酶的非水相催化
酶的非水相催化
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 位置特异性 化学选择性 热稳定性
底物特异性: 底物特异性:是指酶具有区分两个结构相 似的不同底物的能力。 似的不同底物的能力。它取决于底物疏 水性能的差异。 水性能的差异。
底物的种类和浓度
有机溶剂的种类
水含量
温度
pH
离子强度
化学选择性: 化学选择性:酶选择性地催化底物分子 中不同功能基团中某个基团的反应的特 性。
热稳定性:分为两种情况, 热稳定性:分为两种情况,一种是酶处 于高温中, 于高温中,随着时间延长逐步发生的不 可逆的失去活性;另一种是由热诱导产 可逆的失去活性; 生的酶分子整体伸展失活, 生的酶分子整体伸展失活,这种通常是 瞬间的、可逆的失活。 瞬间的、可逆的失活。
本章 目录
6.4 有机介质中酶催化反应的条件及 其控制
酶在有机介质中可以催化多种反应,主要包括:合成反应、转 移反应、醇解反应、氨解反应、异构反应、氧化还原反应、裂 合反应等。 主要应控制的条件有
酶的种类和浓度 底物的种 本章 目录
酶的种类和浓度
在有机介质中进行的酶促反应,可以省略产物的萃取分离过程 提高收率。 在有机介质中进行的酶促反应,可以省略产物的萃取分离过程, 提高收率。
某些酶在有机介质与水溶液中的热稳定性
酶 猪胰脂肪酶 酵母脂肪酶 脂蛋白脂肪酶 胰凝乳蛋白酶 枯草杆菌蛋白酶 核糖核酸酶 酸性磷酸酶 腺苷三磷酸酶 ( F1-ATPase) 限制性核酸内切酶 (Hind Ⅲ) β-葡萄糖苷酶 溶菌酶 介质条件 三丁酸甘油酯 水, pH7.0 三丁酸甘油酯/庚醇 水,pH7.0 甲苯,90℃,400 h 正辛烷,100℃ 水,pH 8.0, 55℃ 正辛烷,110℃ 壬烷,110℃,6 h 水,pH 8.0, 90℃ 正十六烷,80℃ 水,70℃ 甲苯,70℃ 水, 60℃ 正庚烷,55℃,30d 2-丙醇,50℃,30 h 环己烷,110℃ 水90℃ 热稳定性 T1/2 < 26 h T1/2 < 2 min T1/2 =1.5 h T1/2 < 2 min 活力剩余40% T1/2 = 80 min T1/2 = 15 min T1/2 = 80 min 活力剩余95% T1/2 < 10 min T1/2 = 8 min T1/2 = 1 min T1/2 > 24 h T1/2 < 10 min 活力不降低 活力剩余80% T1/2 =140 min T1/2 = 10 min
第七讲 酶的非水相催化
酶的非水相催化
7.1、酶催化反应的介质 7.2、有机介质反应体系 7.3、有机介质反应体系影响因素 7.4、酶在有机介质中的催化特性
7.5、有机介质中酶催化反应的条件及其控制
7.6、酶非水相催化的应用
7.1 酶催化反应的介质
水是酶促反应最常用的反应介质!
