线性代数第二章
线性代数第二章方阵的行列式

2 n阶行列式的性质
本节教学内容
行列式按一行(列)展开定理
Laplace定理
3 展开定理与行列式的计算
3 展开定理与行列式的计算
行列式按一行(列)展开定理 三阶行列式的一个计算公式 Mij称为aij的余子式 Aij称为aij的代数余子式
3 展开定理与行列式的计算
线性代数 第二章
本章教学内容
1 n阶行列式的定义
2 方阵行列式的性质
3 展开定理与行列式的计算
第二章 方阵的行列式
1 n阶行列式的定义
1.排列与逆序数 定义 由1,2,…,n按任何一种次序排成的有序数 组i1 i2… in称为一个n级排列,简称排列. 例 3级排列:123,132,213,231,312,321,共6个 性质 不同的n级排列共n!个. 排列123,从小到大排,全顺; 排列132,3>2,但3排在2之前,即32是一个逆序 定义 在一个排列i1 i2… in中,若it> is中,但it排在 is之前,则称it与is组成一个逆序.i1 i2… in中所有逆 序的总数称为此排列的逆序数, 记为(i1 i2… in).
2 n阶行列式的性质
例 =0 2r1+r2
2 n阶行列式的性质
性质2.5 即
2 n阶行列式的性质
或 证 由性质2.1及推论2.3得到.
2 n阶行列式的性质
例1
2 n阶行列式的性质
例2
2 n阶行列式的性质
例3 计算行列式 解
2 n阶行列式的性质
2.方阵行列式的性质 定理2.1 设A,B为n阶方阵,为常数,m为正整 数,则 ⑴ A=nA ; ⑵ AB=AB ; ⑶ Am=Am . 注① 一般的A+B≠A+B ; ② 虽然AB≠BA,但AB=BA ; ⑶由⑵推得,下证⑴ ⑵
自考复习专题:线性代数第2章

第二部分矩阵本章概述矩阵是线性代数的重要内容,也是研究线性方程组和其它各章的主要工具。
主要讨论矩阵的各种运算的概念和性质。
在自学考试中,所占比例是各章之最。
按考试大纲的规定,第二章占26分左右。
而由于第三,四,五,六各章的讨论中都必须以矩阵作为主要工具,故加上试题中必须应用矩阵运算解决的题目的比例就要占到50分以上了。
以改版后的三次考试为例,看下表按考试大纲所占分数07.4 07.7 07.10 直接考矩阵这一章的26分左右31分34分38分加上其它章中必须用矩阵运算的所占分数51分53分67分由此矩阵这一章的重要性可见一般。
2.1 线性方程组和矩阵的定义2.1.1 线性方程组n元线性方程组的一般形式为特别若,称这样的方程组为齐次方程组。
称数表为该线性方程组的系数矩阵;称数表为该线性方程组的增广矩阵。
事实上,给定了线性方程组,就惟一地确定了它的增广矩阵;反过来,只要给定一个m×(n+1)阶矩阵,就能惟一地确定一个以它为增广矩阵的n个未知数,m个方程的线性方程组。
例1 写出下面线性方程组的系数矩阵和增广矩阵【答疑编号12020101】例2 写出以下面矩阵为增广矩阵的线性方程组【答疑编号12020102】2.1.2 矩阵的概念一、矩阵的定义定义2.1.1 我们称由mn个数排成的m行n列的数表为m×n阶矩阵,也可记为为矩阵A第i行,第j列的元素。
注意:矩阵和行列式的区别。
二、几类特殊的矩阵1.所有元素都为零的矩阵称为零矩阵,记为O。
例如都是零矩阵。
2.若A的行数m=1,则称为行矩阵,也称为n维行向量。
若A的列数n=1,则称为列矩阵,也称为m维列向量。
3.若矩阵A的行数=列数=n,则称矩阵A为n阶方阵,或简称A为n阶阵。
如n个未知数,n个方程的线性方程组的系数矩阵。
4.称n阶方阵为n阶对角阵。
特别若上述对角阵中,,称矩阵为数量矩阵,如果其中λ=1,上述数量阵为,称为n阶单位阵。
5.上(下)三角阵称形如的矩阵为上(下)三角矩阵。
线性代数第二章

