安徽师范大学计算机《数值分析》本科教学大纲
数值分析 教学大纲
数值分析教学大纲数值分析是计算数学的一个分支,主要研究如何用计算机来解决数学问题。
它涉及到数值计算、数值逼近、数值积分、数值微分方程等方面的内容。
数值分析的教学大纲应该包括以下几个方面的内容:一、数值计算方法数值计算方法是数值分析的基础,它主要包括数值计算的误差分析、数值计算的稳定性分析、数值计算的收敛性分析等内容。
在教学过程中,可以通过讲解数值计算方法的基本原理和算法,以及通过实例演示数值计算方法的应用,来帮助学生理解和掌握数值计算方法。
二、数值逼近数值逼近是数值分析的一个重要内容,它主要研究如何用简单的数学函数来逼近复杂的函数。
在教学中,可以通过讲解插值多项式、最小二乘逼近等方法的原理和应用,以及通过实例演示数值逼近方法的具体步骤和计算过程,来帮助学生理解和掌握数值逼近的方法和技巧。
三、数值积分数值积分是数值分析的一个重要内容,它主要研究如何用数值方法来计算定积分。
在教学中,可以通过讲解数值积分的基本原理和算法,以及通过实例演示数值积分方法的应用,来帮助学生理解和掌握数值积分的方法和技巧。
四、数值微分方程数值微分方程是数值分析的一个重要内容,它主要研究如何用数值方法来求解微分方程。
在教学中,可以通过讲解数值微分方程的基本原理和算法,以及通过实例演示数值微分方程的应用,来帮助学生理解和掌握数值微分方程的方法和技巧。
五、数值软件数值软件是数值分析的一个重要工具,它主要用于实现数值计算方法、数值逼近方法、数值积分方法和数值微分方程方法等的计算和模拟。
在教学中,可以通过讲解数值软件的基本功能和使用方法,以及通过实例演示数值软件的应用,来帮助学生掌握数值软件的使用技巧。
总之,数值分析的教学大纲应该包括数值计算方法、数值逼近、数值积分、数值微分方程和数值软件等方面的内容。
通过理论讲解和实例演示相结合的方式,可以帮助学生理解和掌握数值分析的基本原理和方法,从而提高他们的计算和模拟能力。
数值分析作为计算数学的一个重要分支,对于培养学生的计算思维和解决实际问题的能力具有重要意义。
《数值分析》课程教学大纲
《数值分析》课程教学大纲学分:3分理论学时:16学时实践学时:16学时一、课程性质与教学目标数值分析是数学与应用数学专业的一门专业必修核心课程,它主要内容是介绍近代计算机常用的计算方法及其基础理论.数值分析是数学与现代电子计算机紧密结合的一个近代数学分支,它直接为现代工程技术和科学研究服务.科学计算已成为与理论分析、科学实验并驾齐驱的科学研究方法.让学生熟练掌握所规定的主要算法以及基本理论;学会各种主要算法的程序编写及上机实现;根据教程中所介绍的基本理论和原理,初步学会简单理论论证,以达到有一定分析问题和解决问题的能力.二、基本要求通过本课程的学习,使学生掌握算法和误差等概念,了解误差的来源以及在近似计算中的传播规律,了解算法的稳定性及其注意事项,并能估计一些简单误差.掌握拉格朗日插值公式,理解曲线拟合方法.掌握机械求积公式、牛顿-柯特斯公式.掌握非线性方程求根的迭代公式的构造,理解牛顿法.掌握线性方程组的迭代公式:雅可比迭代公式、高斯-塞德尔迭代公式.掌握解线性方程组的消去法、追赶法.掌握计算微分方程的欧拉方法和改进的欧拉方法.三、主要教学方法讲授、讨论与实验相结合四、理论教学内容第1章引论【授课学时】2学时【基本要求】掌握算法、误差和有效数字等概念,了解误差的来源以及在近似计算中的传播规律,了解算法的稳定性及其注意事项,并能估计一些简单误差..【教学重难点】教学重点:算法和误差等概念.教学难点:误差在近似计算中的传播规律.