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。 因为许多有机化合物(底物)在水介质中难溶或不溶。
3、非极性有机溶剂—水两相/多相体系
由含有溶解酶的水相和一个非极性的有机溶剂(高 脂溶性)相所组成的两相体系。游离酶、亲水性底 物或产物溶解于水相,疏水性底物或产物溶解于有 机相。 如果采用固定化酶,则以悬浮形式存在于两相的界 面,催化反应通常在两相的界面进行。 一般适用于底物或者产物两者或其中一种属于疏水 性化合物的催化反应。
第七讲 酶的非水相催化
ห้องสมุดไป่ตู้学目标:
了解非水相中酶催化研究概况和反胶束体系的酶学研究情况 理解酶在有机介质中催化的反应的具体应用 掌握酶在有机介质中的催化特性
教学重点:
酶非水相中酶催化的影响因素、催化特性以及应用
教学难点:
有机介质中水和有机溶剂对酶催化反应的影响
酶非水相催化的名词解释
酶非水相催化的名词解释酶非水相催化是一种特殊的生物化学反应过程,其特点是在无水环境中,通过酶作用催化生物分子的转化。
在酶非水相催化中,不同于传统的酶催化过程,水分子并不直接参与反应,而是由其他非水相溶剂来替代。
这种非水相催化的特性赋予了酶非常高的催化活性和选择性。
酶非水相催化的概念源于生物体内一些特殊的蛋白质,即金属蛋白和脱水酶。
这些蛋白质具有能够在缺水环境下活跃的特性。
在生物体内,金属离子可以起到酶的活性中心的作用,而脱水酶则可以在非常干燥的环境下,通过形成氢键网络来稳定酶的结构,并促进催化反应的进行。
酶非水相催化的研究对于认识生物体内酶催化反应的本质以及开发新型催化剂具有重要的意义。
通过研究酶非水相催化过程,科学家们可以揭示酶活性中心的结构和功能,以及介观生物学的规律。
此外,酶非水相催化还可以为合成有机化合物提供新思路和新方法,通过模拟生物体内的催化反应,可以设计和合成出高效、高选择性的催化剂。
在研究酶非水相催化的过程中,科学家们不仅仅关注酶本身,还对非水相溶剂的选择和影响进行了深入研究。
非水相溶剂可以影响酶非水相催化的活性和选择性,不同的溶剂性质会对酶的构象和催化效果产生直接的影响。
同时,科学家们还研究了不同非水相催化体系之间的相互作用,以及非水相溶剂的理论模拟和定量描述。
酶非水相催化的应用范围非常广泛。
在传统的酶催化反应中,水分子的存在常常会引起反应的副反应,限制了反应的效率和产率。
而在非水相催化反应中,由于水分子的排除,反应体系更为干燥,酶的活性得到了有效提升。
酶非水相催化可以应用于生物医学、制药、有机合成等领域,用于合成生物活性物质、开发新药物和催化有机反应等。
总结起来,酶非水相催化是一种在无水环境中利用酶催化生物分子转化的特殊过程。
通过研究酶非水相催化,我们可以认识酶的活性中心结构和功能,揭示生物催化的规律,为合成有机化合物提供新的思路和方法。
此外,酶非水相催化还有广泛的应用前景,可以应用于医学、制药和有机合成等领域。
酶的非水相催化考研考点总结
酶的非水相催化考研考点总结●水相酶反应的限制●仅限于水溶性底物●大部分有机物在水中溶解性差●水会引发副反应或造成产物分解●不利于反应平衡向产物推进●产物回收困难●非水相催化的优势●增加非极性底物的溶解度●使某些原本在水相不能进行的反应顺利进行,如肽的合成、酯的合成等●可减少在水相容易发生的副反应,如酸酐的水解、卤化物的水解等●容易分离回收●无微生物污染●相关问题●非水相并不代表完全无水,完全无水的情况下酶是无活性的●极性较强的溶剂可能剥离掉酶分子中必须的水,导致酶失活;而疏水性溶剂对水的溶解能力较低●在无水溶剂中,酶蛋白分子的刚性增加,空间构象较难发生改变●非水相催化的类型●有机介质中的酶催化●气相介质中的酶催化●超临界流体介质中的酶催化●离子液介质中的酶催化由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类●非水相催化的体系●与水不溶性有机溶剂组成的两相或多相体系●(正)胶束体系●反胶束体系●与水溶性有机溶剂组成的均一体●微水介质体系●酶非水相催化的影响因素●水●水对酶分子构象的影响酶分子需要一层水化层,以维持其完整的空间构象●水对酶催化反应速度的影响●水活度在有机介质体系中,酶的催化活性随着结