s
cij ai1b1 j ai2b2 j aisbsj aikbkj (i 1,2 , ,m ;j 1,2 , ,n) .
k 1
注:(1)只有当左边矩阵的列数等于右边矩阵的行数时,两个矩阵才能相乘,否则 AB
没有意义.
(2)矩阵 C 中元素 cij 等于左矩阵 A 的第 i 行与右矩阵 B 的第 j 列对应元素乘积之和.
(3)矩阵加减法与矩阵数乘统称为矩阵的线性运算.
2.2.2 数与矩阵相乘
矩阵数乘的性质
(1)分配律: k( A B) kA kB,(k l)A kA lA ; (2)结合律: (kl) A k(lA) ; (3)1A A,0A O .
2.2.2 数与矩阵相乘
例题
3 1 2
7 5 4
a11 a12
a21
a22
am1 am2
a1n a11 a12
a2n
或
a21
a22
amn
am1
am 2
a1n
a2n
,
amn
称为 m 行 n 列矩阵,简称 m n 矩阵.通常用大写字母 A,B ,C , 表示矩阵, aij 表示
矩阵中第 i 行、第 j 列的元素,一个 m n 矩阵可以简记为 A=Am×n=(aij) m×n
a11
只有一列的矩阵
A
a21
称为列矩阵或列向量。
am1
注:列矩阵也可记为 A a11 ,a12 , ,a1n 。
2.1.2 几种特殊形式的矩阵
3.零矩阵
所有元素全为零的矩阵称为零矩阵, m n 零矩阵记为 Omn 或简记为 O . 4.方阵
对于矩阵 Amn ,当 m n 时,称为 n 阶方阵,记作 Ann 或 An ,即
《线性代数》第二章矩阵及其运算精选习题及解答

An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
线性代数知识点总结第二章doc资料

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==L L 排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a LL M M M L称为m 行n 列矩阵。
简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭L L L L L L L,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元。
说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。
扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A 。
记作:A n 。
行(列)矩阵:只有一行(列)的矩阵。
也称行(列)向量。
同型矩阵:两矩阵的行数相等,列数也相等。
相等矩阵:AB 同型,且对应元素相等。
记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。
单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可表示为E )(课本P29—P31)注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。
第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++ ⎪+=⎪⎪+++⎝⎭L L L L L LL说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。
(课本P33) 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭L L L L L L L设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-。
线性代数第二章矩阵及其运算2-3PPT课件

CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。
高等数学线性代数教材目录

高等数学线性代数教材目录第一章行列式1.1 行列式的引入1.2 二阶和三阶行列式的计算1.3 行列式的性质和性质的应用1.4 行列式的性质证明第二章矩阵和向量2.1 矩阵的概念和基本运算2.2 矩阵的转置和逆2.3 向量的线性相关性和线性无关性2.4 向量组的秩和极大线性无关组第三章矩阵的运算3.1 矩阵的加法和减法3.2 矩阵的数乘3.3 矩阵的乘法3.4 矩阵的特殊类型第四章线性方程组4.1 线性方程组的概念和解的分类4.2 齐次线性方程组和非齐次线性方程组的解 4.3 线性方程组的向量表示第五章向量空间5.1 向量空间的定义和例子5.2 向量子空间和子空间的概念5.3 向量空间的线性组合和生成子空间5.4 基和维数第六章矩阵的特征值和特征向量6.1 特征值和对角化6.2 特征多项式和特征方程6.3 相似矩阵和相似对角矩阵6.4 实对称矩阵的对角化第七章线性变换7.1 线性变换的概念和性质7.2 线性变换的矩阵表示7.3 线性变换的特征值和特征向量7.4 线性变换的相似、迹和行列式第八章内积空间8.1 内积的定义和性质8.2 欧几里得空间和具有内积的实向量空间8.3 向量的正交性和正交子空间8.4 施密特正交化方法第九章广义特征值问题9.1 广义特征值问题的引入9.2 广义特征值的计算9.3 广义特征值与相似变换9.4 对称矩阵的广义特征值问题与对角化第十章特殊矩阵的标准形式10.1 对称矩阵的对角化10.2 正定矩阵和正定二次型10.3 实对称矩阵的正交对角化10.4 复数矩阵的标准型这是《高等数学线性代数》教材的目录, 包含了十个章节,每个章节中有相应的小节来详细介绍相关内容。
这本教材综合了高等数学和线性代数的知识,旨在帮助读者掌握线性代数的基本概念、理论和方法,以及应用于实际问题的能力。
希望读者通过学习这本教材,能够系统地理解和应用线性代数的知识,为今后的学习和研究打下坚实的基础。
《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
《线性代数》第二章参考答案+详解

