对应分析方法及基本思想对应分析方法的基本

合集下载

对应分析ppt课件

对应分析ppt课件

精选课件ppt
35
§7.2 对应分析的基本理论
7.2.4 需要注意的问题
需要注意的是,同对应分析生成的二维 图上的各状态点,实际上是两个多维空间上 的点的二维投影,在某些特殊的情况下,在 多维空间中相隔较远的点,在二维平面上的 投影却很接近。此时,我们需要对二维图上 的各点做更深的了解,即哪些状态对公因子 的贡献较大,这与在因子分析中判断原始变 量对公因子贡献的方法类似 。
精选课件ppt
26
§7.2 对应分析的基本理论
精选课件ppt
27
§7.2 对应分析的基本理论
精选课件ppt
28
§7.2 对应分析的基本理论
精选课件ppt
29
§7.2 对应分析的基本理论
精选课件ppt
30
§7.2 对应分析的基本理论
精选课件ppt
31
§7.2 对应分析的基本理论
精选课件ppt
§7.2 对应分析的基本理论
7.2.1 有关概念 1. 行剖面与列剖面
精选课件ppt
16
§7.2 对应分析的基本理基本理论
精选课件ppt
18
§7.2 对应分析的基本理论
精选课件ppt
19
§7.2 对应分析的基本理论
2. 距离与总惯量
精选课件ppt
20
精选课件ppt
4
§7.1列联表及列联表分析
在研究经济问题的时候,研究者也往往用列联表的形式把 数据呈现出来。比如说横栏是不同规模的企业,纵栏是不同 水平的获利能力,通过这样的形式,可以研究企业规模与获 利能力之间的关系。更为一般的,可以对企业进行更广泛的 分类,如按上市与非上市分类,按企业所属的行业分类,按 不同所有制关系分类等。同时用列联表的格式来研究企业的 各种指标,如企业的盈利能力、企业的偿债能力、企业的发 展能力等。这些指标即可以是简单的,也可以是综合的,甚 至可以是用因子分析或主成分分析提取的公因子;把这些指 标按一定的取值范围进行分类,就可以很方便地用列联表来

对应分析数据

对应分析数据

对应分析数据一、背景介绍在当今信息爆炸的时代,大量的数据被生成和收集,为了更好地理解和利用这些数据,对数据进行对应分析是非常重要的。

对应分析是一种统计方法,用于研究两组数据之间的关系和相互作用。

通过对数据进行对应分析,我们可以发现数据中的模式、趋势和相关性,从而为决策提供有价值的信息。

二、对应分析的定义和原理对应分析(Correspondence Analysis,简称CA)是一种多变量数据分析方法,它通过将高维数据映射到低维空间中,从而揭示数据之间的关系。

对应分析的原理基于数学上的奇异值分解(Singular Value Decomposition,简称SVD)和特征值分解(Eigenvalue Decomposition),通过计算数据矩阵的特征值和特征向量,将数据在低维空间中进行降维和可视化。

三、对应分析的步骤和方法1. 数据预处理:对数据进行清洗和标准化,去除异常值和缺失值,并将数据转换为适合对应分析的格式。

2. 计算数据矩阵:根据数据的特点,构建数据矩阵,其中行表示样本或观测对象,列表示变量或属性。

3. 计算对应分析的结果:通过对数据矩阵进行奇异值分解或特征值分解,得到对应分析的结果,包括特征值、特征向量和对应坐标。

4. 解释和解读结果:根据对应分析的结果,进行可视化和解释,发现数据中的模式、趋势和相关性,并提取有用的信息。

5. 结果验证和应用:对对应分析的结果进行验证和应用,评估模型的准确性和可靠性,并将结果应用于实际问题的决策和优化。

四、对应分析的应用领域对应分析广泛应用于各个领域,包括市场调研、消费者行为、社会科学、生物学、医学等。

以下是对应分析在几个典型领域的应用示例:1. 市场调研:通过对应分析,可以分析不同产品或品牌在市场中的位置和竞争关系,帮助企业制定市场策略和推广计划。

2. 消费者行为:对应分析可以帮助分析消费者对不同产品或服务的偏好和关联性,为企业提供精准的市场定位和产品定价策略。

对应分析

对应分析

第九章 对应分析§9.1 什么是对应分析及基本思想对应分析又称为相应分析,于1970年由法国统计学家J.P.Beozecri 提出来的。

它是在R 型和Q 型因子分析基础上发展起来的一种多元统计方法。

由前一章我们知道应用因子分析的方法,可以用较少的几个公共因子去提取研究对象的绝大部分信息,即可减少因子的数目,又把握住了研究对象之间的相互关系。

但是因子分析根据研究对象的不同又分为R 型因子分析和Q 型因子分析,即对指标(变量)作因子分析和对样品作因子分析是分开进行的,这样做往往会漏掉一些指标与样品之间有关的一些信息,另外在处理实际问题中,样品的个数远远地大于变量个数。

比如有100个样品,每个样品测10项指标,要作Q 型因子分析,就要计算(100×100)阶相似系数阵的特征根和特征向量,这对于一般小型计算机的容量和速度都是难以胜任的。