合水量的增加而提高●有机溶液●有机溶剂对酶结构与功能的影响在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂者除外)不能直接溶解,而是悬浮在溶剂中进行催化反应●有机溶剂对酶分子表面结构的影响●有机溶剂对酶活性中心结合位点的影响溶剂有可能渗入到酶分子的活性中心,与底物竞争活性中心的结合位点●有机溶剂对酶活性的影响有机溶剂的极性越强,越容易夺取酶分子结合水●有机溶剂对底物和产物分配的影响●酶的催化特性●底物专一性可能受影响●对映体选择性●区域选择性酶能够选择底物分子中某一区域的基团优先进行反应●健选择性●热稳定性更好●pH值特性:pH记忆●非水相催化条件的控制●水含量●酶的选择●底物的选择和浓度控制●有机溶剂的选择●温度控制。
第八章酶的非水相催化ppt课件
– 近年来,人们对非水介质中的酶结构与功能、酶作用 机制、酶作用动力学等进行了大量研究,建立起非水 酶学(non-aqueous enzymology)。
– 同时人们还对酶催化的介质进行了大量研究,开发出 各种非水介质和新的酶促反应体系,发展出了介质工 程(medium engineering),拓宽了酶催化反应的应 用范围,使酶法合成逐步发展成为与化学法合成相互 补充的合成方法。
– 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一 篇关于酶在有机介质中催化条件和特点的文章,他们 指出,只要条件适合,酶可以在非水体系中表现出活 性,并催化天然或非天然的底物发生转化,这一报道 引起了全球科学界的关注
• 引起全球关注的“非水相酶催化”的报道
– Porcine pancreatic lipase catalyzes the trans-esterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet counterpart, the dry enzyme does not react with bulky tertiary alcohols.
第七章_酶的非水相催化
Enzymatic catalysis in Non-aqueous system
拒接翻版
Go Go Go Go Go
1、酶非水相催化的主要内容 2、有机介质中水和有机溶剂对催化反应的 影响 3、酶在有机介质中的催化特性 4、有机介质中酶催化反应的条件及其控制 5、酶非水相催化的应用
非水酶学的研究主要内容
第一,非水酶学基本理论的研究,影响酶催 化的主要因素以及非水介质中酶学性质; 第二,阐明非水介质中酶的催化机制,建立 和完善非水酶学的基本理论; 第三:应用
一、非水介质中酶的结构与性质
(一) 非水介质中酶的状态 存在状态有多种形.主要分为两大类 第一类为固态酶 它包括冷冻干燥的酶粉或固定化酶,它们以固 固态酶, 固态酶
(二)非水介质中的酶学性质
有机溶剂的存在,改变了疏水相互作用的精 细平衡,从而影响到酶的结合部位,有机溶 剂也会改变底物存在状态。因此酶和底物相 结合的自由能就会受到影响,而这些至少会 部分地影响到有机溶剂中酶的底物特异性、 立体选择性、区域选择性和化学键选择性等 酶学性质。
第二节:水对非水相介质中酶催化的影 响
第一节: 第一节:酶催化水相的主要内容
酶在非水介质中,酶存在状态与酶结构发生改变。 用于酶催化的非水介质包括 非水介质包括
有机溶剂体系
• • • • ①含微量水的有机溶剂单相体系; ②与水混溶的有机溶剂和水形成的单相体系; ③水与有机溶剂形成的两相或多相体系: ④胶束与反胶束体系;
超临界流体 气相 低共熔混合体系 又称为非常规介质。
体形式存在有机溶剂中。还有利用结晶酶进行非水介质中催化反应和酶 结构的研究,结晶酶的结构更接近于水溶液中酶的结构,它的催化效率 也远高于其他类型的固态酶。
非水相中酶催化技术
非水相:在非水相环境中进行酶催化反应,提高反应速 率和选择性
应用前景:非水相中酶催化技术在生物燃料生产中具有 广阔的应用前景,有助于实现绿色、可持续的能源生产。
非水相中酶催化技术在环境保护中的应用
生物降解:利用酶催 化技术降解有机污染 物,减少环境污染
3
4
酶的生物合成:通过生物合成技术, 将酶的基因引入微生物中,实现酶
