,常常翻译为印度配方法,实际是中国学者张丘建在《算经》中载有配方法名为陇头法,舒勒(Euler)又称之为“中和术”。
求解二次函数最值的方法二:导数法在高中数学中,一般利用导数来求解二次函数最值。
具体的实现过程如下:1. 求出二次函数的导数f'(x) = 2ax + b,其中a、b、c为常数。
2. 令f'(x) = 0,解出x,即为二次函数的极值点。
3. 比较极值点和区间端点f(a)、f(b)的大小,最终确定最值所在的位置。
通过对导数的求解,我们可以比较轻松地求出函数的极值点。
二次函数求最值方法总结
二次函数求最值方法总结二次函数是高中数学中一个非常重要的概念,它的图像非常常见且有着广泛的应用。
对于一个二次函数,我们常常需要求解其最值,即求出函数的最大值或最小值点。
在解决这类问题时,我们可以采用以下几种方法。
一、图像法图像法是最直观也是最常用的求解二次函数最值的方法之一、我们可以通过观察二次函数的图像来判断最值的位置。
1. 对于一般形式的二次函数$y=ax^2+bx+c$,若$a>0$,则抛物线开口朝上,最值为最小值;若$a<0$,则抛物线开口朝下,最值为最大值。
因此,我们只需判断二次函数的a值的正负即可。
2. 另外,对于一般形式的二次函数$y=ax^2+bx+c$,我们可以求出它的顶点坐标。
二次函数的顶点坐标为$(x,y)$,其中$x=-\frac{b}{2a}$,$y=f(x)=f\left(-\frac{b}{2a}\right)=c-\frac{b^2}{4a}$。
当x为顶点时,y为函数的最值。
二、完全平方式完全平方式是通过将二次函数进行平方式来求解最值。
这个方法主要基于二次函数的完全平方式。
1. 对于一般形式的二次函数$y=ax^2+bx+c$,我们可以通过完全平方方式将其转化为$y=a(x-h)^2+k$的形式。
其中,h为$x=-\frac{b}{2a}$时的x值,k为$f(-\frac{b}{2a})$的值。
此时,最值点为$(h,k)$。
2. 对于二次函数的完全平方法,我们可以用符合二次差法,即$(p+q)^2=p^2+2pq+q^2$(p、q为实数)来得到完全平方式的表达式。
具体步骤如下:a. 首先,将二次函数转化为$y=ax^2+bx$的形式。
即去掉常数项,将$c$设为0。
b. 将二次函数中的二次项系数和一次项系数进行平均分解,得到$a(x+\frac{b}{2a})^2-\frac{b^2}{4a}$。
c. 进一步化简,得到$a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$。
二次函数求最大值和最小值公式
二次函数求最大值和最小值公式二次函数可谓是数学中一道亮丽的风景线,它的形状就像一个微笑的弧线,真是让人忍不住想要靠近。
说到二次函数,大家肯定会想到它的标准形式:(y = ax^2 + bx + c)。
这里的(a)、(b)、(c)可不是随便哪个数字,它们各有各的职责。
(a)的正负直接决定了这个函数是朝上开口,还是朝下开口,嘿,要是开口向上,那就代表着有最小值,反之,则是最大值。
简直就像人生中的起伏,时而高歌猛进,时而低沉无奈,谁知道呢!如果你想要找出二次函数的最大值或最小值,咱们得先搞清楚一个关键点,那就是顶点的坐标。
听起来很高大上,但其实就是一个简单的公式。
顶点的横坐标(x)可以通过公式(frac{b{2a)来算出来。
是不是很神奇?就像魔法一样!而得到顶点的纵坐标(y),只需要把这个(x)的值代入原方程,简单粗暴又有效率。
这时候,运气好的话,你可能就会发现,哇,原来我的最大值或最小值就在这儿等着我,简直是惊喜连连!大家可能会问,哎,那究竟怎么判断最大值和最小值呢?咱们可以通过看看(a)的符号来决定。
如果(a)大于零,那顶点就是最小值,听着是不是感觉有点像寻找人生的目标?而如果(a)小于零,嘿,那顶点就是最大的高峰了!这就像生活中的大起大落,让人又爱又恨。