对应分析是将R 型因子分析与Q 型分子分析结合起来进行统计分析,它是从R 型因子分析出发,而直接获得Q 型因子分析的结果。

克服了由样品容量大,作Q 型分析所带来的计算上的困难。

另外根据R 型和Q 型分析的内在联系,可将指标(变量)和样品同时反映到相同坐标轴(因子轴)的一张图形上,便于对问题的分析。

比如在图形上邻近的一些样品则表示它们的关系密切归为一类,同样邻近的一些变量点则表示它们的关系密切归为一类,而且属地同一类型的样品点,可用邻近的变量点来表征。

因此,对应分析,概括起来可提供如下三方面的信息即指标之间的关系,样品之间的关系,以及指标与样品之间的关系。

基本思想:由于R 型因子分析和Q 型因子分析都是反映一个整体的不同侧面,因此它们之间一定存在内在的联系。

对应分析就是通过一个过渡矩阵Z 将二者有机地结合起来,具体地说,首先给出变量点的协差阵Z Z A '=和样品点的协差阵Z Z B '=,由于Z Z '和Z Z '有相同的非零特征根记为),m i n(0,21n p m m ≤<≥≥≥λλλ ,如果A 的特征根i λ对应的特征向量为i U ,则B 的特征根i λ对应的特征向量就是i i V ZU ∆,根据这个结论(后面有证明)就可以很方便的借助R 型因子分析而得到Q 型因子分析的结果。

应用统计学对应分析等

应用统计学对应分析等

重庆交通大学管理学院
22:22:28
1、什么是典型相关分析? 典型相关分析是研究两组变量之间相关关系 的多元统计分析方法.它借用主成分分析降维的 思想,分别对两组变量提取主成分,且使两组变 量提取的主成分之间的相关程度达到最大,而从 同一组内部提取的各主成分之间互不相关,用从 两组之间分别提取的主成分的相关性来描述两组 变量整体的线性相关关系.
对应分析-问题背景
描述属性变量(定类或定序尺度变量)的各种状态或 是相关关系。
例:研讨患肺癌与吸烟是否有关?
是否吸烟 是否 患肺癌 患肺癌 未患肺癌 合计 60 32 92 3 11 14 63 日星期六
重庆交通大学管理学院
22:22:28
当属性变量A和B的状态较多时,很难透过列联表作 出判断。 怎样简化列联表的结构? 利用降维的思想。如因子分析和主成分分析。但因 子分析的缺陷是在于无法同时进行R型因子分析和Q 型因子分析。 怎么办?
2013年11月30日星期六
重庆交通大学管理学院
22:22:28
其优点是可以把方差分析和线性模型方法相结合,估 计模型中各个参数,而这些参数值使各个变量的效应和变 量间的交互作用效应得以数量化。
(2)Logistic 模型 是将概率比取对数后,再进行参数化而获得。设因变 量y为二值定性变量,用0和1表示两个不同状态,y=1的概 率p=P(y=1)是研究对象。若有多个因素影响y的取值,这 些因素就是自变量,记为:x1,x2…xk(既可以是定性变量 也可以是定量变量)。 Logistic 线性回归模型:
信度分类
内在信度:调查表中的一组问题(或整个调查表)是否测 量的是同一个概念,也就是这些问题之间的内在一致性 如何。 • 最常用的内在信度系数为克朗巴哈α系数和折半信度。 外在信度:在不同时间进行测量时调查表结果的一致性程 度。最常用的外在信度指标是重测信度,即用同一问卷 在不同时间对同一对象进行重复测量,然后计算一致程 度。

对应分析

对应分析

STATA中对应分析应用
Syntax for predict:
predict [type] newvar [if] [in] [, statistic ] statistic description fit fitted values; the default rowscore(#) row score for dimension # colscore(#) column score for dimension #

STATA中对应分析应用
二元对应分析之后的统计量和作图
command description cabiplot biplot of row and column points caprojection CA dimension projection plot estat coordinates display row and column coordinates estat distances display chi-squared distances between row and column profiles estat inertia display inertia contributions of the individual cells estat loadings display correlations of profiles and axes("loadings") estat profiles display row and column profiles + estat summarize estimation sample summary(not available after camat.) estat table display fitted correspondence table screeplot plot singular values + predict fitted values, row coordinates, or column

对应分析

对应分析
1
, u
2
,L
, u
k
• 根据累计方差贡献率确定最终提取特征根的个数,并 计算出相应的因子载荷矩阵R,即: #
λ1 1 R = Uθ 2 = (u1 , u2 ,..., ul )
λ2
O
λl
其中, 其中,因子载荷是列变量的某分类在某个因子上的 载荷,反映了他们之间的相关关系。 载荷,反映了他们之间的相关关系。与因子分析类 可通过变量(列变量某分类) 似,可通过变量(列变量某分类)的共同度测度其 方差的解释程度和信息的丢失程度; 方差的解释程度和信息的丢失程度;可通过因子的 方差贡献测度因子的重要程度。 方差贡献测度因子的重要程度。
1.2 对应分析法的基本原理
第一步:编制交叉列联表并计算概率矩阵P 第一步:编制交叉列联表并计算概率矩阵P 设原始数据矩阵为: 设原始数据矩阵为:
x11 x 21 X= M x n1 x12 x 22 M xn 2 L L L x1 p x2 p M x np n× p
第一节 对应分析法
1.1 对应分析法的内涵 1.2 对应分析法的基本原理 1.3 实例分析
#
1.1对应分析法的内涵
1.1.1 对应分析的概念
• 对应分析(Correspondence Analysis)又称相应 分析,是一种多元相依变量统计分析技术,通过 分析由定性变量构成的交互汇总数据来解释变量 之间的内在联系。它可以揭示同一变量的各个类 别之间的差异以及不同变量各个类别之间的对应 关系。 • 也被称为R-Q型因子分析 R型因子分析适用的研究对象是变量; Q型因子分析适用的研究对象是样品。 #
#
Thank you
#