的工业化生产。
酶的生物催化反应:利用酶的生物 催化特性,实现化学反应的绿色化
和高效化。
谢谢
酶催化反应具有高度专一性,即一种酶只能催化 一种或一类底物。
酶催化反应具有高效性,即酶催化反应的速度比 非酶催化反应快得多。
非水相中酶催化反应的条件
01
非水相介质:如有机
溶剂、离子液体等
02
酶的稳定性:在非水
相中保持活性和稳定
性
03
底物浓度:底物浓度
对反应速率有影响
04
温度和pH值:反应温
度和pH值对反应速率
和产物选择性有影响
非水相中酶催化反应的影响因素
01
酶的性质:酶的活性、 稳定性和选择性
02
底物浓度:底物浓度 对酶催化反应的影响
03
反应条件:温度、pH 值、离子强度等对酶催 化反应的影响
04
非水相溶剂:溶剂的性 质、极性、粘度等对酶 催化反应的影响
非水相中酶催化 技术的应用
非水相中酶催化技术在生物制药中的应用
机遇:非水相
3 中酶催化技术 在生物医药领 域的应用
机遇:非水相
4 中酶催化技术 在环境保护领 域的应用
非水相中酶催化技术的未来发展方向
酶的非水相催化
离子液介质中的酶催化
酶在离子液中进行的催化作用。离子液(ionic liquids)是由有机
阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,
挥发性低、稳定性好。酶在离子液中的催化作用具有良好的稳定性和区
域选择性、立体选择性、键选择性等显著特点。
本章
目录
6.2 有机介质反应体系
非极性有机溶剂酶悬浮体系(微水介质体系) 用非极性有机溶剂取代所有的大量水,使固体酶悬浮在有机相中。但
反应体系中水对酶催化反应的影响
酶都溶于水,只有在一定量的水存在的条件下,酶分子才能进行 催化反应。所以酶在有机介质中进行催化反应时,水是不可缺少 的成分之一。有机介质中的水含量多少对酶的空间构象、酶的催 化活性、酶的稳定性、酶的催化反应速度等都有密切关系,水还 与酶催化作用的底物和反应产物的溶解度有关。
本章 目录
6.3 酶在有机介质中的催化特性
酶在有机介质中起催化作用时,由于有机溶剂的极性与水有很大差 别,对酶的表面结构、活性中心的结合部位和底物性质都会产生一定的 影响,从而显示出与水相介质中不同的催化特性
底物特异性 立体选择性 区域选择性 键选择性 热稳定性
有机介质酶催化反应的优点
是否存在非水介质能保证酶催化??
1984年,克利巴诺夫(Klibanov)等人在有机介质中进行了酶催化反 应的研究,他们成功地在利用酶有机介质中的催化作用,获得酯类、肽 类、手性醇等多种有机化合物,明确指出酶可以在水与有机溶剂的互溶 体系中进行催化反应。
酶非水相催化的几种类型
有机介质中的酶催化 有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催 化反应。适用于底物、产物两者或其中之一为疏水性物质的酶催化 作用。酶在有机介质中由于能够基本保持其完整的结构和活性中心 的空间构象,所以能够发挥其催化功能。
酶的非水相催化
一、酶非水相催化的几种类型
1、有机介质中的酶催化
克利巴诺夫(Klibanov)研究表明:酶在一定浓度的 有机溶剂中具有一定的“分子记忆”效应,这种记忆是 因为酶存在配体而产生的,当配体被移走后,由于大量 有机溶剂存在状态下酶构象的高度刚性, 使得这种与 配体具有高亲和性的构象得以保持,而过量水的介入会 加速这种记忆丧失。
空间构象和催化活性至关重要。另外有一部分水分配在 有机溶剂中。 ◆通常所说的有机介质反应体系主要是指微水介质体系。
.
二、酶非水相催化的几种体系
(一)、有机介质反应体系
(2)与水溶性有机溶剂组成的均一体系: ◆这种均一体系是由水和极性较大的有机溶剂互相混溶
组成的反应体系。 ◆酶和底物都是以溶解状态存在于均一体系中。由于极
.
1 酶催化反应的介质
水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为 许多有机化合物(底物)在水介质中难溶或不溶。 由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反 应的发生。
是否存在非水介质能保证酶催化??
