弹性力学与有限元完整版
第2章_弹性力学基础及有限元法的基本原理1
W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡
2 弹性力学与有限元法
•剪应力
图1
2013-7-21
8
Institute of Mechanical Engineering and Automation
[ 应力的概念 ]
•正应力 为了表明这个正应力的作用面和作用方向,加上一个 角码,例如,正应力σx是作用在垂直于x轴的面上同时也 沿着x轴方向作用的。 •剪应力 加上两个角码,前一个角码表明作用面垂直于哪一个坐 标轴,后一个角码表明作用方向沿着哪一个坐标轴。例如, 剪应力τxy是作用在垂直于x轴的面上而沿着y轴方向作用的。
[ 几何方程、刚体位移 ]
•求剪应变 xy ,也就是线素AB与AD之间的直角的改变 •x向线素AB的转角 a y向线素AD的转角 b
y
u u dy y
C'
v
v dy y
D" b D '
D C
•A点在y方向的位移分量 为v; •B点在y方向的位移分量:
v
u
A
A'
a
dy
B'
v v dx x
连续性假设
2013-7-21
完全弹性假设 均匀性和各向同性假设 小变形、小转动假设 自然状态假设(无初始应力)
4
Institute of Mechanical Engineering and Automation
基本定律
牛顿定律
动量平衡原理
⇨ 平衡(运动)微分方程
⇨ 应力张量的对称性
u dx x
u
A'
a
A dx 0
2013-7-21
B
u u dx x
B"
x
图2
弹性力学及有限元法:第1章 弹性力学基本理论
(1.7)
z
A
o
y
x
zy
zx
x
yx xz xy
yz x P
xy
xz zx
yz
y yx
B
zy z
zx zy z
图1-2 微小正方体元素的应力状态
其中,σ为正应力,下标表示作用面和作用方向;τ是剪应力,第
一下标表示截面外法线方向,第二下标表示剪应力的方向。
14
1.1.3 应力
应力分量的符号规定:若应力作用面的外法线方向与坐标轴 的正方向一致,则该面上的应力分量就以沿坐标轴的正方向为正 ,沿坐标轴的负方向为负。相反,如果应力作用面的外法线是指 向坐标轴的负方向,那么该面上的应力分量就以沿坐标轴的负方 向为正,沿坐标轴的正方向为负。
4
1.1.1 弹性力学及其基本假设
弹性力学与材料力学的区别
弹性力学与材料力学(Strengths of Materials)在研究对象、研究 内容和基本任务方面有许多是相同的,但是二者的研究方法有较大 差别。
研究对象几何形状
描述方程 求解难易程度
适用范围
材料力学
杆状构件
常微分方程 容易 窄
弹性力学
8
1.1.2 外力与内力
(1)外力
作用于物体的外力通常可分为两类: 面力(Surface Force) 体力(Body Force)
9
1.1.2 外力与内力
面力是指分布在物体表面上的外力,包括分布力(Distributed Force)和集中力(Concentrated Force),如压力容器所受到的内压、 水坝所受的静水压力、物体和物体之间的接触压力等等。通常情 况下,面力是物体表面各点的位置坐标的函数。
弹性力学及有限元
热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。
弹性力学与有限元
yσ
x
)
M
EI
y,
xy
2(1 E
) xy
0。
Chapter2
- 30 -
第三节 位移分量的求出
2. 代入几何方程求位移,
u x
x
M EI
y,
(a)
v y
y
M
EI
y,
(b)
v x
u y
xy
0。
(c)
