数据仓库的概念

合集下载

数据仓库的介绍(数据仓库和数据库的区别)

数据仓库的介绍(数据仓库和数据库的区别)

数据仓库的介绍(数据仓库和数据库的区别)数据仓库的介绍⼀、数据仓库的基本概念数据仓库,英⽂名称为Data Warehouse,可简写为DW或DWH。

数据仓库顾名思义,是⼀个很⼤的数据存储集合,出于企业的分析性报告和决策⽀持⽬的⽽创建,对多样的业务数据进⾏筛选与整合。

它为企业提供⼀定的BI(商业智能)能⼒,指导业务流程改进、监视时间、成本、质量以及控制。

数据仓库的输⼊⽅是各种各样的数据源,最终的输出⽤于企业的数据分析、数据挖掘、数据报表等⽅向。

⼆、数据仓库的主要特征数据仓库是⾯向主题的(Subject-Oriented )、集成的(Integrated)、稳定的(Non-Volatile)和时变的(Time-Variant )数据集合,⽤以⽀持管理决策。

1.主题性不同于传统数据库对应于某⼀个或多个项⽬,数据仓库根据使⽤者实际需求,将不同数据源的数据在⼀个较⾼的抽象层次上做整合,所有数据都围绕某⼀主题来组织。

这⾥的主题怎么来理解呢?⽐如对于城市,“天⽓湿度分析”就是⼀个主题,对于淘宝,“⽤户点击⾏为分析”就是⼀个主题。

2.集成性数据仓库中存储的数据是来源于多个数据源的集成,原始数据来⾃不同的数据源,存储⽅式各不相同。

要整合成为最终的数据集合,需要从数据源经过⼀系列抽取、清洗、转换的过程。

3.稳定性数据仓库中保存的数据是⼀系列历史快照,不允许被修改。

⽤户只能通过分析⼯具进⾏查询和分析。

这⾥说明⼀点,数据仓库基本上是不许允许⽤户进⾏修改,删除操作的。

⼤多数的场景是⽤来查询分析数据。

4.时变性数据仓库会定期接收新的集成数据,反应出最新的数据变化。

这和稳定特点并不⽭盾。

三、数据仓库与数据库区别1、数据库数据库是⾯向交易的处理系统,它是针对具体业务在数据库联机的⽇常操作,通常对记录进⾏查询、修改。

⽤户较为关⼼操作的响应时间、数据的安全性、完整性和并发⽀持的⽤户数等问题。

传统的数据库系统作为数据管理的主要⼿段,主要⽤于操作型处理,也被称为联机事务处理 OLTP(On-Line Transaction Processing)。

数据仓库知识点总结

数据仓库知识点总结

数据仓库知识点总结一、数据仓库概念数据仓库是一个用来集成、清洗、存储和管理企业数据的系统,以支持企业决策制定、分析和商业智能服务。

它是一个面向主题的、集成的、时间性的、非易失的数据集合,用于支持企业决策。

数据仓库是企业数据管理的重要组成部分,它与操作型数据处理系统相辅相成。

数据仓库以不同的视角和角度组织数据,帮助企业管理者对企业整体情况进行全面分析和评估。

二、数据仓库的特点1. 面向主题:数据仓库与传统数据库相比,更加侧重对业务应用的支持,主要面向业务应用的主题而不是基本事务数据,以方便企业管理者进行更好的分析和决策。

2. 集成性:数据仓库集成了来自不同数据源的数据,将数据统一管理,并且进行了数据清洗和转换,确保数据的一致性和准确性。

3. 时态性:数据仓库中的数据具有时间性,可以保存历史数据,能够支持分析历史数据的趋势和变化。

4. 非易失性:数据仓库中的数据不会丢失,可以持久保存,并且根据需要定期备份,确保数据的安全和可靠。

5. 大数据量和复杂性:数据仓库通常包含大量的数据,并且数据之间的关系复杂,需要采用专门的数据模型和处理方法来管理和分析。

6. 以支持决策为目标:数据仓库的目标是为企业管理者提供数据支持,帮助他们更好地了解企业的经营状况和趋势,以支持企业决策。

三、数据仓库架构数据仓库架构包括了多个重要组成部分,主要包括数据提取、数据清洗、数据转换、数据加载、元数据管理和数据查询分析等。

1. 数据提取:数据提取是指从各个数据源中将需要的数据提取出来,数据源可以包括企业内部的数据库、文件系统、应用系统等,也可以包括外部数据源,如公共数据等。

2. 数据清洗:数据清洗是指对提取的数据进行清洗和规范,包括去重、校验、纠错、转换等处理,以确保数据的准确性和一致性。

3. 数据转换:数据转换是指对清洗后的数据进行格式转换、相关联和整合,以便于数据仓库的统一管理和分析。

4. 数据加载:数据加载是将转换后的数据载入数据仓库中,通常包括全量加载和增量加载两种方式,以确保数据的及时性和准确性。

数据仓库的设计与构建研究

数据仓库的设计与构建研究

数据仓库的设计与构建研究随着互联网技术的发展,数据量的快速积累和每天不断增长的数据趋势,数据管理变成了日益复杂的任务。

数据仓库便应运而生,成为了企业管理和数据分析的必然选择。

在企业的决策和战略制定中,数据仓库所扮演的角色越来越重要,也越来越值得重视。

一、数据仓库的概念数据仓库是指将企业各种分散的数据源汇集起来,进行预处理、汇总、加工、再分析处理等操作后进行存储的一个系统。

其目的是为了利用大数据环境下的企业数据,将其变成决策支持的信息,从而为企业决策提供可靠的数据支撑。

数据仓库结构主要包含以下几个重要组成部分:1. 数据源数据源是数据仓库的来源,包括操作性数据库、文件系统、网络、接口等等。

通过提取不同来源的数据,并将其汇总到仓库中进行统一存储、管理和维护,实现数据的集成化管理。

2. 数据加工处理数据加工处理是数据仓库中最为复杂的一部分,包括数据清洗、数据挖掘、数据转换、数据整合等等。

这一过程要求数据仓库管理员具有一定的数据处理能力,并且需要考虑多种因素的影响,例如数据量、类型、格式、质量等等。

3. 元数据元数据是指描述数据仓库的数据,包括数据类型、数据来源、数据转换规则、质量检验规则等等。

元数据的作用是对数据进行管理、维护、分发和使用,为数据共享和商业决策提供支持。

4. 多维分析多维分析是指对数据仓库中的数据进行分析、整理和处理,以便更好地展现数据的特征和规律。

多维分析可通过OLAP(联机分析处理)的方式对数据进行分析,再根据分析结果制定企业针对性的业务决策。

二、数据仓库的设计思路数据仓库的设计与构建需要全面考虑企业的业务需求和数据特点,通过规范化、标准化的方式来进行设计,使其能够满足企业需求,并为企业的决策提供支持。