1984年,美国MIT的克利巴诺夫(Klibanov)等人在有机介质中进行 了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获 得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机 溶剂的互溶体系中进行催化反应。 .
.
酶的非水相催化
类型
有机介质
气相介质
离子介质 超临界介质
.
一、酶非水相催化的几种类型
1、有机介质中的酶催化: 有机介质中的酶催化是指酶在含有一定量水
的有机溶剂中进行的催化反应。 特点:
1)适用于底物、产物两者或其中之一为疏水性物质的 酶催化作用。
酶的非水相催化
2 有机溶剂对酶活性的影响
极性较强的有机溶剂能够夺取酶蛋白表面的“必需 水”,扰乱酶分子的天然构象的形成,从而导致酶 的失活。 极性系数lgP:P为溶剂在正辛烷与水两相中的分配 系数。lgP越小,极性越强。 lgP小于2的极性溶剂不宜使用。
在有机介质中进行酶催化时,应选择好所用 溶剂,或通过酶分子修饰提高酶的亲水性。
(三)有机溶剂对酶催化反应的影响 1 2 3 4 有机溶剂对酶结构的影响 有机溶剂对酶催化活力的影响 有机溶剂对底物和产物的影响 有机溶剂对酶选择性的影响
酶在非水介质中的存在形式 一、固态酶。 冻干酶粉、固定化酶、结晶酶 以固体形式悬浮在有机溶剂中 二、可溶解酶。 水溶性大分子共价修饰酶 非共价修饰的高分子—酶复合物 表面活性剂—酶复合物 微乳液中的酶等
(二)水对非水介质中酶催化的影响 酶只有在一定量水的存在下,才能进行催 化反应,特别是在有机介质中的酶催化反应, 水含量的多少对酶的空间构象、催化活性、稳 定性、催化反应的速度、底物和产物的溶解度 等都有密切关系。
1 必需水
维持酶分子完整的空间构象所必需 的最低水量。 氢键、盐键等次级键。 在无水的条件下,酶的空间构象被 破坏,酶将变性失活。 通过必需水的调控,可以调节有机 介质中酶的催化活性和选择性。
【生物学】第六章酶的非水相催化
第六章酶的非水相催化◆人们以往普遍认为只有在水溶液中酶才具有催化活性。
◆酶在非水相介质中催化反响的研究:在理论上进行了非水介质〔包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等〕中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学〔non-aqueousenzymology〕的理论体系。
◆非水介质中酶催化作用的应用研究,取得显著成果。
1.酶非水相催化的研究概况◆酶在非水介质中进行的催化作用称为酶的非水相催化。
有机介质中的酶催化:◆有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反响。
◆适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。
◆酶在有机介质中由于能够全然维持其完整的结构和活性中心的空间构象,因此能够发扬其催化功能。
◆酶在有机介质中起催化作用时,酶的底物特异性、立体选择性、区域选择性、键选择性和热稳定性等都有所改变。
气相介质中的酶催化:◆气相介质中的酶催化是指酶在气相介质中进行的催化反响。
◆适用于底物是气体或者能够转化为气体的物质的酶催化反响。
◆由于气体介质的密度低,扩散轻易,因此酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。
超临界流体介质中的酶催化:◆超临界介质中的酶催化是指酶在超临界流体中进行的催化反响。