第六章对应分析

第六章对应分析

对应分析的基本原理
由原始资料阵X出发,计算规格化的概率矩阵P, 使变量与样品具有相同比例大小,在空间定义两 两样品点或两两变量点之间的距离,定义样品点 和变量点的协差阵分别为B和A。A和B的非0特 征根相同,而特征根又表示各个公共因子所提供 的方差,因此变量空间中的公共因子与样品空间 中对应的各个公共因子在总方差中所占的百分比 完全相同,从几何意义来看,即诸样品点与样品 空间中各因子轴的距离和诸变量点与变量空间中 相对应的各因子轴的距离完全相同,因此,可以 把变量点和样品点同时反映在同一个因子轴所确 定的平面上(即取同一个坐标系),根据接近的 程度,将变量点与样品点一起考虑进行分类。
对应分析的基本思想
通过一个过渡矩阵Z将R型因子分析和Q 型因子分析有机地结合起来。首先给出变 量点的协差阵A和样品点的协差阵B,由于 A和 B有相同的非零特征根,这些特征根又 正是各个公共因子的方差,因此可以用相 同的因子轴同时表示变量点和样品点,即 把变量点和样品点同时反映在具有相同坐 标轴的因子平面上,以便对变量点和样品 点一起考虑原始资料阵X出发,计算规格化的 概率矩阵P;相当于改变了测度尺度, 使变量与样品具有相同比例大小;
二﹑ 计算过渡矩阵Z; 三﹑ 进行因子分析
1.R型因子分析 2.Q型因子分析
对应分析的微机实现
对应分析在SPSS中的实现
在SPSS的数据编辑窗口中点help→syntax guide→categories , 其 中 的 ANACOR 和 correspondence为对应分析过程,可通过 编简单的程序来实现对应分析。
第六章 对 应 分 析
【教学目的】通过本章的教学应使学生 掌握对应分析的基本思想和基本原理, 掌握用对应分析法分析研究解决实际问 题的方法。

对应分析

对应分析
类别间联系的呈现—— 对应分析
对应分析
问题的提出
分析分类变量间关系时,卡方检验只能给出总
体有无关系的结论,但不能精心分析,在变量 类别极多时于事无补
解决方案
直观展示:对应分析
问题在于:当属性变量A和B的状态较多时,很难透过
列联表作出直观地揭示出变量之间的联系以及变量各
分类之间的联系。主要表现在:
多重对应分析---多个定类变量
Optimal Scaling Optimal Scaling过程
所谓最优尺度分析的本质,就是根据数据本身 的关联,寻找出最佳的原始变量评分方法,将原始 变量一律转化为相应的分值,并在转化时将变量间 的关联一律变换为线性,这样就解决了以上问题。 可以同时分析多个分类变量间的关系,并同样 用图形方式表示出来。 在变量种类上更加丰富,已可以处理各种类型 的变量,如对无序多分类分析、有序多分类变量和 连续性变量同时进行分析的问题
同质性分析Homogeneity (HOMALS) 同质性分析,即多重对应分析 以图形化方式展示多个分类变量间的关系
观察原始的频数表也可以得到相关信息,但是,
当存在多个变量,并且变量类别较多时,就变成 了高维空间的观察,非常的不方便 通过数据变换,将各变量在高维空间中的主要 联系信息浓缩到低维度空间中,以便于观察
广告研究
(Advertisement Research)
2013-8-8
对应分析可以回答以下问题
谁是我的用户? 还有谁是我的用户? 谁是我竞争对手的用户? 相对于我的竞争对手的产品,我的产品的定位如何? 与竞争对手有何差异? 我还应该开发哪些新产品? 对于我的新产品,我应该将目标指向哪些消费者?
由于此处需要使用欧式距离来表示关联程度,首先需 要考虑应当采用何种距离标准化方法。 显然, 6 项指标的均数大不相同,而这并不是我们所 要关心的,同时它们的量纲也相差较大,最大、最小值 的倍数在数十到上千不等; 另一方面,各省市发展水平 的差异是我们希望考察的内容,即上海的平均发展水平 是否高于北京,诸如此类。 因此,本例中使用 Column Totals are Equalized and Column Means Removed 这一标化方法更为妥当, 它可以消除各指标均数和量纲不同的影响,同时又保留 了地区发展水平的差异。

对应分析,典型相关分析,定性数据分析,

对应分析,典型相关分析,定性数据分析,

现实中: 如鸡蛋、猪肉的价格(作为第一组变量)和 相应产品的销量(第二组变量)有相关关系。如投资 性变量(劳力投入、财力投入、固定资产投资等)与 国民收入(工农业收入、建筑业收入、等)具有相关 关系。 如何研究两组变量之间的相关关系? 设两组变量用X1,X2….,XP以及Y1,Y2…YP表示。 (1)分别研究Xi和Yj之间的相关关系,列出相关系数表。 其缺陷:当两组变量较多时,处理较烦琐,不易抓住 问题的实质。(2)采用主成分分析的方法,每组变量 分别提取主成分,再通过主成分之间的关系反映两组 变量之间的关系。
ln 1 p a0 a1 x1 .... ak xk
17 cxt 2014-5-20
第七章 对应分析
zf
对应分析的重点
1、什么是对应分析? 2、理解对应分析的基本思想 3、对应分析的基本步骤 4、结合SPSS软件进行案例分析
2014-5-20
2 cxt
7.1 交叉列联表
描述属性变量(定类或定序尺度变量)的各种状态 或是相关关系。
例:研讨患肺癌与吸烟是否有关?
是否吸烟 是否 患肺癌 患肺癌 未患肺癌 合计
2014-5-20
4 cxt
***7.2
对应分析的基本理论
1、什么是对应分析?
对应分析是利用“降维”的方法,以两变量的交叉 列联表为研究对象,通过图形的方式,直接揭示变量 之间以及变量的不同类别之间的联系,特别适合于多 分类属性变量研究的一种多元统计分析方法。
2、对应分析的基本思想:
首先,编制两品质型变量的交叉列联表,将交叉列联表中的每个 数据单元看成两变量在相应类别上的对应点; 然后,对应分析将变量及变量之间的联系同时反映在一张二维或 三维的散点图上,并使联系密切的类别点较集中,联系疏远的类别 点较分散; 最后,通过观察对应分布图就能直观地把握变量类别之间的联 系.