1. 初步分析通过初步分析了解企业的业务场景和数据来源,以及研究需求和决策支持信息的种类、格式等,以便进一步确定数据仓库的设计。

2. 数据建模数据建模是数据仓库的核心,它需要根据不同的业务需求和对数据的认识,对数据进行分类、构建数据模型,以便完成数据转化的目标。

数据仓库基础知识

数据仓库基础知识

数据仓库基础知识1、什么是数据仓库?权威定义:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。

1)数据仓库是用于支持决策、面向分析型数据处理;2)对多个异构的数据源有效集成,集成后按照主题进行重组,并包含历史数据,而且存放在数据仓库中的数据一般不再修改。

面对大数据的多样性,在存储和处理这些大数据时,我们就必须要知道两个重要的技术。

分别是:数据仓库技术、Hadoop。

当数据为结构化数据,来自传统的数据源,则采用数据仓库技术来存储和处理这些数据,如下图:2、数据仓库和数据库的区别?从目标、用途、设计来说。

1)数据库是面向事务处理的,数据是由日常的业务产生的,并且是频繁更新的;数据仓库是面向主题的,数据来源多样化,经过一定的规则转换得到的,用于分析和决策;2)数据库一般用来存储当前事务性数据,如交易数据;数据仓库一般存储的是历史数据;3)数据库设计一般符合三范式,有最大的精确度和最小的冗余度,有利于数据的插入;数据仓库设计一般不符合三范式,有利于查询。

3、如何构建数据仓库?数据仓库模型的选择是灵活的,不局限与某种模型方法;数据仓库数据是灵活的,以实际需求场景为导向;数仓设计要兼顾灵活性、可扩展性、要考虑技术可靠性和实现成本。

1)调研:业务调研、需求调研、数据调研2)划分主题域:通过业务调研、需求调研、数据调研最终确定主题域3)构建总线矩阵、维度建模总线矩阵:把总线架构列表形成矩阵形式,行表示业务处理过程,即事实,列表示一致性的维度,在交叉点上打上标记表示该业务处理过程与该维度相关(交叉探查)4)设计数仓分层架构5)模型落地6)数据治理4、什么是数据中台?数据中台是通过数据技术,对海量数据进行采集、计算、存储、加工,同时统一标准和口径。

数据中台把数据统一之后,会形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。

这些服务和企业的业务有较强关联性,是企业所独有且能复用的,他是企业业务和数据的积淀,其不仅能降低重复建设,减少烟囱式协助的成本,也是差异化竞争的优势所在。

数据仓库的概念和体系结构概述

数据仓库的概念和体系结构概述

数据仓库的概念和体系结构概述数据仓库是指将企业各个部门和业务系统产生的大量数据进行整合、清洗、集成和存储,以满足企业决策分析和业务需求的信息系统。

数据仓库的设计和建设需要考虑到数据的整合、一致性、稳定性、易用性和安全性等方面的需求。

它是一个面向主题的、集成的、相对稳定的、可供企业管理者和决策者使用的数据集合。

1.数据源层:数据仓库的数据源可以来自企业内部的各个部门和业务系统,也可以来自外部的合作伙伴和第三方数据提供商。

数据源的选择和集成是数据仓库建设的关键环节,需要确定数据的提取方式、频率、粒度和格式等。

2.数据提取层:数据提取层负责从各个数据源中提取数据,并进行初步的清洗和转换。

数据提取可以通过批量处理、定时任务或实时流数据处理等方式进行。

在数据提取过程中,需要解决数据一致性、完整性和准确性等问题。

3. 数据集成层:数据集成层是将从各个数据源提取的数据进行整合和合并的地方。

这里的数据整合包括数据清洗、数据转换和数据聚合等操作。

数据集成层可以使用ETL(Extract、Transform、Load)工具进行数据的清洗和转换。

在数据集成层,还需要对数据进行一致性校验和冲突解决。

4.数据存储层:数据存储层是数据仓库最核心的组成部分,它负责存储整合后的数据。

数据存储层可以采用关系数据库、数据仓库等不同的技术来进行存储。

在设计数据存储层时,需要考虑到数据的存储结构、索引方式、数据分区和冗余备份等问题。

6. 数据访问层:数据访问层是用户直接访问数据仓库的接口,它提供了用户对数据仓库的查询、分析和报表生成等功能。

数据访问层可以使用OLAP(Online Analytical Processing)工具、报表工具、数据挖掘工具和BI(Business Intelligence)平台等进行实现。

7.数据安全层:数据安全是数据仓库设计和建设过程中必须要考虑的问题之一、数据安全层负责保护数据仓库中的数据不受未经授权的访问、修改和破坏。

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系

数据库与数据仓库的区别与联系在信息时代的背景下,数据处理已经成为各行各业的核心工作。

数据库和数据仓库作为两个常见的数据管理工具,在实践中有着不同的应用场景和特点。

本文将对数据库和数据仓库的区别与联系进行探讨,以帮助读者更好地理解它们的不同之处和相互关系。

一、数据库的概念和特点数据库是指为了满足用户需求而设计、构建和维护的一系列数据集合。

数据库通过数据结构与数据管理系统,实现对数据的存储、查询、更新和删除等基本操作。

其特点主要包括以下几个方面:1. 数据持久化:数据库中的数据可以长期保留,并在需要时进行读取和修改。

2. 数据共享:数据库可以实现多个用户对数据进行共享和协作,提高数据利用效率。

3. 数据一致性:数据库通过事务机制保证数据的一致性和完整性,避免数据冗余和不一致的问题。

4. 高效查询:数据库通过索引等技术快速定位和获取用户需要的数据,提高查询效率。

二、数据仓库的概念和特点数据仓库是指按照时间顺序、面向主题和集成的方式,将多个异构的数据源进行统一整合和管理的大型数据存储库。

它主要用于支持决策分析和业务智能,具有以下特点:1. 面向主题:数据仓库基于企业的业务需求,以主题为中心组织和存储数据,方便用户进行专题分析和决策支持。

2. 集成统一:数据仓库通过数据抽取、转换和加载等技术整合来自不同来源的数据,保证数据的一致性和可信度。

3. 历史存储:数据仓库会长期保留历史数据,以支持用户对过去事务和趋势的分析和判断。

4. 复杂分析:数据仓库提供了复杂的分析功能,如数据切片、切块、钻取等,为决策提供更全面和深入的支持。

三、数据库与数据仓库的区别1. 定义和目的:数据库是为了满足用户的日常业务操作需求而设计的,而数据仓库则是为了支持决策分析和业务智能而构建的。

2. 数据类型和时效性:数据库主要存储操作性数据,如订单、库存等,具有实时性要求;数据仓库存储分析型数据,如销售趋势、市场调研等,具有较长的历史时效性。

数据仓库与数据湖的概念与应用

数据仓库与数据湖的概念与应用

数据仓库与数据湖的概念与应用数据仓库和数据湖是两种不同的数据存储和管理方法,被广泛应用于数据分析和决策支持系统中。

本文将从概念、特点、应用场景等方面详细介绍数据仓库和数据湖的相关知识。

一、数据仓库的概念与特点1.数据仓库的概念数据仓库(Data Warehouse)是指将企业或组织内部各个数据源中的数据进行统一整合、清洗和存储,以支持数据分析和决策制定。