【授课内容】数值计算方法,误差的种类及其来源,绝对误差和相对误差,有效数字及其与误差的关系,误差的传播与估计,算法的数值稳定性及其注意事项.第2章插值方法【授课学时】4学时【基本要求】掌握拉格朗日插值公式,曲线拟合方法.【教学重难点】教学重点:拉格朗日插值公式,曲线拟合方法.教学难点:曲线拟合方法.【授课内容】插值概念,拉格朗日插值公式,曲线拟合方法.第3章数值积分与数值微分【授课学时】2学时【基本要求】掌握机械求积公式,牛顿-柯特斯公式.【教学重难点】教学重点:机械求积公式,牛顿-柯特斯公式.教学难点:牛顿-柯特斯公式.【授课内容】数值积分基本概念,插值型数值积分公式.第4章方程(组)的数值解法【授课学时】6学时【基本要求】掌握方程求根的迭代公式的构造,理解牛顿法,掌握解线性方程组的迭代公式:雅可比迭代公式和高斯-塞德尔迭代公式,掌握解线性方程组的消去法、追赶法.【教学重难点】教学重点:方程求根的迭代公式的构造,解线性方程组的迭代公式:雅可比迭代公式、高斯-塞德尔迭代公式,解线性方程组的消去法.教学难点:牛顿方法,高斯-塞德尔迭代公式,解线性方程组的消去法.【授课内容】根的搜索,迭代法、牛顿法.第5 章微分方程的数值解法【授课学时】2学时【基本要求】掌握计算常微分方程的欧拉方法和改进的欧拉方法.【教学重难点】教学重点:计算常微分方程的欧拉方法.教学难点:改进的欧拉方法.【授课内容】欧拉方法.五、实验教学内容项目1 插值方法【实验类型】验证【实验学时】4学时【实验目的】加深对拉格朗日插值,曲线拟合方法的理解和应用.【实验内容摘要】拉格朗日插值,曲线拟合方法.【实验基本要求】(1)能完成两点、三点的拉格朗日插值程序的编写;(2)能完成多项式的曲线拟合.【主要仪器设备名称及规格、型号】计算机安装有Matlab或C++软件项目2 数值积分【实验类型】设计【实验学时】4学时【实验目的】加深对数值积分公式的理解.【实验内容摘要】梯形公式、辛普生公式的程序设计,并比较误差.【实验基本要求】(1)能完成梯形公式、辛普生公式的程序设计;(2)能根据计算结果比较误差判断精度.【主要仪器设备名称及规格、型号】计算机安装有Matlab或C++软件项目3 非线性方程求根【实验类型】验证【实验学时】2学时【实验目的】实现牛顿方法程序的编写.【实验内容摘要】牛顿迭代法【实验基本要求】能在计算机上用牛顿方法求解非线性方程.【主要仪器设备名称及规格、型号】计算机安装有Matlab或C++软件.项目4 线性方程组的迭代法和直接法【实验类型】综合【实验学时】4学时【实验目的】加深对线性方程组的迭代法和直接法的理解.【实验内容摘要】雅可比迭代法,高斯-赛德尔迭代法,高斯消去法.【实验基本要求】(1)会用雅可比迭代法、高斯-赛德尔迭代法、高斯消去法设计程序;(2)能根据计算结果比较方法的优缺点.【主要仪器设备名称及规格、型号】计算机安装有Matlab或C++软件.项目5 微分方程的数值解法【实验类型】设计【实验学时】2学时【实验目的】加深对欧拉方法的理解和应用.【实验内容摘要】欧拉方法.【实验基本要求】要求根据微分方程的设计程序.【主要仪器设备名称及规格、型号】计算机安装有Matlab或C++软件.六、考核方式考核类型:考试考核形式:闭卷七、主要参考资料1、《数值计算方法及其程序实现》吴开腾等编科学出版社,2015年2、《计算方法—算法设计及其MATLAB实现》王能超主编华中科技大学出版社,2010年.3、《数值分析简明教程第二版》王能超主编高等教育出版社,2003年.4、《计算方法》易大义主编浙江大学出版社,2002年.5、《数值分析》黄铎主编科学出版社,2000年.6、《数值分析与实验学习指导》蔡大用主编清华大学出版社,2001年.7、网络资源链接/eol/homepage/course/layout/page/index.jsp?courseId=1029 7编写人(签字):数值分析课程小组审核人(签字):二级学院负责人(签字):。