Chapter2
- 31 -
第三节 位移分量的求出
⑴ 对式(a)两边乘 d,x积分得
u
ax2 bxy cy2 1.对应于 ax2,应力分量 x 0, y 2a, xy yx 0 。
Chapter2
-9-
第一节 逆解法与半逆解法 多项式解答
结论:应力函数 ax2 能解决矩形板在 y 方向受均布拉力
(设 a 0)或均布压力(设 a 0 )的问题。如图3-1(a)。
Chapter2
- 18 -
第一节 逆解法与半逆解法 多项式解答
⑷ 由式(d),求出应力; ⑸ 校核全部应力边界条件(对于多连体,
还须满足位移单值条件). 如能满足,则为正确解答;否则修改假 设,重新求解。
Chapter2
- 19 -
第一节 逆解法与半逆解法 多项式解答
思考题 1. 在单连体中,应力函数必须满足哪些条 件?逆解法和半逆解法是如何满足这些条 件的? 2. 试比较逆解法和半逆解法的区别。
3F 2h
(1
4
y2 h2
);
fx
(σ x )xl
12Fl h3
y,
fy
( xy )xl
3F 2h
(1
弹性力学与有限元分析98页PPT
➢ 当物体的厚度有突变或物体由不同材料组成时,不 要把厚度不同或材料不同的区域划分在统一单元。
➢ 节点编号,原则上可任意,但它影响基本方程系数 矩阵的带宽,所以单元的两个相邻节点编号之差 应尽可能小。
五、位移插值函数与形函数
结构离散化后,要对单元进行力学特性分析,即 确定单元节点力与节点位移之间的关系。为分析并确 定这一关系,需要把单元中任一点的位移分量表示为 坐标的某种函数,这一函数称为单元的位移插值函数。 它反映了单元的位移形态并决定着单元的力学特性。 由于这种函数关系在解题前是未知的,而在单元分析 时又必须用到,因此要事先假定,所假定的位移插值 函数须满足以下两个条件:
二、有限元法的分类与求解步骤
从选择基本未知量的角度来看,有限元法分为以下三类: ❖ 位移法——以节点位移作为基本未知量 ❖ 力法——以节点力作为基本未知量 ❖ 混合法——取一部分节点位移和一部分节点力作为
基本未知量 由于位移法比较简单,计算规律性强,便于编写 计算机通用程序,因此在用有限元法进行结构分析时,
弹性力学与有限元分析
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
1、平面应力问题
在这类问题的应力分量中,凡带某一脚标的(如z) 都为零。其特点是: 几何形状特点:物体在一个方向(如z向)上的尺寸远
小于其他两个方向的几何尺寸,如薄 板。 所受外力特点:在薄板的两Z个侧面上无面力作用,只 在其边缘受到平行于板面且沿板厚均 匀分布的面力(面力分量中Z 0 )作 用,同时体力也平行于板面且不沿板 厚变化(体力分量中Z0)。
弹性力学与有限元法1ppt课件
➢ 瞬态分析 确定以时间为函数的温度等。 可模拟相变(融化及凝固)。
熨斗的瞬态热分析
28
本课程涉及到的高等数学及线性代数知识
1、泰勒级数
如果函数 f(x) 在点x0的某邻域内具有各阶导数 f ' (x), f '' (x),L , f (n) (x),L ,则可以将 f(x) 按照 泰勒级数展开为
应力种类
一次局部薄膜应 力
薄膜加弯曲应力
应力水平/MPa 限制值/MPa
41.12
167×1.5=250.5
73.81
167×3.0=511
评定结果 通过 通过
路径2
一次局部薄膜应 力
薄膜加弯曲应力
48.43 163.5
167×1.5=250.5 167×3.0=511
通过 通过
路径3
一次局部薄膜应 力
个坐标轴上的投影u、v、w来表示。以沿坐
标轴正方向的为正,沿坐标轴负方向的为负。
B
y
40
第一章 绪论
弹性力学的基本方法