记得有次我看到一位朋友,满脸愁苦地说他的成绩像过山车一样,时高时低。
说到这,我就想起了二次函数,真是应验了生活的哲理。
想象一下,咱们站在一个无边无际的草原上,远处有一座小山丘,山顶就是二次函数的顶点。
为了找到最高或最低的点,我们必须先了解这座山的“主人”——系数(a)的个性。
如果它温柔可人,那就是让我们安心的最低点;如果它桀骜不驯,那我们就得小心它的最高点可能在何方。
人生不也如此吗?我们总是在寻找那个“山顶”,只不过是经历了一番波折。
咱们在计算的时候,不要着急,慢慢来。
每一步都要走稳,记得保持耐心,尤其是在代入公式的时候。
计算时就像是在烹饪一道美食,调料得恰到好处,才能做出美味的佳肴。
二次函数中最值点的求解方法和性质
二次函数中最值点的求解方法和性质二次函数是关于自变量的二次多项式函数,通常以y=f(x)的形式表示,其中f(x) = ax^2 + bx + c,其中a、b、c是实数且a ≠ 0。
在二次函数的图像中,最值点是最高点或最低点,它在函数图像上是一个特殊的点,具有重要的数学性质。
本文将介绍二次函数中最值点的求解方法和性质。
一、求解最值点的方法1. 完成平方法通过将二次函数写成完全平方式,可以方便地求解最值点。
以下是具体步骤:步骤一:将二次函数写成完全平方式,即将二次项和一次项的系数进行平方和配方,可以得到f(x) = a(x - h)^2 + k的形式。
步骤二:通过完成平方式,可以得到最值点的横坐标h和纵坐标k。
其中,横坐标h即为最值点的横坐标,纵坐标k即为最值点的纵坐标。
2. 利用对称性二次函数的图像具有对称性,即最值点与抛物线的对称轴上的另一个点关于对称轴对称。
因此,我们可以通过对称性求解最值点,具体步骤如下所示:步骤一:计算二次函数图像的对称轴的横坐标,对称轴的公式为x= -b/2a。
步骤二:将对称轴的横坐标带入二次函数,可以得到最值点的纵坐标。
二、最值点的性质1. 最值点的坐标对于二次函数y = ax^2 + bx + c,其最值点的坐标为(-b/2a, f(-b/2a))。
其中,横坐标为最值点的横坐标,纵坐标f(-b/2a)为最值点的纵坐标。
2. 最值点的性质- 当a > 0时,抛物线开口向上,最值点为最低点,函数的最小值即为最值点的纵坐标。
- 当a < 0时,抛物线开口向下,最值点为最高点,函数的最大值即为最值点的纵坐标。
三、实例分析例如,考虑二次函数y = 2x^2 - 4x + 3。
我们可以通过求解最值点的方法来确定该二次函数的最值点和性质。
通过完成平方法,将二次函数写成完全平方式,有y = 2(x^2 - 2x + 1) + 1= 2(x - 1)^2 + 1通过比较可以得到,最值点的横坐标为1,纵坐标为1。
二次函数最值问题及其解决方法
二次函数最值问题是指在二次函数的曲线上,找出曲线的最大值或最小值。
一般来说,二次函数的曲线具有一个最高点或最低点,其最值是曲线上的极值,它与曲线的拐点有关。
解决二次函数最值问题的方法有以下几种:
(1)求导法。
这是解决二次函数最值问题的最常用方法。
二次函数的最值可以通过求其一阶导数的根来求解。
如果一阶导数的根不存在,则表明曲线没有极值;如果一阶导数的根存在,则表明曲线有极值,在此点处求出二次函数的值,即可得出该曲线的最值处。
(2)图像法。
这是一种比较直观的方法,可以通过绘制出曲线的图像,从中找出曲线的极值处,从而解决二次函数最值问题。
(3)坐标变换法。
如果曲线图中有极值,可以通过把二次函数转换成新的函数,再从新函数中找出极值点,从而解决二次函数最值问题。
(4)数值计算法。
通过计算曲线上一系列点的函数值,然后比较这些点的函数值大小。
初中二次函数最值问题解题技巧
初中二次函数最值问题解题技巧
1. 嘿,你知道吗?配方法可是二次函数最值问题的一大绝招啊!就像给函数穿上合适的衣服,一下子就变得精神了。
比如说对于函数y=x²+2x-3,咱就可以配方成y=(x+1)²-4,这样最值不就一目了然啦!