《数值分析》教学大纲
《数值分析》教学大纲
一、课程名称:数值分析
二、课程性质:专业选修课
三、授课学时:48学时(实验室32学时)
四、授课对象:计算机专业本科课程学生
五、课程目前:
1.数值分析的定义、内容及其在科学计算中的重要性;
2.数值积分的原理及其应用,包括高斯积分、拉格朗日积分、Lagrange插值法、梯形法等;
3.常微分方程的数值解法,包括隐式Euler方法、欧拉法、Runge-Kutta方法、Adams方法、Lorenz方法等;
4.最优化的原理和算法,包括一阶最优化方法、梯度方法、拟牛顿法、二阶最优化方法及其应用;
5.系统辨识的原理及其应用;
6.数值计算实践,使用MATLAB编程实现数值计算;
六、教学进度安排
第1讲:数值分析的定义、内容及其在科学计算中的重要性
第2讲:数值积分的原理及其应用:高斯积分、拉格朗日积分、Lagrange插值法
第3讲:隐式Euler方法
第4讲:欧拉法
第5讲:Runge-Kutta方法
第6讲:Adams方法
第7讲:Lorenz方法
第8讲:一阶最优化方法、梯度方法和拟牛顿法
第9讲:二阶最优化方法及其应用
第10讲:系统辨识原理及其应用
第11讲:MATLAB编程实现数值计算
七、教学要求
1.熟悉数值分析的定义、内容及其在科学计算中的重要性;。
数值分析本科教学大纲
数值分析本科教学大纲数值分析本科教学大纲数值分析是一门应用数学的学科,旨在研究用数值方法解决实际问题的理论和技术。
它涉及到数值计算、数值逼近、数值优化等方面的知识,广泛应用于科学计算、工程设计、金融分析等领域。
为了培养学生的数值计算能力和解决实际问题的能力,数值分析课程在本科教学中起着重要的作用。
一、课程目标数值分析课程的目标是使学生掌握数值计算的基本方法和技巧,理解数值算法的原理和应用,培养解决实际问题的能力。
具体目标包括:1. 理解数值计算的基本概念和原理,掌握数值计算的基本方法和技巧;2. 掌握数值逼近和插值的方法,能够利用数值方法对实际问题进行逼近和插值;3. 理解数值微积分和数值积分的原理和应用,能够利用数值方法求解实际问题的积分;4. 掌握数值代数和线性方程组的解法,能够利用数值方法求解实际问题的线性方程组;5. 理解数值优化的原理和方法,能够利用数值方法求解实际问题的优化;6. 能够利用计算机编程实现数值计算算法,分析和解决实际问题。
二、课程内容数值分析课程的内容包括:1. 数值计算基础:数值计算的概念和原理,数值计算误差和稳定性分析;2. 数值逼近和插值:插值多项式、最小二乘逼近、样条插值等方法;3. 数值微积分和数值积分:数值微分和数值积分的方法,数值微分方程的数值解法;4. 数值代数和线性方程组:矩阵运算、线性方程组的直接解法和迭代解法;5. 数值优化:单变量和多变量函数的最优化方法,约束优化问题的求解;6. 计算机编程:利用计算机编程实现数值计算算法,分析和解决实际问题。
三、教学方法数值分析课程采用理论教学与实践相结合的教学方法。