数据仓库一般采用主题导向的数据模型,将各个业务领域的数据集中存储在一个集中的数据库中。

2.数据仓库的特点(1)主题导向:数据仓库将数据按照主题进行组织和存储,以支持用户对某个具体问题或主题进行深入分析。

(2)集成性:数据仓库将来自不同数据源的数据进行整合,消除数据冗余和不一致性,提供一致的数据视图。

(3)稳定性和持久性:数据仓库的数据一般是静态的,不经常更新,以确保数据的稳定性和持久性。

(4)面向分析:数据仓库主要面向决策支持和数据分析,提供丰富多样的分析工具和查询接口,满足用户对数据进行多维度、多角度的分析需求。

二、数据湖的概念与特点1.数据湖的概念数据湖(Data Lake)是指将各种数据源中的原始数据以其原始格式存储在一个或多个存储系统中,提供给用户进行数据分析和探索。

数据湖不需要提前进行数据整理和模式定义,可以容纳各种类型和结构的数据。

2.数据湖的特点(1)原始性:数据湖存储的数据是原始的,未经过清洗和整理,保留了数据源的完整性和灵活性。

(2)灵活性:数据湖可以容纳各种类型和结构的数据,不限制数据的组织方式和格式。

(3)可扩展性:数据湖可以方便地扩展存储容量,支持大数据规模的存储。

(4)即席查询:数据湖提供了即席查询和自助式数据分析的能力,用户可以根据需要直接访问和分析原始数据。

三、数据仓库与数据湖的应用场景1.数据仓库的应用场景(1)企业决策支持:数据仓库为企业决策者提供了可靠、一致、多角度的数据视图,支持企业决策制定和业务优化。

(2)业务分析与报表:数据仓库可以为企业提供各种精细化的业务分析和报表功能,帮助企业监测业务指标和趋势变化。

数据仓库 数据重要等级定义标准

数据仓库 数据重要等级定义标准

数据仓库数据重要等级定义标准在当今信息爆炸的时代,数据的重要性日益凸显。

数据不仅在商业领域中扮演着重要角色,也在科学研究、政府决策和个人生活中扮演着至关重要的角色。

针对数据的重要性,企业和组织需要建立数据仓库,并对数据进行分类和定义重要等级标准,以便更好地管理和利用数据资源。

本文将探讨数据仓库和数据重要等级定义标准的相关内容,帮助读者更好地理解这一主题。

一、数据仓库的基本概念和作用1. 数据仓库的定义数据仓库是一个用来集成和存储企业各类数据的大型数据库,用于支持企业决策制定、业务分析和数据挖掘等应用。

它是企业信息系统中的一个重要组成部分,具有数据集成、数据存储、数据管理和数据分析等功能。

2. 数据仓库的作用数据仓库的建立和运营可以帮助企业从海量数据中获取有价值的信息,支持企业管理层制定决策、优化业务流程和发现潜在商机。

数据仓库还可以提高企业对市场变化的应对能力,促进企业持续创新和发展。

二、数据重要等级定义标准的必要性3. 数据重要等级定义标准的意义随着大数据时代的到来,企业面临的数据越来越多,有些数据对企业的重要性超乎想象。

对数据进行分类和定义重要等级标准,有助于企业更加科学地管理数据资源,区分数据的重要程度,从而更好地利用数据资源,保障数据安全和隐私。

4. 数据重要等级定义标准的应用场景对数据进行重要等级定义标准,可以应用于数据备份和恢复、数据安全保护、数据使用授权等方面。

不同重要等级的数据需要采取不同的管理和保护措施,以确保数据的完整性、保密性和可用性。

三、数据重要等级定义标准的划分标准和应用方法5. 数据重要等级的划分标准对于企业来说,可以根据数据的关联性、价值性、敏感性、时效性等因素来划分数据的重要等级。

一般可以分为核心数据、关键数据、一般数据和临时数据等级别。

6. 数据重要等级的应用方法企业可以制定相应的数据管理策略和措施,针对不同重要等级的数据制定不同的备份和恢复策略、安全存储策略、权限控制策略等,以保障数据的可靠性和安全性。

数据仓库概要设计

数据仓库概要设计

数据仓库概要设计数据仓库(Data Warehouse)是指把企业分散在不同数据库中的数据统一整合到一个数据库中进行存储和管理,并对这些数据进行分析和管理的一种数据库应用系统。