2. 哇塞,还有公式法呢!这可是超级厉害的工具哟!就如同有了一把万能钥匙。
像求二次函数y=2x²-4x+1 的最值,直接代入公式,不就轻松搞定啦!
3. 嘿呀,判别式法也不能小瞧呀!它就像是一个侦探,能帮我们找出很多线索呢。
比如已知一个二次函数与某个条件的关系,用判别式说不定就能找到最值啦!
4. 哎呀呀,图像法可是直观得很呐!简直就是把二次函数展现在你眼前。
像看二次函数 y=-x²+2x+3 的图像,最高点不就是最大值嘛,多清楚呀!
5. 哇哦,构造法也很奇妙哟!就好似搭建一个独特的模型。
比如根据已知条件构造一个新的二次函数来求最值,是不是很有意思呀?
6. 嘿,别忘了还有变量替换法呢!这就像给函数变个小魔术,巧妙得很呐。
假设一个变量来替换某个式子,然后求最值,噫,真神奇!
7. 哈哈,对称性质法也是很有用的呀!相当于找到了函数的一个秘密通道。
知道二次函数的对称轴,那最值还远吗?
8. 哟呵,参数法也可以试试呀!就好像加入了一个特别的元素。
通过参数来求解最值,那感觉超棒的!
9. 总之呢,这么多的解题技巧,可得好好掌握呀!它们都是我们解决二次函数最值问题的有力武器,可别小瞧它们哦!用对了技巧,这些难题都不叫事儿!。
二次函数的最值与拐点
二次函数的最值与拐点二次函数是数学中的重要概念之一,在各个领域中都有广泛的应用。
了解二次函数的最值与拐点对于解决实际问题和理解函数图像都是非常有帮助的。
本文将介绍二次函数的最值与拐点的概念、求解方法以及其应用。
一、二次函数的最值二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
最值是指函数在定义域内取得的最大值或最小值。
对于二次函数来说,最值可以通过以下两种方法求解:1. 利用顶点坐标求解最值:二次函数的顶点坐标可以通过求导得到。
对二次函数f(x)求导后,令导数等于零,得到顶点的横坐标x0。
将x0代入原函数f(x)中,得到顶点的纵坐标y0。
因此,此二次函数的最值为顶点的纵坐标y0。
2. 利用对称性求解最值:由于二次函数是一个抛物线,它的图像具有轴对称性。
即,二次函数的最值一定出现在抛物线的对称轴上。
对称轴的横坐标可以通过 x = -b/(2a) 来求解,将此横坐标代入原函数f(x),即可得到最值。
二、二次函数的拐点拐点是指函数图像在某一点上由凸向上变为凹向上,或者由凹向上变为凸向上的点。
对于二次函数来说,拐点的存在与二次项系数a有关。
若a > 0,二次函数图像开口朝上,则拐点为最小值点;若a < 0,二次函数图像开口朝下,则拐点为最大值点。
拐点的求解可以通过以下方法进行:1. 利用导数求解拐点:对二次函数f(x)求导后,再次求导。
当二次导数等于零时,其对应的横坐标即为拐点的位置。
将此横坐标代入原函数f(x)中,即可得到拐点的纵坐标。
2. 利用二次项系数a的正负求解拐点:通过判断二次项系数a的正负,即可确定拐点的位置。
当a > 0时,拐点为最小值点;当a < 0时,拐点为最大值点。
将对应的横坐标代入原函数f(x)中,即可得到拐点的纵坐标。
三、二次函数最值与拐点的应用1. 最优化问题:二次函数的最值可以用来解决一些最优化问题,例如在有限制条件的情况下,求解某一物体的最大或最小值。
二次函数求最值的方法
二次函数求最值的方法二次函数是一种具有形如f(x)=ax²+bx+c的函数,其中a、b、c是实数且a≠0。
二次函数图像呈现出抛物线的形状,我们可以利用二次函数的性质来求解其最值。
首先,我们可以将二次函数转化为标准形式或顶点形式。
标准形式表示为f(x)=a(x-h)²+k,其中(h,k)为抛物线的顶点坐标。
顶点形式表示为f(x)=a(x-p)(x-q),其中p和q为抛物线的两个x坐标。
通过观察函数的系数a的正负可以大致判断函数的开口方向。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
以标准形式为例,下面介绍二次函数求最值的方法:方法一:利用抛物线的对称性由于抛物线具有轴对称性,即抛物线关于顶点对称。
如果我们求出了抛物线的顶点坐标,那么最值对应的x值就是顶点的横坐标,最值的y值就是顶点的纵坐标。
求顶点坐标的方法如下:1. 将二次函数转化成顶点形式,并确定顶点的x坐标;2. 将顶点的x值代入二次函数中求出对应的y值。
例如,对于函数f(x)=2x²-4x+3,可以将其转化为顶点形式:f(x)=2(x-1)²+1。
因此,顶点的x坐标为1。
将x=1代入二次函数中,可以求得对应的y值:f(1)=2(1-1)²+3=3。
所以,对于函数f(x)=2x²-4x+3,其顶点坐标为(1,3)。
其中,最值的x值为1,对应的最值y值为3。