具体教学方法包括:1. 理论讲授:通过讲解数值计算的基本概念、原理和方法,帮助学生理解数值计算的基本原理和应用;2. 实例分析:通过实例分析,引导学生将数值计算方法应用于实际问题的解决;3. 计算机实验:通过计算机实验,让学生亲自实践数值计算算法,培养学生的计算机编程能力和问题解决能力;4. 课堂讨论:通过课堂讨论,激发学生的思考和创新能力,培养学生的团队合作能力;5. 课程设计:通过课程设计,让学生独立完成一个小型数值计算项目,提高学生的综合运用能力。
数值分析课程教学大纲
《数值分析》课程教学大纲一、课程基本信息
二、课程目标及对毕业要求指标点的支撑
注:“学生学习预期成果,,是描述学生在学完本课程后应具有的能力,可以用认知、理解、应用、分析、综合、判断等描述预期成果达到的程度。
四、课程考核
五、教材及参考资料
[1]李庆扬,王能超,易大义.数值分析(第5版)[M],北京:清华大学出版
社,2003.ISBN:9787302185659
[2]傅凯新,黄云清,舒适.数值计算方法[M],长沙:湖南科学技术出版
社,2002.ISBN:7535734847∕O∙198.
[3]王沫然.Mat1ab6.0与科学计算(第3版)[M],北京:电子工业出版社,2001.ISBN:
9787121180521.
六、教学条件
需要使用多媒体教室授课,授课电脑安装了WindOWS7、OffiCe2010、
1ingo1KMat1ab2015>Mathematica11>MathType6.9以上版本的正版软件:需要安装了授课系统及Windows7OffiCe2010、1ingo11、MaHab2015、Mathematica11MathTyPe6.9以上版本的电脑进行上机实训。
附录:各类考核评分标准表
小计
15。
《数值分析》教学大纲
《数值计算》教学大纲【课程名称】数值计算(Numerical Computation)【课程代码】【学分】【参考学时】 48学时【讲授学时】48学时【试验学时】 20学时【实习学时】【课程性质】专业必修课第一部分课程目的与任务一、课程基础:在学习计算方法之前,要求学生应掌握数学分析(或高等数学)、高等(或线性)代数等数学知识,应具备熟练运用C或C++、FORTRAN语言、Matlab语言等进行程序设计的能力。
二、适应对象:软件工程专业、计算机科学与技术专业。
数学相关专业等可以修读本课程。
三、教学目的:由于计算机的迅速发展和全面普及,数值计算方法的应用已经普遍深入到各个科学领域,很多复杂的和大规模的计算问题都可以在计算机上进行计算,新的、有效的数值方法不断出现。
科学与工程中的数值计算已经成为各门自然科学和工程技术科学的一种重要手段,成为与实验和理论并列的一个不可缺少的环节。
所以计算方法既是一个基础性的,同时也是一个应用性的数学学科(计算数学的主要部分),与其它学科的联系十分紧密。
计算方法可作为计算机相关专业的专业基础课。
学习本课程之后,以期学生能够在计算机上进行有关的科学与工程计算。
后续课程有计算机图形学、图像处理、模式识别等。
四、内容提要:研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
数值计算的主要内容包括函数的插值和逼近、数值积分和微分、解线性代数方程组的直接和迭代方法、解非线性方程和方程组的数值方法、矩阵特征值问题计算方法、常微分和偏微分方程数值解等。
五、参考教材:教材:数值分析(第4版),李庆扬、王能超、易大义,清华大学出版社`、施普林格出版社,2001;参考书:1.数值分析基础,关治、陆金甫,高等教育出版社,1998;2.数值逼近,李岳生、黄友谦,人民教育出版社,1978;3.计算方法引论,徐萃薇,高等教育出版社;4.矩阵计算与方程求根(第二版),曹志浩、张玉德、李瑞遐,高等教育出版社,1984;5.微分方程数值解法(第三版),李荣华、冯果忱,高等教育出版社,1996。