数据仓库的建设是企业信息化建设的重要组成部分,是企业对内部外部信息资源进行整合、挖掘和利用最有效的平台之一。

因此,进行数据仓库的概要设计是非常重要的一步。

1.数据仓库概述数据仓库,是一个能够存储大量历史数据的集合体,使得企业能够快速地进行数据分析、查询和决策。

数据仓库通常包括存储、管理和查询技术。

数据仓库的设计是基于自底向上的过程,通过收集各种应用中的数据来建立。

数据仓库的需求分析是设计的第一个步骤,通过需求分析可以把握到数据的来源、数据的主要特征、数据的处理方法、数据的处理效果等。

2.数据仓库的工作过程a.数据的收集数据收集的目的是获取各个分散在企业内部外部的数据源,并把这些数据源整合成数据集。

数据收集包括了跟踪源数据、数据的标准化、数据的清洗、数据的转换等。

b.数据的整合数据整合意味着将不同的数据源集成到一起,通常是通过ETL工具来实现。

ETL(Extract, Transform, Load)工具的主要功能是提取、转换和加载。

c.数据的存储数据仓库的存储方式一般有两种:关系型数据库和非关系型数据库。

d.数据的查询与分析数据仓库的用户可以通过BI工具(Business Intelligence)来进行数据的查询、分析和报表生成。

3.数据仓库的概要设计步骤a.数据仓库设计的第一步是需求分析,需求分析的目的是明确数据仓库的目标、范围和需求。

需求分析应该包括数据仓库的使用者、数据仓库所需数据的类型、数据的来源、数据的质量要求等。

b.数据仓库的概念设计是在需求分析的基础上,开始进行数据仓库的抽象模型的设计。

概念设计包括了数据仓库的模型设计、元数据的设计等。

c.数据仓库的逻辑设计是在概念设计的基础上,开始进行数据仓库的逻辑结构的设计。

数据仓库 的名词解释

数据仓库 的名词解释

数据仓库的名词解释数据仓库的名词解释数据仓库(Data Warehouse)是指一个用于存储、整合和管理企业各个部门产生的大规模数据的集中式数据库系统。

它主要用于支持企业决策制定、战略规划以及业务分析。

数据仓库的设计和构建需要考虑数据的采集、转换、加载以及存储等多个方面,以确保数据的准确性和可用性。

一、数据仓库的基本概念数据仓库是一个面向主题的、集成的、时间一致的、非易失的数据集合,用于支持企业决策制定和业务分析。

它将来自不同数据源的数据进行抽取、转换和加载,形成一个统一的、易于查询和分析的数据源。

数据仓库的特点:1. 面向主题:数据仓库以主题为中心,将数据按照主题进行组织和存储,以满足不同部门和用户的信息需求。

2. 集成:数据仓库将来自不同数据源的数据进行整合,消除了数据冗余和不一致性。

3. 时间一致性:数据仓库中的数据是按照一致的时间标准进行存储和管理的,以支持历史数据分析和趋势预测。

4. 非易失性:数据仓库中的数据一旦存储,不会轻易被删除或修改,以确保数据的可追溯性和可靠性。

二、数据仓库的架构和组成部分数据仓库的架构通常包括数据采集、数据转换、数据加载、数据存储和数据查询等几个关键组成部分。

1. 数据采集:数据仓库的数据采集涉及到从各个数据源中提取和抽取数据的过程。

这些数据源可以是企业内部的关系型数据库、操作型数据源,也可以是外部的数据源,如Web数据、日志数据等。

数据采集可以通过ETL(Extract、Transform、Load)工具进行,在此过程中可以对数据进行清洗、转换和加工。

2. 数据转换:数据采集后,需要进行数据转换的操作,将采集到的数据进行整合和规范化。

这包括数据清洗、数据集成、数据变换等一系列处理,以确保数据的一致性和质量。

3. 数据加载:数据加载是将经过转换的数据加载到数据仓库中的过程。

数据加载可以是全量加载,也可以是增量加载。

在加载过程中,还可以对数据进行校验和验证,以确保数据的准确性和完整性。

数据仓库名词解释

数据仓库名词解释

数据仓库名词解释数据仓库是一个面向主题的、集成的、稳定的、直接面向最终用户的数据集合,用于支持企业决策制定、分析和决策支持系统。

数据仓库是一个独立的数据存储和管理系统,其目标是针对企业中各个部门的数据进行整合、清洗、加工和建模,从而提供一套一致、可信、易于访问和理解的数据,帮助用户进行数据分析和企业决策。

以下是一些与数据仓库相关的重要概念和名词的解释:1. 数据集成:将来自不同数据源的数据整合到数据仓库中,包括内部和外部数据源。

2. 数据清洗:数据清洗是指通过一系列的操作,消除数据中的错误、重复、缺失和不一致的部分,提高数据的质量。

3. 数据加工:对数据进行转换、聚合、计算和抽取,以满足用户的特定需求和分析目的。

4. 主题:数据仓库的主题是指根据企业的业务需求而组织起来的数据类别或领域,例如销售、人力资源、供应链等。

5. 元数据:元数据是描述数据的数据,包括数据的源头、结构、定义、关系等。

元数据对于数据仓库的管理和使用非常重要。

6. 维度:维度是数据仓库中描述主题的属性,如时间、地理位置、产品、客户等,用于分析和查询。

7. 度量:度量是数据仓库中可以计量和比较的数据,如销售额、利润、客户数量等。

8. 星型模式:星型模式是一种常见的数据仓库建模技术,其中一个中心表(事实表)围绕着多个维度表进行关联。

9. 粒度:粒度是指数据仓库中所记录的事实的详细程度,如日销售额、月销售额、年销售额等。

10. OLAP(联机分析处理):OLAP是一种针对多维数据进行快速查询和分析的技术,通过透视表、图表和报表等方式展现数据。

11. ETL(抽取、转换和加载):ETL是数据仓库中的核心过程,用于从源系统中抽取数据,通过转换和加工后加载到数据仓库中。

12. 决策支持系统:决策支持系统是通过利用数据仓库中的数据和分析工具,辅助管理层做出决策的信息系统。

数据仓库在企业中扮演着重要的角色,它能够提供一致、准确的数据,帮助企业决策者进行数据分析和制定决策。

数据仓库的概念

数据仓库的概念
据仓库会记录历史数据的变化情况, 以便对数据进行分析和追溯。
数据仓库与操作型数据库的区别
操作型数据库主要用于日常业务处理,如订单处理、库存管理等;而数据 仓库主要用于数据分析、报表生成和决策支持等。
操作型数据库通常需要快速响应和实时处理能力;而数据仓库则更注重数 据质量和完整性。
EDI的应用可以帮助企业更好地管理和利用数据资源, 提高企业的数据处理能力和数据价值,促进企业的数 字化转型和升级。
06
数据仓库的发展趋势和 挑战
大数据时代的挑战
数据量的快速增长
随着大数据时代的来临,数据量 呈爆炸式增长,对数据存储和处 理能力提出了更高的要求。
数据多样性的增加
数据来源和类型越来越多样化, 包括结构化、半结构化和非结构 化数据,需要更灵活的数据处理 和分析方法。
数据实时性的需求
随着业务对数据处理速度的要求 提高,数据仓库需要具备实时数 据处理的能力。
数据仓库技术的发展趋势
分布式存储与计算
利用分布式技术提高数据仓库的 存储和计算能力,满足大数据时
代的需求。
内存计算技术
利用内存计算技术提高数据处理速 度,实现更快速的分析和响应。
云计算技术
通过云计算技术实现数据仓库的弹 性扩展和按需服务,降低运维成本。
数据源的质量
在选择数据源时,需要考虑数据的质量、准确性和完整性,以确保数据仓库中的数据是 可靠的。
数据清洗和转换
数据清洗
数据清洗是去除重复、无效或错误数据 的过程,以确保数据的准确性和一致性 。
VS
数据转换
数据转换是将数据从其原始格式或结构转 换为数据仓库所需格式的过程,以满足数 据仓库的设计和规范。
性能优化
随着数据的增长和变化,需要定期对数据仓 库进行性能优化,以提高查询速度和响应时 间。