k 0
k 2 1 0 k k 1 0 1 0 0 k
k 1 0 0
( k 1) k 1
k 1 0
k 1 ( k 1 ) k 1 k 1
所以(AB)2A22ABB2 (3) (AB)(AB)A2B2 吗? 解: (AB)(AB)A2B2
2 A B 0 0 5 2 0 5 0 2 1 6 9 2 因为 A B 2
2 ( A B)( A B) 2
2 0 1 0
而
3 8 1 0 2 8 A2 B2 4 11 3 4 1 7
故(AB)(AB)A2B2
5 举反列说明下列命题是错误的 (1) 若 A20 则 A0
0 解: 取 A 0 1 则 A20 但 A0 0
(2)
2 1 设 a 1 ,b 2 ,A abT , 3 4
T
求 A100 .
2 解: b a 1 2 4 1 8 . 3
则
A100 (abT )100 a (bT a )( bT a )bT a (bT a )bT 2 99 a (b a ) b 1 8 1 2 4 3 4 8 2 99 8 1 2 4 . 3 6 12
2 2 a11x12 a22 x2 a33 x3 2a12 x1x2 2a13 x1x3 2a23 x2 x3
1 1 1 1 2 3 2 设 A 1 1 1 B 1 2 4 求 3AB2A 及 ATB 1 1 1 0 5 1 1 1 1 1 2 3 1 1 1 解: 3AB 2 A 31 1 1 1 2 4 21 1 1 1 1 1 0 5 1 1 1 1 0 5 8 1 1 1 2 13 22 3 0 5 6 21 1 1 2 17 20 2 9 0 1 1 1 4 29 2 1 1 1 1 2 3 0 5 8 A B 1 1 1 1 2 4 0 5 6 1 1 1 0 5 1 2 9 0
线性代数课件第二章第四节n阶矩阵乘积的行列式

计算行列式$|begin{matrix} 4 & -1 & 2 1 & 3 & 1 0 & -2 & 4 end{matrix}|$的值。
03
计算行列式$|begin{matrix} 3 & -2 & 1 1 & 0 & 1 -1 & 3 & 2 end{matrix}|$的值。
解答
步骤一
按照行列式的展开法则,将第一行第二列的 元素$-5$与第二行第一列的元素$1$相乘, 并加上第二行第二列的元素$3$与第三行第 一列的元素$-1$相乘,得到$-5 times 1 + (-5) times (-1) = -5 + 5 = 0$。
分块法
将高阶行列式分块处理,利用分块后 的子块性质简化计算。
递推法
利用递推关系式,将高阶行列式转化 为低阶行列式计算,从而简化计算。
03
n阶矩阵乘积的行列式的 应用
在线性方程组中的应用
求解系数矩阵的行列式
在求解线性方程组时,可以通过计算系数矩阵的行列式来判断方程组是否有解,以及解的情况。如果 系数矩阵的行列式不为零,则方程组有唯一解;如果行列式为零,则方程组可能有无穷多解或无解。
,得到$-1 times (-1) + (-3) times (-2) = 1 + 6 = 7$。
步骤二:将第三行第二列的 元素$-6$与第一行第一列的
元素$-3$相乘,得到$-6 times -3 = 18$。
04
步骤三
感谢您的观看
THANKS
解答
步骤六
将第二行第三列的元素$-1$与第三行第一列的元素$2$相乘,得到$-1 times (-2) = 2$。
《线性代数》课件-第2章方阵的行列式

教学难点:n阶行列式的计算,拉普拉斯定理的应用.
教学时间:6学时.
§1 n 阶行列式的定义
设n阶方阵A=(aij),称
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
为方阵A 的行列式,记为| A |或det A .
1.1 n 阶行列式的引出
于是D中可能不为0的均布项可以记为
a a a b b . 1p1 1p2
mpm 1q1
nqn
这里,pi=ri,qi=rm+i-m,设l为排列p1p2 …pm(m+q1) …(m+qn)的 逆序数。以t,s分别表示排列p1p2 …pm及q1q2 …qn的逆序数,
应有l= t+s,于是
D
(1)l a1p1 a2 p2 a b b mpm 1q1 2q2 bnqn
b2
a2n , j 1, 2, , n.
an1
bn
ann
提出三个问题
(1)D=?(怎么算)?
(2)当D≠0时,方程组是否有唯一解?
(3)若D≠0时,方程组有唯一解,解的形式 是否是
xj
Dj D
,
j 1,2,
, n.
1.2 全排列及其逆序数
1、全排列 用1,2,3三个数字可以排6个不重复三位数即:
第二章 方阵的行列式
行列式是一种常用的数学工具,也是代数学中必不可 少的基本概念,在数学和其他应用科学以及工程技术中有 着广泛的应用。本章主要介绍行列式的概念、性质和计 算方法。
教学目的:通过本章的教学使学生了解行列式的概念, 掌握行列式的性质,会计算各种类型的行列式.
线性代数第二章行列式展开