数值分析教学大纲
第三节正交多项式
第四节函数按正交多项式展开
第五节曲线拟合的最小二乘法
第四章数值积分与数值微分(6学时)
第一节引言
第二节牛顿-柯特斯公式
第三节龙贝格算法
第四节高斯公式
第五节数值微分
第五章常微分方程数值解法(6学时)
第一节引言
第二节尤拉方法
第三节龙格-库塔方法
第四节单步法的收敛性和稳定性
(二)、课程在内容安排及教学过程中的特色
本课程是一门数学课,具有很高的理论性,但它又是与实际结合比较紧密的课程。因此,我们采取课堂讲课与实验相结合的方法,对于课堂讲授的每种数学方法,设计了相应的实验题目。学生可以利用计算机编程实现自己设计的算法,提高对课堂知识进一步理解和掌握,同时培养学生独立思考和解决问题的能力。
本科《数值分析》课程教学大纲
(一)、课程基本情况
课程编号
20240033
开课单位
计算机系
课程名称
中文名称
数值分析
英文名称
Numerical Analysis
教学目的与重点
(一)、课程的重要性
计算能力的培养对理工科各专业的学生是十分重要的。数值分析是计算数学的一个重要部分,研究用计算机技术求解各种数学问题的数值计算方法,及其理论与软件实现,随着计算机科学与计算数学的发展,以及在各种科学技术中的广泛应用,数值分析成为高等学校理工科的一门重要课程。数值分析是一门基础课,强调计算算法原理和理论的分析,以及在实际问题中的应用,希望学生能够用本学科的知识在计算机上进行有关的科学与工程计算。
(三)实验类型
综合设计型实验
(三)、课程主要教学内容
第一章绪论(3学时)
第一节概述
数值分析课程教学大纲
数值分析课程教学大纲一、课程简介数值分析课程是计算机科学与工程领域的一门重要基础课程,旨在培养学生使用数值方法解决实际问题的能力。
本课程主要介绍数值计算的基本原理、常用数值方法以及其在实际应用中的使用。
二、教学目标1. 了解数值计算的基本概念与原理;2. 掌握常用数值方法的基本思想和实现过程;3. 能够独立选择和应用合适的数值方法解决实际问题;4. 具备编写简单数值计算程序的基本能力。
三、教学内容1. 数值计算基础1.1 数值误差与有效数字1.2 浮点运算与舍入误差1.3 计算机数制与机器精度2. 插值与逼近2.1 插值多项式的存在唯一性与插值误差2.2 多项式插值的Newton和Lagrange形式2.3 最小二乘逼近与曲线拟合2.4 样条插值与曲线光滑拟合3. 数值积分与数值微分3.1 数值积分的基本概念及Newton-Cotes公式 3.2 数值积分的复化方法3.3 高斯积分公式3.4 数值微分的中心差分与向前向后差分公式4. 解非线性方程4.1 迭代法与收敛性分析4.2 函数单调性与零点存在性4.3 牛顿迭代法及其变形法4.4 非线性方程求根方法的比较与选择5. 数值代数方程组的直接解法5.1 矩阵消元与高斯消元法5.2 LU分解方法5.3 矩阵的特征值与特征向量5.4 线性方程组迭代解法6. 数值优化方法6.1 优化问题的基本概念与分类6.2 单变量优化方法6.3 多变量优化方法6.4 无约束优化算法和约束优化算法四、教学方法1. 授课方式:理论讲解与实例演示相结合。
2. 实践环节:布置数值计算作业,让学生进行编程实现,并分析实验结果。
3. 课堂互动:鼓励学生积极提问,与教师及同学进行讨论与交流。
五、评分与考核1. 平时成绩占40%,包括平时作业和课堂表现。
2. 期中考试占30%。
3. 期末考试占30%。
六、参考教材1. 《数值分析(第3版)》,李庆扬,高等教育出版社。