第九章 对应分析

第九章 对应分析

应用多元统计分析第九章对应分析对应分析又称相应分析,于1970年由法国统计学家J.P.Beozecri提出的.它是在R型和Q型因子分析基础上发展起来的多元统计分析方法,故也称为R-Q型因子分析.因子分析方法是用少数几个公共因子去提取研究对象的绝大部分信息,既减少了因子的数目,又把握住了研究对象的相互关系.在因子分析中根据研究对象的不同,分为R型和Q型,如果研究变量间的相互关系时采用R型因子分析;如果研究样品间相互关系时采用Q型因子分析.无论是R型或Q型都未能很好地揭示变量和样品间的双重关系.另方面在处理实际问题中,样本的大小经常是比变量个数多得多.当样品个数n很大(如n>100),进行Q型因子分析时,计算n阶方阵的特征值和特征向量对于微型计算机的容量和速度都是难以胜任的.还有进行数据处理时,为了将数量级相差很大的变量进行比较,常常先对变量作标准化处理,然而这种标准化处理对于变量和样品是非对等的,这给寻找R型和Q型之间的联系带来一定的困难.第九章什么是对应分析对应分析方法是在因子分析的基础上发展起来的,它对原始数据采用适当的标度方法.把R型和Q型分析结合起来,同时得到两方面的结果---在同一因子平面上对变量和样品一块进行分类,从而揭示所研究的样品和变量间的内在联系.对应分析由R 型因子分析的结果,可以很容易地得到Q 型因子分析的结果,这不仅克服样品量大时作Q 型因子分析所带来计算上的困难,且把R 型和Q 型因子分析统一起来,把样品点和变量点同时反映到相同的因子轴上,这就便于我们对研究的对象进行解释和推断. 第九章 对应分析的基本思想由于R 型因子分析和Q 型分析都是反映一个整体的不同侧面,因而它们之间一定存在内在的联系. 对应分析就是通过一个变换后的过渡矩阵Z 将二者有机地结合起来.具体地说,首先给出变量间的协差阵R S =Z'Z 和样品间的协差阵Q S =ZZ' ,由于Z'Z 和ZZ'有相同的非零特征根,记为12...m λλλ≥≥≥,如果R S 的特征根i λ对应的特征向量为i v ,则Q S 的特征根i λ对应的特征向量i u Zv =由此可以很方便地由R 型因子分析而得到Q 型因子分析的结果.对应分析的基本思想由A 的特征根和特征向量即可写出R 型因子分析的因子载荷阵(记为R A )和Q 型因子分析的因子载荷阵(记为Q A ).§9.1 什么是对应分析基本思想由于A和B具有相同的非零特征根,而这些特征根又正是各个公共因子的方差,因此可以用相同的因子轴同时表示变量点和样品点,即把变量点和样品点同时反映在具有相同坐标轴的因子平面上,以便对变量点和样品点一起考虑进行分类.第十章典型相关分析相关分析是研究多个变量与多个变量之间的相关关系.如研究两个随机变量之间的相关关系可用简单相关系数表示;研究一个随机变量与多个随机变量之间的相关关系可用全相关系数表示.1936年Hotelling首先将相关分析推广到研究多个随机变量与多个随机变量之间的相关关系,故而产生了典型相关分析,广义相关系数等一些有用的方法.第十章什么是典型相关分析在实际问题中,经常遇到要研究一部分变量和另一部分变量之间的相关关系,例如:在工业中,考察原料的主要质量指标(1,.....,p X X ) 与产品的主要质量指标(1,.....,p Y Y )间的相关性;在经济学中,研究主要肉类的价格与销售量之间的相关性; 在地质学中,为研究岩石形成的成因关系,考察岩石的化学成份与其周围围岩化学成份的相关性;在气象学中为分析预报24小时后天气的可靠程度,研究当天和前一天气象因子间的相关关系;第十章 什么是典型相关分析在教育学中,研究学生在高考的各科成绩与高二年级各主科成绩间的相关关系;在婚姻的研究中,考察小伙子对追求姑娘的主要指标与姑娘想往的小伙子的主要尺度之间的相关关系;在医学中,研究患某种疾病病人的各种症状程度与用科学方法检查的一些结果之间的相关关系;在体育学中,研究运动员的体力测试指标与运动能力指标之间的相关关系等.第十章 什么是典型相关分析一般地,假设有一组变量1,.....,p X X 与另一组变量1,.....,p Y Y (也可以记为1,....,p p q X X ++),我们要研究这两组变量的相关关系,如何给两组变量之间的相关性以数量的描述,这就是本章研究的典型相关分析.当p=q=1时,就是研究两个变量X 与Y 之间的相关关系.简单相关系数是最常见的度量.其定义为第十章 什么是典型相关分析当p ≥ 1 ,q=1时(或 q ≥ 1 , p =1) 设 则称为Y 与(X1,…,Xp) 的全相关系数.其实Y 对X 的回归为1(|)()()Y YX XX X E Y X x def x μμϕ-=+∑∑-且 并称R 为全相关系数 .第十章 什么是典型相关分析当p,q>1时,利用主成分分析的思想,可以把多个变量与多个变量之间的相关化为两个新变量之间的相关.也就是求α=(α1,…, αp ) '和β =(β1,…, βq ) ' , 使得新变量:V = α1X 1+…+αp X p = α 'X1~(,),0XX XY p YX YY X N Y μσ+∑∑⎛⎫⎛⎫∑∑=> ⎪ ⎪∑⎝⎭⎝⎭1/21YX XX XY YY R σ-⎛⎫∑∑∑= ⎪⎝⎭(,())Y x Rρϕ=W = β1Y 1+…+ βq Y q = β 'Y 之间有最大可能的相关,基于这个思想就产生了典型相关分析(Canonical correlatinal analysis).第十章 总体典型相关设X=(X1,...,Xp )及Y=(Y1,...,Yq)为随机向量(不妨设p ≤q),记随机向量Z 的协差阵为 其中Σ11是X 的协差阵,Σ22是Y 的协差阵,Σ12=Σ’21是X,Y 的协差阵. 第十章 总体典型相关我们用X 和Y 的线性组合V=a X 和W=b Y 之间的相关来研究X 和Y 之间的相关.我们希望找到a 和b,使ρ(V,W) 最大.由相关系数的定义:又已知⎪⎭⎫ ⎝⎛∑∑∑∑=∑22211211第十章总体典型相关故有对任给常数c1,c2,d1,d2,显然有ρ(c1V+d1, c2W+d2)=ρ(V,W)即使得相关系数最大的V=a'X和W=b'X并不唯一.故加附加约束条件 Var(V)=a'Σ11a=1,Var(W)=b'Σ22b=1.问题化为在约束条件Var(V)= 1,Var(W)=1下,求a和b,使得ρ(V,W)= a'Σ12b达最大 .第十章样本典型相关设总体Z=(X1,...,X p,Y1,…,Y q )’.在实际问题中,总体的均值E(Z)= 和协差阵D(Z)= 通常是未知的,因而无法求得总体的典型相关变量和典型相关系数.首先需要根据观测到的样本资料阵对其进行估计.已知总体Z的n个样品:第十章 样本典型相关样本资料阵为若假定Z ~N(μ,∑),则协差阵 的最大似然估 计为第十章 样本典型相关我们从协差阵 的最大似然估计S*(或样本协差阵S)出发,按上节的方法可以导出样本典型相关变量和样本典型相关系数.还可以证明样本典型相关变量和样本典型相关系数是总体典型相关变量和样本典型相关系数的极大似然估计.也可以从样本相关阵R 出发来导出样本典型相关变量和样本典型相关系数.第十章 样本典型相关典型相关系数的显著性检验:总体Z 的两组变量X=(X 1,...,X p )’和Y =(Y 1, …,Y q )’如果不相()()()()1(1,2,...,)t t t p q X Z t n Y +⨯⎛⎫== ⎪⎝⎭'()()11()()nt t t Z Z Z Z def Sn ∧=∑=--∑关,即COV(X,Y )=∑12=0,以上有关两组变量典型相关的讨论就毫无意义.故在讨论两组变量间相关关系之前,应首先对以下假设H 0作统计检验.(1) 检验H 0 : ∑12=0 (即λ1=0)设总体Z ~N p+q (μ,∑).用似然比方法可导出检验H 0的似然比统计量为(A ,A 11,A 22为离差阵)第十章 样本典型相关典型相关系数的显著性检验 (2)检验H 0(i): λi =0 (i =2,...,p )当否定H 0时,表明X,Y 相关,进而可得出至少第一个典型相关系数λ1≠ 0.相应的第一对典型相关变量V 1,W 1可能已经提取了两组变量相关关系的绝大部分信息.在实际问题中,经常迂到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR),提取自变量组主成分的主成分回归分析(PCR)等方11221122||||||A S A A S S Λ==⨯⨯法外,还有近年发展起来的偏最小二乘(PLS)回归方法.第十一章什么是偏最小二乘回归偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。