从取微元体入手,综合考虑静力(或运动)、几 何、物理三方面条件,得出其基本微分方程,再进行求 解,最后利用边界条件确定解中的常数。
按照方程中保留的未知量,求解方法可分为 应力法(以应力为未知量) 位移法(以位移为未知量) 混合法(同时以应力和位移为未知量)
zy x
b
xxyz zx
yz
y yx
B
o
A PA dx, PBz dy, PC dz y
x
同样,可以列出另两个力矩平衡方程。得出
yz zy , zx xz , xy yx
38
第一章 绪论
弹性力学及其有限元法
弹性力学及有限元分析1、 设试件两定点之间的长度为L 0,其截面积为F 0,加上拉力P 后,L 0 伸长了△L 。
我们把P/ F 0 称为拉伸应力(σ),△L/ L 0 称为拉伸应变(ε),于是有σ=P/ F 0 ,ε= △L/ L 0某种材料的拉伸应力和拉伸应变的比,称为该材料的杨氏模量或弹性模量(E),即 LF PL E ∆==00εσ,弹性模量E 表征了材料的物理性质。
2、 根据力学特性,固体通常分为韧性固体和脆性固体。
首先分析韧性材料,材料在受力变形过程中,明显地有四个特性点划分三各阶段。
a. 弹性阶段,这一阶段的明显特征是,当外力逐渐去掉时,变形也逐渐消失,物体能够恢复到原来的形状,物体的这种性质称为弹性,存在一个应力极限称为弹性极限。
随着外力的消失而消失的变形称为弹性变形;去掉外力后仍然保留的变形称为残余变形或永久变形。
弹性阶段另一个明显特征是,应力与应变保持线性关系。
设受力方向为x 方向,x xE εσ=,这就是简单拉伸时的虎克定律,弹性模量E 为常数,表示应力与应变成正比例。
通常把弹性极限和比例极限规定为一个值。
b. 塑性阶段,超过弹性极限后,材料开始失去弹性,进入塑性阶段,这时产生较大的永久变形,应力应变关系不再是线性的。
当曲线超过s 点(屈服极限)后,材料开始屈服,即在应力几乎不增加的情况下,应变会不断的增加,称s 点为屈服极限;当变形大到一定程度后,材料开始强化,要继续增加变形必须再增加外力,到达b 点后产生颈缩。
从弹性极限到b 的变形范围统称为塑性阶段,属于塑性力学的研究范畴。
c. 断裂阶段,试件产生颈缩后,开始失去抵抗外力的能力,最后发生断裂,相对于b点的应力称为强度极限。
脆性材料:它的拉伸曲线图没有明显的三个阶段之分,也没有明显的屈服应力点,材料亦不再满足虎克定律。
为了分析上的需要,往往以切线斜率作为弹性模量,即εσd d E =。
如果对脆性固体材料加载,应力应变曲线将沿着OA 上升,若到A 点后即行卸载,应力应变曲线并不沿着原来的途径回复到原点,而是沿着直线AB 下降,当全部载荷卸去之后,试件中尚残存一部分永久变形''ε。
弹性力学及有限元方法-空间问题
4.2 应变与应力
– 将假定的位移代入式(4.12),得到单元内应
变为:
– 将应变矩阵[B]按节点分块表示为:
– 由(4.12),得到应变矩阵[B]中任一子矩阵 [Bi] 为:
• 其中bi、ci及D如前,而
• 按物理关系式,有应力 • 注意轴对称问题三角形单元的形函数虽与平面
问题三角形单元相同,但其应变、应力则不相
• 同理,用v式可求得a5到a8 ,用w求得a9到 a12 ,为:
• 用矩阵记法统一表达为:
• [N]为形状函数矩阵,可表示为:
• [I]为三阶单位矩阵,而各节点的形状函数 可按下式计算得到,即
• 如记矩阵
为四面体单元的体积,其他系 数皆可由[L]确定,如
• 为矩阵第一行各元素的代数余子式。同样 可以确定al、bl、cl、dl…an、bn、cn、dn等, 它们是矩阵[L]第二、三、四行元素的代数 余子式。