2. 《数值分析(第6版)》,理查德 L.伯登,麦格劳-希尔教育出版公司。
《数值分析》教学大纲
《数值代数》教学大纲(学时50+计算实习学时16) 一、课程简述数值代数课程在本科生阶段“数学分析”和“高等代数”的基础上,进一步深入学习和理解与实际应用密切相关的矩阵的理论知识与数值算法。
“数值线性代数”是信息与计算科学、数学与应用数学专业的必修课程,讲述矩阵计算的基础知识,求解线性方程组的直接方法和古典迭代法,最小二乘问题的数值解法,矩阵特征值问题的数值算法,同时做到理论与实践相结合,设计上机实验题目,依托学院的机房开展上机实验,培养学生的实际动手能力,能够利用C++语言或MATLAB语言编写程序。
二、本科相关课程数学分析、高等代数三、课程内容、基本要求与学时分配该课程的上课时间分为两部分:课堂教学及上机实验,在课堂教学方面,要求学习并掌握以下内容:1.范数、稳定性及敏度分析 6学时主要包括矩阵与向量的范数、矩阵三种分解(Jordan分解、Schur分解、奇异值分解)和对称阵的特征分解、两种正交变化(Householder变换、Givens变换)、浮点运算、问题的条件及算法的稳定性。
2.求解线性方程组的直接法 8学时介绍三角形方程组的数值解法、(带选主元策略)Gauss消去法、特殊矩阵的三角分解、Gauss消去法的误差分析及迭代改进.3.求解线性方程组的古典迭代法 8学时介绍迭代法的基础知识、Jacobi迭代法、Gauss-Seidel迭代法、SOR迭代法及其收敛性定理以及各种迭代法的加速.4.Krylov子空间迭代法 6学时最速下降法、共轭梯度法、GMRES及其收敛性5.特征值问题的计算 12学时主要介绍幂法与反幂法,Rayleigh商迭代,同时迭代法,上Hessenberg化,QR算法与双重步位移的隐式QR算法,计算对称特征值问题的算法主要有:Jacobi迭代,二分法,分而治之法,对称QR算法等。
6.最小二乘问题 6学时Household变换、Givens变换、QR分解、正则化方法7. 奇异值分解 4学时奇异值分解算法、收敛性定理在上机实验方面,要求学习并掌握以下内容:1.MATLAB或C++基础 4学时介绍MATLAB或C++的一些基本知识,重点掌握一些基本的操作命令,为程序的编写打下一定的基础.2.主要算法的程序实现及数值实验 12学时通过实例讲述如何利用C++语言及MATLAB语言将数值算法具体实现.设计与课程内容相关的具体实际问题,指导学生利用上述两种编程语言实现。
《数值分析》教学大纲.doc
《数值分析》教学大纲课程性质:必修课课程类型:专业基础课总学时:48 学分:3课程编号:开课教研室:软件教研室适用专业:计算机科学与技术专业(本科)教学大纲说明一、本课程的地位、作用和任务《数值分析》是一门应用性很强的基础课,它以数学问题为对象,研究适用于科学计算与工程计算的数值计算方法及相关理论,它是程序设计和对数值结果进行分析的依据和基础,是用计算机进行科学计算全过程的一个重要环节。
通过本门课的学习及上机实习,使学生正确理解有关的基本概念,掌握常用的基本数值方法,培养和提高应用计算机进行科学与工程计算的能力,为以后的学习及应用打下应好的基础。
二、本课程的教学基本要求先修课:高等数学、线性代数、C语言。
要求学生:(1)理解各种数值方法导出的背景及概念。
(2)掌握各种数值方法。
(3)了解误差分析概念及方法。
(4)能利用各种方法编程上机计算求解教学内容一、本课程的理论教学内容1.绪论及误差(1)数值计算方法的研究对象和任务及算法的概念。