第9章 对应分析

第9章 对应分析

眼睛颜色 深色 棕色 蓝色 浅色 合计
金色 98 343 326 688 1455
头发颜色 合计 红色 棕色 深色 黑色 48 403 681 85 1315 84 909 412 26 1774 38 241 110 3 718 116 584 188 4 1580 286 2137 1391 118 5387
第9章对应分析
同一直角坐标系内同时表达出变量与样 品两者之间的相互关系

社会科学的数量研究中经常会对品质型(属性) 变量进行分析,研究两个或多个品质型变量之 间的相关关系。
例如:利用储户储蓄数据研究储户收入水平与所选择的 储蓄种类间是否存在联系;(该问题中收入水平和储蓄 种类均是品质型变量,其中收入水平为定序变量,储蓄 种类为定类变量) 例如:分析顾客职业与购买汽车的品牌之间的关系,研 究不同客户群对汽车的喜爱偏好。(该问题中顾客职业 和汽车品牌均是定类的品质型变量)
作业
利用《多元统计分析》课程中学到的方法, 分析现实中的经济学问题,形成一篇小论 文 格式:标题,作者(学号,姓名),摘要, 关键词,绪论,理论或模型简介,实证分 析,结论,参考文献

去除量纲,同时乘以一个系数
p
j
同理p个变量也可表示正类似形式
4、计算协方差矩阵
5、进行数据的对应变换
对协方差矩阵R与Q进行因子分析

R型因子分析

Q型因子分析
绘制变量和样品的对应分布图
R、Q因子分析,分别提取两个最重要的公 因子R1,R2和Q1,Q2 绘制在同一个坐标平面中,各点坐标为相 应的因子载荷

运行以后,数据编辑器中的原始数据并没 有变化,只是在右下角的状态栏中显示 “Weight on”字样。但利用加权后的数据 进行统计分析后所得到的结果与没加权数 据进行统计分析后得到的结果完全不同。