数据仓库:介绍数据仓库的基本概念、特点和设计

数据仓库:介绍数据仓库的基本概念、特点和设计

数据仓库:介绍数据仓库的基本概念、特点和设计引言在当今信息时代,数据的重要性不言而喻。

随着企业和组织的迅速发展,数据量的不断增长,有效地管理和分析数据变得至关重要。

为此,数据仓库作为一种集成和存储大量数据的解决方案被广泛应用。

本文将介绍数据仓库的基本概念、特点和设计,帮助读者更好地了解和应用数据仓库。

第一部分:基本概念H1: 什么是数据仓库?数据仓库可以被理解为一种集成和存储多源、多结构、大容量数据的系统。

它是一个专门用于支持决策分析和业务智能的数据平台。

数据仓库通过把分散的数据整合到一个统一的存储中,提供了一个一致、准确、可靠的数据来源,以便进行各种分析和报告。

H2: 数据仓库的功能数据仓库的主要功能是数据整合、数据存储和数据分析。

数据整合包括从不同的数据源中提取数据,并进行清洗、转换和集成,以保证数据的一致性和准确性。

数据存储是指将整合的数据持久化到数据仓库中,提供高性能的数据访问和查询。

数据分析是数据仓库的核心功能,它可以通过各种分析工具和技术,帮助用户深入挖掘数据,探索数据之间的关联和模式,发现潜在的业务机会和问题。

H3: 数据仓库的架构数据仓库的架构包括数据源层、数据集成层、数据存储层和数据使用层。

数据源层是指各种数据源,如关系数据库、文件、日志等。

数据集成层是负责将数据源中的数据提取、清洗和转换,以满足数据仓库的需求。

数据存储层是指存储整合后的数据的位置,通常采用关系数据库。

数据使用层包括数据访问接口和报表工具,用于用户对数据进行分析和报告。

第二部分:特点和优势H1: 数据仓库的特点数据仓库具有以下几个特点:1.面向主题:数据仓库根据业务需求,将数据组织成主题,提供便于分析的数据模型。

2.集成性:数据仓库整合了不同来源的数据,消除了数据冗余和不一致性。

3.非易失性:数据仓库中的数据一般是只读的,不会因为操作或事务而发生变化。

4.完整性:数据仓库保持历史数据的完整性,记录了过去的业务活动和状态变化。

数据仓库基本概念

数据仓库基本概念

数据仓库基本概念数据仓库是一个面向主题、集成、时间可变、非易失性的数据集合,用于支持管理决策。

它是企业级数据中心的核心,是利用数据分析为业务提供支持的重要工具。

数据仓库的设计基于业务需求,是为支持企业决策而构建的。

它集中存储企业各个方面的数据,并提供了快速、易用、灵活的数据检索方式。

数据仓库的设计目标是能够提供一种有质量、一致、准确的数据集,从而为企业决策提供最好的支持。

数据仓库具有以下基本特征:1. 面向主题:数据仓库是面向业务主题的,而不是面向应用或部门,它在数据结构、数据格式等方面与应用系统、各部门内部的数据是分开的。

2. 集成性:数据仓库整合了来自于不同系统、不同部门的数据,通过ETL过程,实现数据的提取、转换和加载,从而产生一个一致、标准、统一的数据集。

3. 时间可变性:数据仓库是为了支持历史性数据的查询和分析而构建的,它记录了数据的历史变化情况,存储了历史数据版本,方便用户进行历史数据的回溯和分析。

4. 非易失性:数据仓库中的数据是不易失的,它要求有一定的容错机制和备份策略,以保证数据的安全性和可靠性。

5. 决策支持:数据仓库是为了支持决策而构建的,它提供了各种查询、统计和分析功能,方便用户进行数据的挖掘和分析,支持用户做出更加准确、科学、有效的决策。

数据仓库的设计过程一般包括需求分析、数据建模、ETL开发、数据仓库实现和维护。

在需求分析阶段,要明确业务目标和业务需求,确定数据仓库的主题和范围。

在数据建模阶段,要根据需求分析结果,进行数据建模和数据字典的设计,构建数据仓库的物理架构和逻辑架构。

在ETL开发阶段,要开发ETL过程,进行数据提取、转换和加载。

在实现和维护阶段,要进行数据管理、数据质量控制、数据安全管理和性能优化等工作。

在数据仓库的实现过程中,还可以采用数据仓库的架构、数据挖掘技术和数据可视化技术等手段,增强数据仓库的功能和应用价值。

综上所述,数据仓库是企业重要的决策支持工具,是面向主题、集成、时间可变、非易失性的数据集合。

数据仓库的概念模型设计模型定义

数据仓库的概念模型设计模型定义

数据仓库的概念模型设计模型定义数据仓库是指存储和管理企业各种数据的一个集中化的、数据驱动的系统。

它旨在为企业决策提供可靠、一致和高效的数据支持。

数据仓库的概念模型设计是指设计数据仓库的基本结构和组织方式,以便满足企业的需求。

1.数据源:数据仓库的数据源可以包括内部和外部的数据源。

内部数据源包括企业内部的各种事务性系统,如企业资源计划(ERP)系统、客户关系管理(CRM)系统等。

外部数据源可以是第三方数据供应商提供的数据,如市场研究报告、竞争对手的数据等。

2.数据抽取和清洗:数据仓库需要从不同的数据源中抽取数据,并进行清洗和转换。

数据清洗是指对数据进行校验、去重、格式化等操作,确保数据的准确性和一致性。

数据转换是指将数据从不同的格式转换为统一的格式,以便于在数据仓库中进行分析和查询。

3.数据存储:数据仓库需要设计合适的数据存储结构,以便于高效地存储和查询大量的数据。

常见的数据存储结构包括维度模型和星型模型。

维度模型是以事实表和维度表为核心的模型,事实表记录了与业务过程相关的指标数据,维度表记录了与事实表相关的维度信息。

星型模型是一种特殊的维度模型,只有一个事实表和多个维度表,事实表与维度表之间是一对多的关系。

4.数据访问和查询:数据仓库需要提供灵活、高效的数据访问和查询功能,以满足不同用户的需求。

常用的数据查询方式包括在线分析处理(OLAP)、数据挖掘和数据报表等。

OLAP是一种多维分析技术,可以对数据进行多维度的查询和分析;数据挖掘是一种从数据中发现隐藏模式和知识的技术;数据报表是一种以表格和图形的形式展示数据的方式。

5.数据质量管理:数据仓库的数据质量对于企业的决策和分析至关重要。

因此,数据仓库需要建立数据质量管理机制,包括数据验证、数据清洗、数据修复和数据监控等。

数据验证是指对数据进行合法性和完整性的校验,数据清洗是指对数据进行格式化和去重,数据修复是指对数据进行错误修复和补充,数据监控是指实时监控数据的变化和质量。

通俗易懂了解什么是数据仓库

通俗易懂了解什么是数据仓库

通俗易懂了解什么是数据仓库什么是数据仓库数据仓库(下⽂以“数仓”称),顾名思义,存放数据的仓库,它集合了各个业务系统的数据,以⾦融业为例,数仓包含了贷款业务、CRM、存款业务等数据。