(2)误差知识2.方程的近似解(1)对分法(2)迭代法(3)牛顿法与割线法3.线性代数计算法(1)精确法高斯消元法,主元素消元法,无回代过程的主元素,消元法,主元素消元法的应用。
(2)矩阵三角分解法直接三角分解法,平方根法,追赶法(3)迭代法简单迭代法及其收敛条件,赛德尔迭代法及其收敛条件,代方程组Ax二b为便于使用迭代法的形式,超松驰法。
(4)方程组的性态及条件数。
4.插值(1)线性插值与二次插值。
(2)均差、均差插值多项式。
(3)等距结点插值公式,差分。
(4)拉格朗日插值多项式。
(5)分段插值与三次样条插值(1)最小二乘法与多项式拟合;(2)正交多项式曲线拟合(3)利用正交多项式作曲线拟合6.数值微积分(1)数值微分(2)数值积分牛顿一柯特斯公式,复化求积公式,求积公式的误差,步长的自动选择,线性加速法一龙贝格公式,高斯型求积公式。
7.常微分方程初值问题数值解法(1)欧拉折线法与改进的欧拉法及方法的收敛法,误差估计和稳定性。
《数值分析》课程教学大纲
《数值分析》课程教学大纲适用专业信息与计算科学总学时72学分 4一、编写说明(一)本课程的性质、地位和作用随着计算机的迅速发展,在科学、技术、工程、生产、医学、经济和人文等领域中抽象出来的许多数学问题可以应用计算机计算、求解,本课程详细、系统地介绍了计算机中常用的数值计算方法及有关理论。
通过学习使学生掌握数值分析的基本知识,学会使用数值分析方法解决实际问题的技能技巧,并为后继应用型课程奠定基础。
本课程是信息与计算科学专业的一门重要的专业课程。
(二)本大纲制定的依据数值分析是一门内容丰富,研究方法深刻,有自身体系的课程,既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程。
因此学习本课程时,要注意掌握方法的基本原理和思想,要注意方法处理的技巧及与计算机的结合,重视误差分析、收敛性及稳定性的基本理论。
(三)大纲内容选编原则与要求1.要学好计算方法课程必须掌握高数、线性代数和算法语言的基本内容,还需能熟练应用计算机。
任课教师在讲授每章之前,可用少量时间把涉及到的学过的内容复习一下。
2.为掌握好本课内容,学生应做一定数量的理论分析与计算练习。
3.各章的上机时间可调整,也可讲完几章后再上机,任课教师可灵活掌握。
(四)实践环节1.实践环节主要分为习题课、上机、问题讨论、课后辅导和课后作业几部分。
其中习题课12学时,上机16学时,问题讨论可在辅导课或课后完成,课后辅导每周2学时(不占总学时)。
2.上机主要内容与要求:插值法、函数逼近、数值积分与数值微分、常微分方程初值问题的数值解法、方程求根、解线性方程组的直接方法、解线性方程组的迭代法、矩阵的特征值与特征向量计算。
要求把以上章节学过的主要算法编程,上机求解问题,其中每章2学时。
(六)考核方法与要求1.平时成绩:包括作业、出勤、课堂提问、讨论情况及期中成绩。
2.试卷成绩:期末成绩。
《数值分析》教学大纲
《数值分析》教学大纲一、课程概述数值分析是应用数学的一个重要分支,通过数学建模和计算机仿真对实际问题进行数值计算和分析。
本课程旨在培养学生运用数值方法解决实际问题的能力,包括数值逼近、数值微积分、数值线性代数、数值常微分方程等内容。
二、课程目标1.理解数值分析的基本原理和方法,掌握数值计算的基本技术。
2.熟悉计算机辅助数值计算的基本工具和软件。
3.能够运用数值方法解决实际问题,并分析计算结果的精度和稳定性。
4.具备进行科学计算和工程应用的能力。