方法二:利用二次函数的对称轴二次函数的对称轴是过顶点的一条线,可以利用对称轴求最值。
对于标准形式的函数f(x)=a(x-h)²+k,它的对称轴的方程为x=h。
例如,对于函数f(x)=2x²-4x+3,可以直接观察到二次函数的对称轴方程为x=1。
我们可以代入对称轴的x值,计算得到对应的y值:f(1)=2(1)²-4(1)+3=1。
所以,对于函数f(x)=2x²-4x+3,其对称轴方程为x=1。
如何轻松找出一个二次函数的最大值或最小值
如何轻松找出一个二次函数的最大值或最小值抛物线顶点的纵坐标值(一般用k表示),是该二次函数的最大值或最小值。
我们学下怎么找它的值吧!步骤方法 1y = ax2 + bx + c 形式•1 确定你要找的是最大值还是最小值。
只能找其中一个,不能同时找俩。
二次函数的最值出现在顶点。
对于y = ax2 + bx + c, (c - b2/4a)就是顶点的函数值了。
a是正的情况:我们得到最小值,因为抛物线开口向上。
(顶点就是最低点了) a 是负的情况:我们得到最大值,因为抛物线开口向下(顶点就是最高点了。
)a的值如果是0,则就不是二次函数,不是我们的讨论范围。
1 确定你要找的是最大值还是最小值。
只能找其中一个,不能同时找俩。
二次函数的最值出现在顶点。
对于y = ax2 + bx + c, (c - b2/4a)就是顶点的函数值了。
a是正的情况:我们得到最小值,因为抛物线开口向上。
(顶点就是最低点了)a 是负的情况:我们得到最大值,因为抛物线开口向下(顶点就是最高点了。
) a的值如果是0,则就不是二次函数,不是我们的讨论范围。
方法 2y = a(x-h)2 + k 形式1 对于y = a(x-h)2 + k ,k就是顶点的函数最值。
k 是二次函数的最大值或最小值,根据 a的正负有所变化。
方法 3例子1找出这个函数的最大或最小值: f(x) = x2 + x + 12找出这个函数的最大或最小值: f(x) = -2(x-1)2 + 3小提示•抛物线的对称轴为x = h•-h 是取得最值时的自变量值。
.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、当0<a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值:
1) 当n a b m ≤-≤2时,a
b x 2-=时,y 取最大值:a b a
c y 442max -=;y 的最小值在m x =或n x =处取到。
2) 若m a
b <-2,二次函数在n x m ≤≤时的函数图像是单调递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。
若n a
b >-2,二次函数在n x m ≤≤时的函数图像是单调递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。
二、二次函数最值问题常见四种考察题型:
1) 对称轴定、x 取值范围定;
2) 对称轴定、x 取值范围动;
3) 对称轴动、x 取值范围定;
4) 对称轴动、x 取值范围动。
【例题解析】
例1.当42≤≤x 时,求函数122+-=x x y 的最大值和最小值.
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.
解:作出函数的图象.当2=x 时,1min =y ,当4=x 时,9max =y .
【变式训练】
变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值.
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.
解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y .
【例题解析】
例2、当1t x t ≤≤+时,求函数21522
y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522
y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时:
当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:
当1x =时,2min 1511322
y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:
当1x t =+时,22min 151(1)(1)3222y t t t =
+-+-=-.。