⽤于企业做数据分析、出报告、做决策;在有些公司也作为各业务系统的数据来源。

从逻辑上理解,数据库和数仓没有区别,都是通过数据库软件实现存放数据的地⽅,只不过从数据量来说,数据仓库要⽐数据库更庞⼤。

他们最主要的区别在于,传统事务型数据库如 MySQL ⽤于做联机事务处理(OLTP),例如交易事件的发⽣等;⽽数据仓库主要⽤于联机分析处理(OLAP),例如出报表等。

有些同学可能想,数据分析、出报表等⼯作也可以直接通过业务数据库完成呀,数据仓库似乎也不是必需品。

如果是简单的系统,⽐如初创时期,业务量少,⽤户和数据少,⼏台服务器和⼏个MySQL组成的系统,那确实可以实现。

但当业务越做越多,⽤户和数据量很庞⼤,出报表需要跨集群关联多个系统的数据实现的话,那数仓还是很有必要的。

如果还不能理解,先想⼏个问题如果你要的数据分别存放在很多个不同的数据库,甚⾄存在于各种⽇志⽂件中,你要如何获取这些数据?如果你从各数据源中取出了你要的数据,但是发现格式不⼀样,或者数据类型不⼀样,你要怎么规范?如果有⼀天你需要在业务系统查历史数据,但发现这些数据被修改过的,你要怎么办?如果要跨集群关联各个不同业务系统的数据,要怎么做?怎么优化查询时间?……数仓的出现,可以很好的解决上⾯这些问题。

它通过数据抽取和清洗,将各个业务系统的数据整合落地到⼀个系统(数仓),规范化数据,⽅便在出报表做决策的时候获取数据。

数仓的特点集成性数仓中存储的数据来源于多个数据源,原始数据在不同数据源中的存储⽅式各不相同。

要整合成为最终的数据集合,需要从数据源经过⼀系列抽取、清洗、转换的过程。

稳定性数仓中保存的数据是历史记录,不允许被修改。

⽤户只能通过分析⼯具进⾏查询和分析。

动态性数仓的数据会随时间变化⽽定期更新,这⾥的定期更新不是指修改数据,⼀般是将业务系统发⽣变化的数据定期同步到数仓,和稳定性不冲突。

数据仓库——精选推荐

数据仓库——精选推荐

数据仓库第⼀章数据仓库概念数据仓库(英语:Data Warehouse,简称数仓、DW),是⼀个⽤于存储、分析、报告的数据系统。

数据仓库的⽬的是构建⾯向分析的集成化数据环境,为企业提供决策⽀持(Decision Support)。

数据仓库本⾝并不“⽣产”任何数据,其数据来源于不同外部系统;同时数据仓库⾃⾝也不需要“消费”任何的数据,其结果开放给各个外部应⽤使⽤,这也是为什么叫“仓库”,⽽不叫“⼯⼚”的原因。

第⼆章场景案例数据仓库为何⽽来?先下结论:为了分析数据⽽来,分析结果给企业决策提供⽀撑。

信息总是⽤作两个⽬的:操作型记录的保存和分析型决策的制定。

数据仓库是信息技术长期发展的产物。

下⾯以中国⼈寿保险公司(chinalife)发展为例,阐述数据仓库为何⽽来?2.1 操作型记录的保存中国⼈寿保险(集团)公司下辖多条业务线,包括:⼈寿险、财险、车险,养⽼险等。

各业务线的业务正常运营需要记录维护包括客户、保单、收付费、核保、理赔等信息。

联机事务处理系统(OLTP)正好可以满⾜上述业务需求开展, 其主要任务是执⾏联机事务和查询处理。

其基本特征是前台接收的⽤户数据可以⽴即传送到后台进⾏处理,并在很短的时间内给出处理结果。

关系型数据库是OLTP典型应⽤,⽐如:Oracle、Mysql、SQL Server等。

2.2 分析型决策的制定随着集团业务的持续运营,业务数据将会越来越多。

由此也产⽣出许多运营相关的困惑:能够确定哪些险种正在恶化或已成为不良险种?能够⽤有效的⽅式制定新增和续保的政策吗?理赔过程有欺诈的可能吗?现在得到的报表是否只是某条业务线的?集团整体层⾯数据如何?为了能够正确认识这些问题,制定相关的解决措施,瞎拍桌⼦是肯定不⾏的。

最稳妥办法就是:基于业务数据开展数据分析,基于分析的结果给决策提供⽀撑。

也就是所谓的数据驱动决策的制定。

然后,⾯临下⼀个问题:在哪⾥进⾏数据分析?数据库可以吗?2.3 OLTP环境开展分析可⾏吗?结论:可以,但是没必要。

数据仓库的概念与体系结构

数据仓库的概念与体系结构

数据仓库的概念与体系结构概念数据仓库是指集成了企业各个部门内部数据源以及外部数据源,并将这些数据进行整合、加工、清洗、归类后,存储到一个专门的数据库中,以支持企业数据决策分析的一种技术体系。