三、教学内容与进度安排1.数值逼近(3周)1.1函数逼近与插值1.2最小二乘逼近1.3数值微积分基础2.数值微积分(3周)2.1数值求积2.2数值微分2.3常微分方程的数值解法3.数值线性代数(4周)3.1线性方程组的直接解法3.2迭代解法与收敛性分析3.3最小二乘问题的数值解法4.数值常微分方程(4周)4.1常微分方程的初值问题4.2常微分方程的边值问题4.3常微分方程的稳定性与数值稳定性分析四、教学方法1.理论讲述:通过教师的课堂讲解,引导学生理解数值分析的基本概念、原理和方法。
2.实例演示:通过实际问题的求解,演示数值方法的应用过程。
3.计算机实验:利用计算机软件进行数值计算实验,帮助学生掌握数值方法的具体实现。
4.课堂讨论:组织学生进行小组讨论,共同解决课堂提出的数值问题。
五、评分标准1.期末考试:占总评成绩的60%。
2.平时作业:占总评成绩的20%,包括数值计算实验报告、课后习题等。
3.课堂表现:占总评成绩的20%,包括参与课堂讨论、提问和回答问题等。
六、参考教材1.《数值分析基础(第5版)》,谢启元,高等教育出版社,2024年。
2.《数值分析与计算方法(第3版)》,杨士勤,高等教育出版社,2024年。
七、教学资源1.硬件设施:计算机实验室、投影仪等。
2. 软件工具:MATLAB、Python等数值计算软件。
八、其他说明1.本课程的学时安排为32学时,每周2学时。
数值分析教学大纲
数值分析教学大纲
(一)课程名称、学分
数值分析,2.0学分
(二)课程性质
本课程属于通识性课程,是数学专业和计算机科学专业的基础课程,
主要面向本科生,也可以拓展到研究生层次。
(三)授课对象
本科生及其他有兴趣学习数值分析的同学。
(四)授课目标、要求
1.了解数值分析的基本概念和基本原理,如数值近似度、计算机模拟等;
2.掌握数值分析的基本方法,如数值积分、解线性方程组的数值解法、牛顿-拉夫逊迭代法等;
3.掌握数值分析常用软件;
4.掌握常用数学软件Matlab的应用;
5.能够分析和解决数值分析相关的实际问题。
(五)课程内容
1.数值分析的基本概念;
2.数值近似度;
3.数值积分的方法;
4.解线性方程组的数值解法;
5.牛顿-拉夫逊迭代法;
6.数值解析法;
7.Matlab应用:离散变换、绘图和可视化、数值计算等;
8.实例分析:求解抛物线方程、求解积分方程等;
9.数值解析软件的使用;
10.实际问题模拟与设计。
(六)课程考核
1.平时考核:读书报告、课外作业等;
2.期末考核:期末测验、课程设计和综合评价等;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析》教学大纲
课程性质:必修课总学时:51+10
课程类型:专业基础课学分: 3
适用专业:计算机科学与技术专业(本科)
一、本课程的地位、作用和任务
《数值分析》是一门应用性很强的基础课,它以数学问题为对象,研究适用于科学计算与工程计算的数值计算方法及相关理论,它是程序设计和对数值结果进行分析的依据和基础,是用计算机进行科学计算全过程的一个重要环节。
通过本门课的学习及上机实习,使学生正确理解有关的基本概念,掌握常用的基本数值方法,培养和提高应用计算机进行科学与工程计算的能力,为以后的学习及应用打下良好的基础。
二、本课程的教学基本要求
先修课:高等数学、线性代数、高级语言(C、VB等)。
要求学生:
(1)了解误差分析概念及方法。
(2)理解各种数值方法导出的背景及概念。
(3)掌握各种数值方法,并能应用这些方法解决一些实际问题。
(4)能利用各种方法编程上机计算求解。
三、本课程的理论教学内容
第一章引论(6学时)
1.数值计算方法的研究对象和任务及算法的概念。
2. 机器数系。