• 轴对称问题中,上述截面内任一点p,实 际上代表一个半径为r的圆周(图4-2),当 此圆周上各点都有径向位移u时,圆周被 拉伸,多出一个环向应变q。有:
• 全部应变的4项分量与两项位移分量之间 的几何关系(几何方程),以矩阵表示为:
• 轴对称问题的4项应力分量,以列阵表示为:
• 轴对称问题的应力与应变间的物理关系仍写为:
用位移法,就是只研究这个代表截面的位 移求得一个截面的位移分布,也就有了整 个三维结构内的位移分布,从而可以求得 体内任一点的应变及应力。这样,一个三 维问题,就可以转化为一个二维问题。 由于结构的变形是对称于中心轴的,因而 子午面内各点都只有沿径向r的位移u和沿 轴向z的位移w,一般应为截面坐标r,z的 函数,即
• 单元内应变为常值,按物理方程,单元内的 应力也是常值。当然,一般受力情况下,三 维体内有限大小的四面体内的应力并不是常 值,用常应力单元来代替它,只是近似的。 • 对此单元,单元间的应力是不连续的。只有 当单元划分得较小时,单元内的应力才会接 近于常值,此时计算的应力在单元间的不连 续才会比较小,因而可以作为真实应力分布 的近似。 • 一般,把这种单元应力的计算值作为单元中 心一点的应力近似值是比较适当的。
弹性力学及有限元
2
3
第一章 绪 论
§1–1 弹性力学的研究对象
§1–2 弹性力学中的几个基本概念
§1–3 弹性力学中的基本假设 §1–4 有限元分析的基本思想
4
在未知领域 我们努力探索 在已知领域 我们重新发现
5
初中物理-力学
高中物理-力学
大学物理-力学
的形式和尺寸并选择适宜的材料提供必
要的理论基础和计算方法。
9
结构力学的研究对象、内容和任务
对象——杆件系统(结构)
梁、刚架、桁架、组合结构和拱
内容——结构的组成规律、特性和外来因素作用
下的内力、位移及其分布规律。 任务——校核结构是否具有所需的强度、刚度和
稳定性,并寻求和改进它们的计算方法 以实现安全和经济的最优化。 三部分——静力学、动力学和稳定学。
c
p y l xy m y n zy pz l xz m yz n zy
b
P
y
25
x
a
正负号规定:
正面:外法向方向和坐标轴正向一致的面 负面:外法向方向和坐标轴正向反向的面
正面上应力沿坐标轴正向为正 负面上应力沿坐标轴负向为正
i j
+ + + + -
+
力学,包括固体力学和流体力学中的许多学科,弹
性力学仅是其中的一个分支。
35
2) 线性完全弹性:引起物体变形的外力除去后物体能
恢复原状(完全弹性),应变与引
起该应变的应力分量之间的关系服
从胡克定律(线性),弹性常数与
应力、应变大小无关,无需考虑应
力历史。 完全弹性:弹性极限以下 线性弹性:比例极限以下 该假定使本构关系(物理方程)成线性方程。 线性关系的Hooke定律是弹性力学特有的规律,是弹性力 36 学区别于连续介质力学其它分支的标识。
弹性力学与有限元完整版164页PPT
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学基本内容
外界作用
弹性体
外力 温度变化
应力 应变 位移
1.1 弹性力学绪论
• 弹性力学,又称弹性理论。
– 是研究弹性体由于外力载荷或者温度改变,物体内部 所产生的位移、变形和应力分布等。为解决工程结构 的强度,刚度和稳定性问题作准备 。
• 弹性力学的研究对象:
–是完全弹性体,包括构件、板和三维弹性体,比材料 力学和结构力学的研究范围更为广泛 。
平面应力问题讨论的弹性 体为薄板。薄壁厚度远小于 结构另外两个方向的尺度。 薄板的中面为平面,其所受 外力,包括体力均平行于中 面O-xy面内,并沿厚度方向 z不变。而且薄板的两个表 面不受外力作用。
平面应力问题 • ①几何特征
– 薄壁厚度为h远小于结构另外两个方向的尺寸 – 等厚度 – 中心层平直