对应分析

对应分析

对应分析(Correspondence Analysis)在进行数据分析时,经常要研究两个定性变量(品质变量)之间的相关关系。

我们曾经介绍过使用列联表和卡方检验来检验两个品质变量之间相关性的方法,但是该方法存在一定的局限性。

卡方检验只能对两个变量之间是否存在相关性进行检验,而无法衡量两个品质型变量各水平之间的内在联系。

例如,汽车按产品类型可以分豪华型、商务型、节能型、耐用型,按销售区域可分为华北区、华南区、华中区、华东区、西南区、西北区、东北区。

利用卡方检验,只能检验销售地区与对型的偏好之间是否相关,但无法知道不同地区的消费者到底比较偏好哪种车型。

对应分析方法(Correspondence Analysis)又称相应分析、关联分析,是一种多元相依变量统计分析技术,是对两个定性变量(因素)的多种水平之间的对应性进行研究,通过分析由定性变量构成的交互汇总数据来解释变量之间的内在联系。

同时,使用这种分析技术还可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。

特别是当分类变量的层级数比较大时,对应分析可以将列联表中众多的行和列的关系在低维的空间中表示出来。

而且,变量划分的类别越多,这种方法的优势就越明显。

对应分析以两变量的交叉列联表为研究对象,利用“降维”的方法,通过图形的方式,直观揭示变量不同类别之间的联系,特别适合于多分类定性变量的研究。

对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

它最大特点是能把众多的样品和众多的变量同时作到同一张图上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。

另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。

该统计研究技术在市场细分、产品定位、品牌形象以及满意度研究等领域得到了广泛的运用。

对应分析

对应分析

对应分析练习题一.对应分析的思想方法及特点(一)对应分析的基本思想及特点对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。

另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。

(二)对应分析方法的优缺点1.定性变量划分的类别越多,这种方法的优越性越明显2.揭示行变量类间与列变量类间的联系3.将类别的联系直观地表现在图形中4.不能用于相关关系的假设检验5.维数有研究者自定6.受极端值的影响二.对应分析中的总惯量总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2 统计量仅相差一个常数,而统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系。

对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系。

三.对应分析具体案例1.搜集5387位中学生眼睛颜色与头发颜色的调查数据,应用对应分析比较两变量的关系2.对数据进行预处理,以频数变量进行加权:分析-降维-对应分析3.结果分析(1)对应分析反映的是眼睛颜色和头发颜色不同组合下的实际样本数(2)对应分析摘要维度=最小分类数(眼睛颜色数)-1,前两个维度就解释了99.6%的信息。

(3)对应分析坐标值及贡献值质量栏表示各种类别的构成比,维中的得分栏表示个类别在相关维度上的评分,惯量栏给出了总惯量在行变量中的分解情况,数值越大表示该类别对惯量的贡献越大。

深色、蓝色、浅色都主要分布在第一维度上,棕色主要分在第二维度上,总计表示各唯独的信息比例之和,可见红色这一类别在前两位中只提出80.3%的信息,效果最差。

对应分析在市场研究中的应用

对应分析在市场研究中的应用


品牌A在消费者中的形象为:历史悠久,适 合任何时候食用,适合小孩食用,物有所值, 质量比以前差了。 品牌B在消费者中的形象为:口感好,营养 好,方便面专家,味道够地道,质量好,牌 子高档,经验丰富,不断推出新产品,包装 美观。 品牌C在消费者中尚未建立一定的形象。

象限分析:根据原点把整个图划分成四 象限,每个象限代表着不同属性的点 (产品),具体原理可参见SWOT分析, 另遇到可以用 SWOT方式解读是很特殊 和偶然的情况,读者需要根据实际情况 选择此方法。
11
对应分析在市场研究中的运用
12
对应分析在市场研究中应用
对应分析可以回答的问题
谁是我的用户? 还有谁是我的用户? 谁是我竞争对手的用户? 相对于我的竞争对手的产品,我的产品的定位如何? 与竞争对手有何差异? 我还应该开发哪些新产品? 对于我的新产品,我应该将目标指向哪些消费者
pij nij / n
5
对应分析 Correspondence Analysis CA


基于行列变量之间交叉列联表的关联性的一种低维表现图
数据是列联表中的频数,也可以是距离或其它测量尺度 非常普遍和流行的方法 非常适合研究两个定类变量——定性数据的分析 程序生成对应图 品牌和属性靠近的点具有相关性
7
对应分析的步骤
Step 4
解读对应分析图
p 3
运用SPSS执行对应分析

Step 2
建立列联表

通过统计软件(SPSS)进行计算, 并描绘 出对应分析图。
通过列连联表的形式将需要的数据特征描述出来。
Step 1
获取对应分析数据
首先需明确研究的目的,进而选择对应分析 中所需数据

对应分析

对应分析

日常分析中,经常会做的是研究变量间的关系,对于分类变量,常用的方法是卡方检验、Logistic模型等,但是对于分类变量很多,或者分类变量的类别很多时,用上述方法除了就会非常复杂,并且结果解释起来也不够直观,此时,可以使用对应分析加以分析。

对应分析也称为关联分析,是一种多元统计分析技术,目的在于揭示变量之间或变量各类别之间相互关系的多元统计分析方法,主要特点是可以将众多变量同时呈现在一张图表上,因此也是一种数据图示化技术。

根据分析资料的类型不同,对应分析根据数据资料的不同,分为1.定性资料:基于频数的对应分析2.连续性资料:基于均值的对应分析在定性资料中,对两个分类变量进行的对应分析称为简单对应分析,对两个以上的分类变量进行的对应分析称为多重对应分析。