◆用于酶催化反响的超临界流体应当对酶的结构没有破坏作用,对催化作用没有明显的不良碍事;具有良好的化学稳定性,对设备没有腐蚀性;超临界温度不能太高或太低,最好在室温四面或在酶催化的最适温度四面;超临界压力不能太高,可节约压缩动力费用;超临界流体要轻易获得,价格要廉价等。
离子液介质中的酶催化:◆离子液介质中的酶催化是指酶在离子液中进行的催化作用。
◆离子液〔ionicliquids〕是由有机阳离子与有机〔无机〕阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。
酶在离子液中的催化作用具有良好的稳定性和区域选择性、立体选择性、键选择性等显著特点。
第九章酶的非水相催化
冻干 除去抑制剂
枯草杆菌蛋白酶得分子记忆
原理:
竞争性抑制剂诱导酶活性中心构象发生变化,形 成一种高活性得构象形式,而此种构象形式在除 去抑制剂后,因酶在有机介质中得高度刚性而得 到保持。
水直接或间接参与了酶天然构象中所有得非共 价相互作用,水充当了酶结构得“润滑剂”,使酶分 子得柔性增强,原来形成得高活性构象不再保持 。
Ø介质得转换对酶得化学键选择性有不同程度得影响
(2)分子记忆
根据分子识别理论,酶通过配体得诱导、相 互作用改变酶得构象,从而获得与配体类似 物结合得能力,这种由配体诱导产生得酶得 记忆得方法称为分子记忆(molecular memory)
酶蛋白分子在有机相中具有对配体得“记忆” 功能。
有机相生物印迹酶
实验现象:随着冻干时用得缓冲溶液得离子 强度增大,酶活会增大。
6、6 酶非水相催化得应用
酶 催化反应
应用
脂肪酶 肽合成 青霉素G前体肽合成
酯合成 醇与有机酸合成酯类
转酯
各种酯类生产
聚合
二酯得选择性聚合
酰基化 甘醇得酰基化
蛋白酶 肽合成 合成多肽
酰基化 糖类酰基化ຫໍສະໝຸດ 羟基化酶 氧化甾体转化
过氧化物酶 聚合
(20℃)
≤2 极性溶剂 >0、4 容易使酶失活,较少使用
>2,<4 中等极性 0、04~0、4 酶得活性难以预测,小心 使用。可以表现酶活
≥4
非极性
<0、04 不会引起酶得变性,能保
持酶得高活性
(1)有机溶剂对酶必需水得影响
极性弱得溶剂:影响小 极性强得溶剂:夺取酶必需水 疏水性溶剂:不易溶解吸附酶必需水
酶得失水与溶剂得极性参数(lgP)和介电常数(ε)相 关,与系统中底物得极性、底物浓度和含水量均 有关系
酶工程-第七-酶的非水相催化
过多水的危害
➢ 过多的水分会进一步水化蛋白中极性低的基团使蛋白构 象更松散引起一些构象微调来降低酶活性,尤其是酶的 “热失活” ;(物理)
➢ 温度升高时酶分子发生可逆折叠,然后进行下述一种或 几种反应:(1)形成不规则的结构;(2)通过消除反应使 二硫键破坏;(3)天冬氨酸和谷氨酰氨残基的脱酰氨;(4) 天冬氨酸残基的肽键水解。(化学)
* 离子液体强极性的特点使它对精细化工和医用产品起始材料的 “构建单元”(如肽、糖、核酸等极性底物)具有的较强的溶解性, 预示着离子液体可能在精细化工和医用产品生产上扮演重要角色。
(3)同时还有很多研究者认为离子液体是一种“可设计”的溶剂,可 以通过合成手段合成一系列结构和性质迥异的离子液体来满足各方 面研究和应用的需求。
(三) 离子液体缺点
离子液体也有一些缺点妨碍着它的应用。 已合成的离子液体大多黏度很高,这势必给底物和产
物的传质带来困难。Kragl等人发现尽管β-糖苷酶在 80°C高温下在离子液体1-甲基-3-甲基咪唑甲基璜酸 盐(1-methyl-3-methylimidazolium methanesulfonate,[MMIM][CH3SO3])中仍具有很高的 稳定性,但80°C的高温仍然没有解决离子液体粘度 较大带来的传质困难。 尽管有些离子液体成本可达到70欧元/kg,但价格仍 然是限制其应用的重要因素。因此离子液体能否能完 全回收利用是其能否工业化应用的重要条件。