它是一个面向主题的、集成的、可变的、非易失的数据集合,支持企业决策制定者进行分析与决策。

数据仓库是将企业海量的数据以主题为维度进行归纳与整合,清洗过后的结构化数据,不仅包括内部的数据源,还可以包含外部数据源的合并,以便于管理与分析。

相对于传统的数据库,数据仓库更加注重主题分析和决策支持。

它以可视化、图表化的方式展示数据,帮助企业进行全面、深入的分析。

体系结构数据仓库的体系结构分为三层,分别是数据采集层、数据仓库层和数据应用层。

数据采集层数据采集层主要负责收集数据,并将数据送至数据仓库层进行处理和存储。

数据采集层对数据进行抽取、转换、加载等一系列预处理操作,以确保数据的质量和可靠性。

常用的数据采集技术包括ETL(抽取、转换、加载)、CDC(变更数据捕获)等。

数据仓库层数据仓库层是数据仓库体系结构中的核心层,主要用于存储、管理和加工数据。

数据仓库层主要由数据存储和数据管理两部分组成。

数据存储部分用于存储各种类型的数据,包括企业内部数据、外部数据和第三方数据。

数据管理部分则用于管理数据仓库中的数据,包括数据的分区、索引、备份等操作。

常见的数据仓库管理系统有Oracle、Teradata、Greenplum等。

数据应用层数据应用层主要用于支持企业的数据决策分析。

该层包括各种类型的分析工具和应用程序,如智能报表、数据挖掘、机器学习、数据可视化等,可以帮助企业进行复杂的数据分析和有效的决策制定。

常见的BI工具有PowerBI、Tableau、SAS、Cognos等。

数据仓库是一种用于支持企业数据决策分析的技术体系,是由数据采集层、数据仓库层、数据应用层三个主要部分组成的。

其中数据采集层负责数据的收集和处理,数据仓库层用于存储和管理数据,数据应用层则是为企业提供分析和决策支持的关键层。

数据仓库的基本概念

数据仓库的基本概念

数据仓库的基本概念随着信息化时代的到来,数据的积累和应用越来越广泛,数据仓库作为企业数据管理的重要手段,也受到了越来越多的关注。

数据仓库是一种面向主题、集成、稳定、随时可用的数据集合,为企业决策提供了可靠的数据支持。

本文将从数据仓库的基本概念、架构、设计和实现等方面进行探讨。

一、数据仓库的基本概念1.1 数据仓库的定义数据仓库是一个面向主题、集成、稳定、随时可用的数据集合,为企业决策提供可靠的数据支持。

它是一个面向决策支持的数据集成、管理和分析平台,主要用于支持企业的决策制定和业务分析。

1.2 数据仓库的特点(1)面向主题:数据仓库是针对某个主题的数据集合,这个主题可以是企业的销售、市场、客户、产品等。

数据仓库以主题为导向,提供了全面、一致的数据视图,帮助企业深入了解业务。

(2)集成:数据仓库是从多个数据源中集成数据而成,可以包括企业内部的各种数据系统,也可以包括外部的数据源。

数据仓库的集成性使得企业可以从不同的角度来看待业务,更好地进行分析。

(3)稳定:数据仓库提供了稳定的数据环境,数据的结构和内容都是经过精心设计和维护的。

这使得企业可以放心地使用数据仓库中的数据,而不必担心数据的质量和可靠性问题。

(4)随时可用:数据仓库提供了随时可用的数据访问服务,任何人都可以在任何时间、任何地点通过合适的工具来访问数据仓库中的数据。

这为企业的决策制定和业务分析提供了极大的便利。

1.3 数据仓库的目的数据仓库的主要目的是为企业的决策制定和业务分析提供可靠的数据支持。

通过数据仓库,企业可以深入了解业务,发现业务规律,预测业务趋势,从而更好地制定决策和调整业务战略。

二、数据仓库的架构2.1 数据仓库的架构模型数据仓库的架构模型主要包括三层,即数据源层、数据仓库层和数据应用层。

数据源层是指数据仓库所需要的各种数据源,包括企业内部的各种数据系统和外部的数据源;数据仓库层是指数据仓库的存储和管理层,包括数据仓库的数据模型、数据仓库的物理存储结构、数据抽取、转换和加载以及数据仓库的维护和管理;数据应用层是指数据仓库的应用层,包括数据仓库的查询、报表、分析、挖掘等应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数据仓库的概念及使用情况介绍1996年, Inmon 在他的专著《Building the Data Warehouse》中, 对数据仓库做了如下定义,即“面向主题的、完整的、非易失的、不同时间的、用于支持决策的数据集合”。

这和传统的OLTP系统有很大的区别,它属在线分析(OLAP)系统的范畴。

面向主题的,指的是它将依据一定的主题,比如经销商、产品、定单等汇总各个OLTP系统的数据。

完整的, 指的是要求对各个系统数据表示进行转换,用统一编码表示,比如,A系统用001表示退货, 而B系统用999表示退货,在数据仓库中必须统一成一个编码。

非易失的, 指的是系统用户只读数据,不得修改数据。

数据仓库完整地记录了各个历史时期的数据,而OLTP系统不会保留全部的历史记录。

OLTP系统也难以支持决策查询,例如从几千万笔记录中获取不同区域的汇总报表。

完整的数据仓库应包括:1.数据源->2.ETL ->3.数据仓库存储->4.OLAP ->5.BI工具现实中可以实现的方案有:1.数据源-> BI工具2.数据源-> OLAP -> BI工具3.数据源-> 数据仓库存储-> BI工具4.数据源-> 数据仓库存储-> OLAP -> BI工具5.数据源-> ETL -> 数据仓库存储-> OLAP -> BI工具可见其中必需的是数据源和前端,其他的部分都可根据具体情况决定取舍。

建立数据仓库的步骤:1) 收集和分析业务需求2) 建立数据模型和数据仓库的物理设计3) 定义数据源4) 选择数据仓库技术和平台5) 从操作型数据库中抽取、净化、和转换数据到数据仓库6) 选择访问和报表工具7) 选择数据库连接软件8) 选择数据分析和数据展示软件9) 更新数据仓库数据仓库设计的主要步骤如下:1. 系统主题的确定这要求系统设计人员多与业务人员沟通, 详细了解业务需求、报表需求,再归纳成数据仓库的主题。

例如, 经销商主题,包含经销商各个历史时期的级别、销售额、信贷、活动区域等。

产品主题,包含每个产品在各个历史时期、各个区域的销售额、促销力度、销售件数、产品类别等。

2. 数据库的逻辑设计在确定主题后, 需要对主题包含的信息进行详细定义,并对事实表和维表的关系详细定义。

比如, 经销商主题中的销售额, 定义为几个字段:NetSales (净销售额),表示扣除了一切优惠折扣,数据类型为Number(12,3); CusSales, 表示产品目录价的销售额, 数据类型为Number(12,3);TitleCode, 表示级别, 如101表示全国一级代理, 202表示省二级代理,数据类型为V arChar2(3)等。