• 符号规定:与坐标轴方向一致为正,反之为负。 • 体力的因次:[力]
2 一点的应力状态
• ①应力表示方法
材料力学中接触过斜截 面上的应力,斜截面上应 力可以分成正应力、剪应 力;
复杂物体任意截面上的应 力可分为
1个与平面垂直的正应力、 2个平面内剪应力。
•正应力分量 3个:
x、 y、 z
•剪应力分量 6个:
– 再必须根据已知物理量,(一般外力、
结构几何形状和约束条件等),推导和确 定基本未知量(应力、应变、位移。
1.4 弹性力学基本方程
1. 平衡方程(应力——外力之间的关系)
2. 物理方程(应变——应力之间的关系)
3. 几何方程(柯西方程 ) (应变——位移之间的关系)
4、变形协调方程
5、边界条件
xy、yz、 zx
x
y
z xy
yz
zx
• ②应变的定义(自学)
设平行六面体单元,3个轴棱边:
– 变形前为MA,MB,MC; – 变形后变为M'A',M'B',M'C'。
x、 y、 z
•③正应变(小变形) (自学)
•符号规定:
正应变以伸长为正。
•④剪应变(自学)
•符号规定:
x
{} y
xy
x
y
xy
2.2 平面应变问题
1 平面应变问题的概念
– 弹性体是具有很长的纵向轴的柱形物体,横截面大 小和形状沿轴线长度不变;作用外力与纵向轴垂直, 并且沿长度不变;柱体的两端受固定约束。
– 可以认为柱体是无限长的。如果从中任取一个横截 面,则柱形物体的形状和所受载荷将对此横截面是 对称的。因此物体变形时,横截面上的各点只能在 其自身平面内移动。
平面应变问题
• 几何特征
– 一个尺寸远大于结构另外两个方向的尺寸 – 中心轴平直 – 沿中心轴截面不变化
• 受力特征
– 外力垂直于中心轴 – 外力沿中心轴长度方向不变化
2、平面应变问题的位移
• 沿纵向轴的位移恒等于零; • 由于无限长,所以任一个横截面都是一样的,与z
轴无关。
• 只要是x、y坐标函数
2. 均匀性假设
假设弹性物体是由同一类型的均匀材料组成的, 物体各个部分的物理性质都是相同的,不随 坐标位置的变化而改变。在处理问题时,可 以取出物体的任意一个小部分讨论。。
3. 各向同性假设
– 假定物体在各个不同的方向上具有相同的物理性质,物体的弹性 常数不随坐标方向变化。
像木材、竹子以及纤维增强材料等,属于各向异性材料,它们是复合材 料力学研究的对象。
• 研究的内容:
– 外力作用下
应力、应变、位移
• 物体变形——弹性变形、塑性变形
• 弹性变形:
– 当外力撤去以后恢复到原始状态,没有变形残留,材 料的应力和应变之间具有一一对应的关系。与时间无 关,也与变形历史无关。
• 塑性变形:
– 当外力撤去以后尚残留部分变形量,不能恢复到原始 状态,——即存在永久变形。应力和应变之间的关系 不再一一对应,与时间、与加载历程有关。
弹性力学各个量之间的关系
平衡方程
外力
物理方程
几何方程
应力
应变
位移
3.1 概述
根据几何方程和本构方程可见:
位移、应力和应变分量之间不是相互独立的。
• 假如已知位移分量,通过几何方程可以得到应变 分量,然后通过物理方程可以得到应力分量。
• ② 平面应变的物理关系
D
1 μ
0
[D]
(1
E
)(1-
2
)
μ
0
1
0
0
1 2
2
• ③ 两种平面问题的区别
z向应力分量 z向位移分量
平面应变问题
z =n ( x + y )
w=0
平面应力问题
z=0
w≠0
正应变分量
二者主要不同在于z向应变,位移和正应力的计算公式
• ④ 两种平面问题的内在关系
• 弹性:假定“完全弹性”关系,是抽象出
来的理想模型。
• 完全弹性是指在一定温度条件下,材料的 应力和应变之间具有一一对应的关系。