要注意,对应分析并没有涉及统计检验,只是通过数据变换与计算,得出每个变量在图中的坐标,并加以图表展现,因此对应分析是一种描述性统计方法。

由于对应分析特别适合分类变量、定性数据的分析,加之其在图形展示上的优势,因此在市场分析领域应用很广。

一、对应分析的基本思想由于对应分析最大优势是直观的图形展示,因此确定对应分析图中的坐标值,是该分析方法的主要工作。

对应分析的基本思想是在一个两变量列联表的基础上提取信息,将变量内部各水平之间的联系以及变量与变量之间的联系通过坐标值反映在一张二维或三维的散点图上,并使关系紧密的类别点聚集在一起,而关系疏远的类别点距离较远。

那么如何确定坐标值呢?做法如下:首先计算两变量列联表的概率矩阵P,并据此确定数据点坐标,在变量的类别较多时,数据点所在空间维数必然较高。

由于高维空间比较抽象,且高维空间中的数据点很难直观地表示出来,因此最直接的解决方法便是降维。

对应分析采用类似因子分析的方式分别对行变量类别和列变量类别实施降维,并以因子载荷为坐标,将行列变量的多个分类点直观地表示在对应分布图中,实现了定性变量各类别间差异的量化。

通过观察对应分布图中各数据点的远近就能判断各类别之间联系的强弱。

对应分析

对应分析
k 1 r
(2) 从协方差矩阵 A 出发,计算协方差矩阵 A 的特 征根 1 2 k , 0 k min{r , c} 1 以及对应的特征向
量 1 , 2 ,, k 。 (3) 根据累计方差贡献率确定最终提取特征根的个 ,并计算出相应的因子载荷矩阵 F,即: 数 m (通常 m 取 2)
对应分析
(Correspondence Analysis)
在进行数据分析时,经常要研究两个定性变量(品质变量)之间 的相关关系。 我们曾经介绍过使用列联表和卡方检验来检验两个品质 变量之间相关性的方法, 但是该方法存在一定的局限性。 卡方检验只 能对两个变量之间是否存在相关性进行检验, 而无法衡量两个品质型 变量各水平之间的内在联系。例如,汽车按产品类型可以分豪华型、 商务型、节能型、耐用型,按销售区域可分为华北区、华南区、华中 区、华东区、西南区、西北区、东北区。利用卡方检验,只能检验销 售地区与类型的偏好之间是否相关, 但无法知道不同地区的消费者到 底比较偏好哪种车型。
对应分析以两变量的交叉列联表为研究对象,利用“降维 ”的方 法,通过图形的方式,直观揭示变量不同类别之间的联系,特别适合 于多分类定性变量的研究。
对应分析的基本思想是在一个两变量列联表的基础上提取信息, 将变量内部各水平之间的联系以及变量与变量之间的联系同时反映 在一张二维或三维的散点图上,并使关系紧密的类别点聚集在一起, 而关系疏远的类别点距离较远。 另外, 它还省去了因子选择和因子轴旋转等复杂的数学运算及中 间过程, 可以从因子载荷图上对样品进行直观的分类, 而且能够指示 分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方 便的多元统计方法。
差异时选 Principal 项。 该对话框中的选项一般无须改动。

对应分析

对应分析

对应分析对应分析的基本思想对应分析(Correspondence Analysis)又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。

它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。

当以变量的一系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。

对应分析方法是通过对交互表的频数分析来确定变量及其类别之间的关系。

例如,在分析顾客对不同品牌商品的偏好时,可以将商品与顾客的性别、收入水平、职业等进行交叉汇总,汇总表中的每一项数字都代表着某一类顾客喜欢某一品牌的人数,这一人数也就是这类顾客与这一品牌的“对应”点,代表着不同特点的顾客与品牌之间的联系。