3. 数据库的物理设计物理设计主要考虑数据的存储方式, 使得系统有较好的性能。

对于记录庞大的事实表,可以考虑分区存放。

而记录很少的维表则可以集中存放于某一表空间, 甚至可以让其数据在首次读取时驻留在系统内存中, 以加快数据存取速度。

索引的建立也在物理设计中完成, 索引是一把双刃剑,能提高读取速度, 也会使数据更新速度降低, 并占用大量磁盘空间。

后面的案例分析中将谈到这点。

独立磁盘阵列(RAID)方案的设计与数据更新网络的设计也需在此阶段完成。

合适的RAID方案对最终系统的性能有很大的影响。

4. 源数据获取、清洗、整理及装载设计数据仓库的数据总是来自前台作业系统、业务部门的计划数据、各类广告促销活动及其影响数据,以及购买回来的商业数据库。

这些数据并非照搬过来就行, 而是要按照前面提到的步骤, 以统一定义的格式从各个系统抽取出来, 经过清洗,再经过数据装载和整理程序进入数据仓库。

5. 数据表达及访问设计数据按统一格式、不同的主题存放到数据仓库后,下一步要着手数据表达及访问。

这主要考虑用户对信息的具体需求, 对应采用不同的方式。

比如, 使用Oracle数据库存放数据, 可以用PL/SQL编制报表, 也可以用Developer2000或V isual Basic编制报表, 当然也可以采用一些业界优秀的OLAP产品,例如Cognos公司的Transformer、PowerPlay Enterprise、Oracle 公司的Express等。

6. 不间断的维护方案的设计数据仓库的运作与传统的作业系统有很大区别, 它需要不间断地维护,否则它的性能将越来越差。

例如, 数据访问采用基于代价的优化(CBO),事实表记录实施时有300万笔记录,一个月后记录数为3000万,当时的CBO根本无法得到现在的最优化存取路径。

必须设计一个不间断的维护方案, 让系统保持优良的性能。

7. 编码、测试及实施下面的工作就是编码、测试及实施了。

最终的数据仓库系统结构大致如图1所示,依据不同的情况, 系统结构图也会有些差别。

数据仓库常见名词浅释Data Warehouse本世纪80年代中期,"数据仓库之父"William H.Inmon先生在其《建立数据仓库》一书中定义了数据仓库的概念,随后又给出了更为精确的定义:数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合。

与其他数据库应用不同的是,数据仓库更像一种过程,对分布在企业内部各处的业务数据的整合、加工和分析的过程。

而不是一种可以购买的产品。

Data mart数据集市,或者叫做"小数据仓库"。

如果说数据仓库是建立在企业级的数据模型之上的话。

那么数据集市就是企业级数据仓库的一个子集,他主要面向部门级业务,并且只是面向某个特定的主题。

数据集市可以在一定程度上缓解访问数据仓库的瓶颈。

OLAP联机分析处理(OLAP)的概念最早是由关系数据库之父E.F.Codd于1993年提出的。

当时,Codd认为联机事务处理(OLTP)已不能满足终端用户对数据库查询分析的需要,SQL对大数据库进行的简单查询也不能满足用户分析的需求。

用户的决策分析需要对关系数据库进行大量计算才能得到结果,而查询的结果并不能满足决策者提出的需求。

因此Codd提出了多维数据库和多维分析的概念,即OLAP。

Codd提出OLAP的12条准则来描述OLAP系统:准则1 OLAP模型必须提供多维概念视图准则2 透明性准则准则3 存取能力推测准则4 稳定的报表能力准则5 客户/服务器体系结构准则6 维的等同性准则准则7 动态的稀疏矩阵处理准则准则8 多用户支持能力准则准则9 非受限的跨维操作准则10 直观的数据操纵准则11 灵活的报表生成准则12 不受限的维与聚集层次ROLAP基于Codd的12条准则,各个软件开发厂家见仁见智,其中一个流派,认为可以沿用关系型数据库来存储多维数据,于是,基于稀疏矩阵表示方法的星型结构(star schema)就出现了。

后来又演化出雪花结构。

为了与多维数据库相区别,则把基于关系型数据库的OLAP 称为Relational OLAP,简称ROLAP。

代表产品有Informix Metacube、Microsoft SQL Server OLAP Services。

MOLAPArbor Software严格遵照Codd的定义,自行建立了多维数据库,来存放联机分析系统数据,开创了多维数据存储的先河,后来的很多家公司纷纷采用多维数据存储。

被人们称为Muiltdimension OLAP,简称MOLAP,代表产品有Hyperion(原Arbor Software) Essbase、Showcase Strategy等。

Client OLAP相对于Server OLAP而言。

部分分析工具厂家建议把部分数据下载到本地,为用户提供本地的多维分析。

代表产品有Brio Designer,Business Object。

DSS决策支持系统(Decision Support System),相当于基于数据仓库的应用。

决策支持就是在收集所有有关数据和信息,经过加工整理,来为企业决策管理层提供信息,为决策者的决策提供依据。

ETL数据抽取(Extract)、转换(Transform)、清洗(Cleansing)、装载(Load)的过程。

构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

Ad hoc query即席查询,数据库应用最普遍的一种查询,利用数据仓库技术,可以让用户随时可以面对数据库,获取所希望的数据。

EIS领导信息系统(Executive Information System),指为了满足无法专注于计算机技术的领导人员的信息查询需求,而特意制定的以简单的图形界面访问数据仓库的一种应用。

BPR业务流程重整(Business Process Reengineering),指利用数据仓库技术,发现并纠正企业业务流程中的弊端的一项工作,数据仓库的重要作用之一。

BI商业智能(Business Intelligence),指数据仓库相关技术与应用的通称。

指利用各种智能技术,来提升企业的商业竞争力。

Data Mining数据挖掘,Data Mining是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策CRM客户关系管理(Customer Relationship Management),数据仓库是以数据库技术为基础但又与传统的数据库应用有着本质区别的新技术,CRM就是基于数据仓库技术的一种新应用。

但是,从商业运作的角度来讲,CRM其实应该算是一个古老的"应用"了。

比如,酒店对客人信息的管理,如果某个客人是某酒店的老主顾,那么该酒店很自然地会知道这位客人的某些习惯和喜好,如是否喜欢靠路边,是否吸烟,是否喜欢大床,喜欢什么样的早餐,等等。

当客人再次光临时,不用客人自己提出来,酒店就会提供客人所喜欢的房间和服务。

这就是一种CRM。

Meta Data元数据,关于数据仓库的数据,指在数据仓库建设过程中所产生的有关数据源定义,目标定义,转换规则等相关的关键数据。

同时元数据还包含关于数据含义的商业信息,所有这些信息都应当妥善保存,并很好地管理。

为数据仓库的发展和使用提供方便。

基本术语维度是与业务相关的观察角度。

粒度是指数据仓库的数据单位中保存数据的细化或综合程度的级别。

对于产品维度来说,粒度就是1,就是产品类型本身。

粒度是用来描述维度的,比如,一个时间维的最细粒度是月,就说明这个时间的最低级的level是月,可能是年-季度-月,或者年-月等。

相关文档
最新文档