五 酶非水相催化的反应介质—离子液体
(一) 离子液体的结构及分类 离子液体是呈现为液态的盐 离子液体是完全由阴阳离子组成且常温下呈液态的
离子化合物,这些离子化合物结构上存在离子结构对 称性低、分子间作用力弱等特点,导致了离子液体熔 点接近室温或低于室温,使离子液体成为一种以液态 方式存在的盐。
酶的非水相催化
异性、立体选择性、区域选择性、键选 在有机介质酶催化反应中,有机溶剂对酶的活力、酶的稳定性、酶的催化特性及酶催化速度等都有显著影响。
产物是:酯类、肽类、手性醇等有机化合物
择性和热稳定性等都有所改变。 因此,作为催化介质使用的有机溶剂必须通过实验进行选择、确定。
二、气相介质中的酶催化
气相介质中的酶催化是指酶在气相介 质中进行的催化反应。
适用于底物是气体或者能够转化为气 体的物质的酶催化反应。
由于气体介质的密度低,扩散容易,
所以酶在气象介质中的酶催化作用与在 水溶液中的催化作用有明显的不同特点 。
。 有机溶剂中酶对底物的对映体选择性由于介质的亲(疏)水性的变化而发生改变,例如胰凝乳蛋白酶,胰蛋白酶、枯草杆菌蛋白酶、弹性
蛋白酶等蛋白水解酶对于底物N—Ac-A1a—OetCl(N—乙酰基丙氨酸氯乙酯)的立体选择因子[即(kcaL/Km)l/(kcat/Km)D的比值]在有
aw=rwXw
体系
是
由
水
和
极
性
较
大
的
有
机
溶
剂
互
相混合组成的反应体系。 三、超临界流体介质中的酶催化
酶催化过程,pH值影响酶活性中心基团和底物的解离状态,直接影响酶的催化活性; 第三节
酶和反 酶在有机介质中的催化特性
而最佳水活度与溶剂的极性大小无关。
应
底
物
都
是
以
溶
解
状
态
存
在
均
一
体
酶的非水相催化原理及应用
酶的非水相催化原理及应用前言酶是生物体内一类特殊的蛋白质,具有催化生物化学反应的能力。
传统上,酶的催化作用都是在水相中进行的,但近年来研究发现,酶在非水相条件下也能展现出催化的活性。
这种非水相催化的酶活性,为许多化学合成过程和工业生产提供了新的思路和方法。
本文将介绍酶的非水相催化原理及应用,并探讨其潜在的发展前景。
非水相催化原理酶在非水相条件下催化反应的原理主要与以下几个方面相关:1.氢键网络的重构:在非水相条件下,酶的氢键网络会重构,使得酶分子更加紧密地结合在一起,从而增强催化效率。
2.构象变化的灵活性:在非水相条件下,酶分子的构象变化更加灵活,可以更好地适应反应物分子的结构,提高反应效率。
3.介质的溶解能力:非水相介质对反应物分子的溶解能力较低,可以促使反应物更易进入酶的活性位点,从而提高催化效率。
4.宽广的反应条件:与水相催化相比,非水相催化酶能够在更广泛的反应条件下工作,例如高温、极端酸碱环境等。
非水相催化的应用领域非水相催化酶已经在许多应用领域中展示出了巨大的潜力和优势,下面列举几个典型的应用:•有机合成:非水相催化酶在有机合成领域中具有广泛的应用。
例如,通过选择合适的非水相介质和反应条件,酶可以催化各种有机反应,如醇酸酯化、酮-醇转化等,从而实现高效、绿色的有机化学合成。
•生物燃料生产:非水相催化酶在生物燃料生产中起到了重要的作用。
酶可以催化生物质的降解和转化,将其转化为可燃的生物燃料,如生物柴油、乙醇等。
非水相条件下的催化反应具有高效性和高产率的特点,能够提高生物燃料的产量和质量。
•医药领域:非水相催化酶在医药领域中也有广泛的应用。
例如,利用酶在非水相条件下的催化活性,可以加速药物合成的速度,提高药物的纯度和效果。
此外,非水相催化酶还可以用于合成药物的关键中间体,从而为医药研发提供有力支持。
非水相催化的发展前景随着对酶催化机制的深入研究和非水相条件下催化反应的优势的认识,非水相催化酶在许多领域中的应用前景越来越广阔。