通过对应分析,可以把品牌、顾客特点以及它们之间的联系同时反映在一个二维或三维的分布图上,顾客认为比较相似的品牌在图上的分布就会彼此靠近在一起。

根据顾客特点与每一品牌之间的距离,就可以判断它们之间关系的密切程度。

在对应分析中,每个变量的类别差异是通过直观图上的分值距离来表示。

这个距离并不是我们通常所说的距离,而是经过加权的距离,在加权的过程中,以卡方值的差异表现出来。

因此,对应分析的基础是将卡方值转变为可度量的距离。

卡方值是由累计交叉汇总表中每一交互组的实际频数与期望频数的差值计算得出。

如果卡方值是负值,就说明这一单元中实际发生频数低于期望频数。

每一单元格(每个行变量类别与列变量类别在表中的交叉点)频数的期望值取决于它在行分布中所占比例和列分布中所占比例。

如果某一单元格的卡方值是正值,而且数值很大,就说明这一单元格对应的行变量与列变量有很强的对应关系,这两个类别在图上的距离就会很近。

反之,若为负值,则在图上的距离就会远。

总之,对应分析是通过对定性变量构成的交互表进行分析,将定性变量的数据转变成可度量的分值,减少维度并做出分值分布图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)变量X的协方差阵Σ的分解式为:
D( X ) D( AF ) E[( AF )( AF )] AE(FF) A AE(F ) E(F ) A E( ) AD(F ) A D( )
第一节 因子分析的概念
❖ 因子分析是主成分分析的推广和发展,它是 多元统计分析中降维的一种方法。因子分析是研 究相关阵或协方差阵的内部依赖关系,它将多个 变量综合为少数几个因子,以再现原始变量与因 子之间的相关关系,同时根据不同因子还可以对 变量进行分类。
❖ 因子分析概念起源于20世纪初Karl Pearson 和 Charles Spearmen等学者为定义和测验智力所 作的统计分析。目前因子分析在心理学、社会学、 教育学、经济学等学科都取得了成功的应用。
例如:某公司对100名招聘人员的知识和能力进行测评,主要测评六个方面 的内容:语言表达能力、逻辑思维能力、判断事物的敏捷和果断程度、思想 修养、兴趣爱好、生活常识等,我们将每一个方面称为因子,显然这里所说 的因子不同于回归分析中的因素,因为前者是比较抽象的一种概念,而后者 有着极为明确的实际意义。假设100人测试得分xi可以用上述六个因子表示成 线性函数:
❖ 因子分析的研究内容十分丰富,常用的 因子分析类型是R型因子分析和Q型因 子分析。R型因子分析是对变量作因子 分析,Q型因子分析是对样品作因子分 析。
第二节 因子分析的数学模型
❖ 1、正交因子模型 ❖ 1)R型因子分析模型 ❖ R型因子分析中的公共因子是不可直接观
测但又客观存在的共同影响因素,每一 个变量都可以表示成公共因子的线性函 数和特殊因子之和。即
称为特殊因子。通常假定i~N(0, i2).
❖ 再如,我们研究区域社会经济发展问题时,描述 社会和经济现象的指标很多,过多的指标容易导 致分析过程复杂化。一个合适的做法就是从这些 关系错综复杂的社会经济指标间提取少数几个主 要因子,每一个主要因子都能反映相互依赖的社 会经济指标间的共同作用,抓着这些主要因素就 可以帮助我们对复杂的社会经济发展问题进行深 入的分析、合理解释和正确评价。
❖ 因子分析的基本思想就是把每个研究变量分解为 几个影响因素变量,将每个原始变量分解成两部 分因素,一部分是由所有变量共同具有的少数几 个公共因子组成的,另一部分是每个变量独自具 有的因素,即特殊因子。
X i ai1F1 ai2F2 aim Fm i , i 1,2, , p
❖ 因子分析即是通过变量的相关系数矩阵 内部结构的研究,找出能够控制所有变 量的少数几个随机变量去描述多个变量 之间的相关关系,这里这少数几个随机 变量是不可观测的,通常称为因子,然 后根据相关性的大小把变量分组,使得 同组内的变量之间相关性较高,不同组 的变量相关性较低。
❖ 因子分析是通过研究众多变量之间的内部依 赖关系,探求观测数据中的基本结构,并用 少数几个“抽象”的变量来表示其基本结构。 这几个抽象的变量被称为因子,它能反映原 来众多变量的主要信息。原始的变量是可观 测的显在变量,而因子一般是不可观测的潜 在变量。例如,在商业企业的形象评价中, 消费者可以通过一系列指标构成一个评价指 标体系,评价百货商场的各个方面的优劣, 但消费者真正关系的只是商店的环境、商店 的服务和商品的价格这3个方面。这3个方面 除了价格外,商店的环境和商店的服务质量 都是客观存在的、抽象的影响因素,都不便 于直接测量,只能通过其它具体指标进行间 接反映。因子分析就是一种通过显在变量测 评潜在变量,通过具体指标进行间接反映。
❖ 主成分分析的数学模型实质上是一种线性变 换,将原来坐标变换到变异程度大的方向上 去,相当于从空间上转换观看数据的角度, 突出数据变异的方向,归纳重要的信息。在 主成分分析中每个主成分相应的系数aij是唯一 确定的。而因子分析模型是描述原指标协方 差阵结构的一种模型,是从显在变量去提炼 潜在因子的过程,正因为因子分析是一个提 炼潜在因子的过程,因此因子的个数m取多大 是要通过一定的规则确定的,并且因子分析 中因子载荷阵不是唯一确定的。一般来说, 作为“自变量”的因子是不可观测的。
❖ 无论Q型因子分析或R型因子分析,都用
公共因子F代替X,一般要求 m p ,
m n ,因此,因子分析与主成分分析
一样,也是一种降低变量维数的一种统 计方法。下面我们将看到,因子分析的 求解过程与主成分分析类似,也是从协 方差阵(或相似系数阵)出发的。虽然 因子分析与主成分分析有许多相似之处, 但这两种模型又存在明显的不同。
(4)
D( )
012
0
2 2
0
0
0
0
2 p
即各个特殊因子不相关,方差要求相等。
2)Q型因子分析模型
❖ 类似地,Q型因子分析的数学模型可表 示为
Xi ai1F1 ai2F2 aim Fm i , i 1,2, , n
Q型因子分析与R型因子分析模型的差 异体现在 X1,X 2, ,X n 表示的是个样 品。
X i ai1F1 ai2F2 ai6F6 i , i 1,2, ,100
其中F1,F2,
,F6表示6个因子,它对所有X
是共有因子,
i
通常称为公共因子,它们的系数ai1,ai2,
,ai

6
为因

载荷
,它
表示第i个应试人员在六个方面的能力。
是第
i
i个应试人员的能力和知识不能被前六个因子包含的部分,
X i ai1F1 ai2F2 aim Fm i , i 1,2, , p
其中 F1,F2, ,Fm 称为公共因子,它们的系
数 aij 称为因子载荷, i 称为特殊因子。
该模型用矩阵表示为
X AF
其中
a11 a12 a1m
A
a21
a22
a2m

( A1,
A2 ,
,
Am )
ap1 ap2
a
pm
F1
F
F2
Fm
X1
XX2,Xp1
2
p
A称为因子载荷矩阵或因子负荷矩阵,aij 是
第i个变量在第j个因子上的负荷。
❖ 满足下列条件:
(1) m p
(2) Cov(F, ) 0 ,即公共因子F与特 殊因子εi是不相关的;
(3) cov(F)=I, 即各个公共因子不相关且 方差为1。
相关文档
最新文档