• 应力—应变关系称为本构关系。
• 材料模型包括:
–线性弹性体 –非线性弹性体
1.2 弹性力学的基本假定
1. 连续性假设
根据这一假设,物体的所有物理量,例如位 移、应变和应力等均成为物体所占空间的连 续函数。
3、平面应变问题的应力、应变
•应变分量
z yz = zx 0
x、 y、 xy
• 应力分量
z 0 yz zx 0 x、 y、 xy
x
y
xy
x
{} y
xy
2.3 平面问题的基本方程
1.平衡方程(应力——外力之间的关系)
2. 几何方程(应变——位移之间的关系)
3. 物理方程(应变——应力之间的关系)
•平面应力与平面应变问题的: 平衡方程、几何方程相同。
但物理方程不同。 从空间问题推得。
• ① 平面应力的物理关系
• ① 平面应力的物理关系
D
1 μ 0
E
[D]
1 μ2
μ
0
1 0
0 1 μ
2
• ② 平面应变的物理关系
z yz = zx 0
剪应力不再区分哪个是作用面或作用方向 。
x
y
•应力分量:
x、 y、 z、 xy、 yz、 zx
{
}
z xy
yz
zx
3 一点应变分量
• ①微分单元体的变形:
– 微分单元体棱边的伸长和缩短;正应变 – 棱边之间夹角的变化;剪应变
正应变分量 3个:
x、 y、 z
剪应变分量 3个:
合计 15
未知量:
应力分量——6个
x、 y、 z、 xy、 yz、 zx
应变分量——6个
x、 y、 z、 xy、yz、 zx
位移分量——3个
u、v、w
合计 15
• 第二章 弹性力学平面问题
2.1 平面应力问题 2.2 平面应变问题 2.3 平面问题的基本方程
2.1 平面应力问题
1、平面应力问题的概念
的单值连续函数
u=x'(x,y,z)-x=u(x,y,z) v=y'(x,y,z)-y=v(x,y,z) w=z'(x,y,z)-z=w(x,y,z)
u
f
v
w
形变和位移之间的关系:
• 位移确定 → 形变完全确定:
从物理概念看,各点的位置确定,则微分线段上的形变 确定 。
从数学推导看,位移函数确定,则其导数(形变)确定 。
•如果物体表面的面力已知, •如果物体表面的位移已知,
则称为应力边界条件:
则称为位移边界条件:
第一类边界条件
第二类边界条件
•混合边界条件 = 第一类+第二类
5、边界条件
应力边界条件:
位移边界条件:
cos N, x l cos N, y m cos N, z n
外法线的方向余弦
空间问题
方程数量: 平衡方程——3个 物理方程——6个 几何方程——6个
• 还可作刚体位移。 从数学推导看,ε、γ确定,求位移是积分运算,出现待 定函数。
弹性力学各个量之间的关系
平衡方程
外力
应力 物理方程 应变 几何方程 位移
• 弹性力学分析过程中:
– 通过静力平衡、几何变形和本构关系建 立起外力、应力、应变、位移之间相互关 联。
压力,物体之间的接触力等。
• 集中力——作用物体一点上的力。(在弹性力学中一
般不用,而在有限元中经常出现)
① 体力
物体任意一点P 所受体力的大小和方向,在P点区域取
一微小体积元素△V, 设△V 的体力合力为△F,则
△V 的平均体力为
当△V 趋近于0, 则为P点的体力
• 体力是矢量:一般情况下,物体每个点体力的
平面应力
平面应变
平面应力 平面应变
E
1
E
2
,
. 1
E
E(1 2) (1 )2
,
. 1
平面应变 平面应力
• ④ 两种平面问题的内在关系
平面应力
平面应变
D
1 μ 0
[D]
E 1 μ2
μ
1
0
1 μ
0 0
2
1 μ
0
[D]
(1
E )(1-
2)
μ
0
1
0
0
1 2
2
平面应力
E
E 1 2 ,
正应变以伸长为正;剪应变以角度变小为正。
4 位移分量