0
3 4 0 0 0 2
2 14 1 1 1 28
3 4 1 1
1 1
1 1 1
四、伴随矩阵 1、定义 行列式 A 的各个元素的代数余子式 Aij 所 构成矩阵的转置.
A21 An1 A22 An 2 A2 n Ann 称为矩阵 A的伴随矩阵. 2、运算规律
同理 a1i A1 j a2i A2 j ani Anj 0, (i j ).
命题得证
关于代数余子式的重要性质
D ,当 i j , aki Akj D ij 0 ,当 i j; k 1
n
D ,当 i j , aik Ajk D ij 0 ,当 i j; k 1
A (假定所有运算合法, B 是矩阵, R )
A11 A A 12 A1n
(1) A
A
T T
(2) AB B A
AA a11 证明 a AA 21 a n1
性质
A A A E. a12 a1n A11 a22 a2 n A12 an 2 ann A1n
解:原式
0 0 0 1
9 10 2 4
9
1
2
9
1
2
10 11 1 109 0 23 按第 列展开 1 2 5 3 43 0 7
109 23 monde)行列式
1 x1 2 Dn x1
n x1 1
1 x2 2 x2
1 xn 2 xn
n n x2 1 xn 1
线性代数-第二章-向量和向量空间

n维单 位坐标 向量组
所以,称 是 1, 2 , 3 ,4 的线性组合, 或 可以由 1, 2 , 3 ,4线性表示。
命题2 设向量可由向量组(I) :1,2,,m
线性表出,而(I)中每个向量都可以由向量组
(II) : 1, 2,, s线性表出, 那么也可由向量组
(II)线性表出 给出证明
二 线性相关
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr nr
例3 : 求下列齐次方程组的通解。
(1)
x1 2 x1
2 x2 4 x2
分量全为复数的向量称为复向量.
以后我们用小写希腊字母 , , 来代表向量。
例如:
(1,2,3,, n)
(1 2i,2 3i,,n (n 1)i)
第2个分量 第1个分量
第n个分量
n维实向量 n维复向量
向量通常写成一行: a1,a2 , ,an 称为行向量。
有时也写成一列:
a1
xr1 1 0
,nr
是令
xr2
为
0
,
1
,
xn
0
0
0
,
0
所得。
1
Ax 0 的通解是 x k11 k22 knr nr
注:
(1) 证明过程提供了一种求解空间基(基础 解系)的方法。
(2) 基(基础解系)不是唯一的。
(3) 当 r( A) n 时,解空间是{0}.
(2) s t
则向量组 1,2 , , s 必线性相关。
线性代数第二章,矩阵及其运算

a1n b1
a2n
b2
L L
amn bm
§2 矩阵的运算
一、加法
设 A (ai j )mn , B (bi j )mn 都是m n 矩阵,则加法定义为
a11 b11
A
B
a21
b21
L
a12 b12 L a22 b22 L
LL
am1 bm1 am2 bm2 L
显然,
AB B A
a22
L
L L L
am1 am2 L
a1n
a11 a21 L
a2n
,记
AT
a12
a22
L
L
L L L
amn
a1n an2 L
则称
AT
A
是
的转置矩阵。
am1
am 2
L
amn
显然,
① ( AT )T A ,② ( A B)T AT BT ,③( A)T AT ,④( AB)T BT AT
2. 即使 Amn , Bnm ,则Amn Bnm 是m 阶方阵,而Bnm Amn 是n 阶方阵;
3. 如 果 A , B
都 是n
阶
方
阵
,
例
如
2
A
1
4
2
,
B
2
3
4
6
,则
16
AB
8
32 16
,而BA
0 0
0
0
;
AB BA
综上所述,一般
(即矩阵乘法不满足交换率)。
但是下列性质显然成立:
三、乘法
乘法运算比较复杂,首先看一个例子
设变量t1, t2 到变量 x1, x2 , x3 的线性变换为
线性代数第二章

例3
1 11 2 0 4 1 设 A 11 4 56 2 1 5
例4
1 1 2 参 数 ____ 时, 矩 阵 2 1 5 的 秩 最 小 1 10 6 1
例3
1 11 2 2 0 4 1 1 设 A , 求 rA 11 4 56 5 2 1 5 6
1 1 1 例4 令A 1 1 0 1 1 1 1 1 0 1 1 1 2 0 2 1 1 解:A 0 0 0 3 0 2 1 4 1 1 1 2 0 2 1 1 0 0 0 3 0 0 0 0
说 明
(5)n阶矩阵A为满秩矩阵 A可逆 |A 0 | (6)n阶矩阵A为降秩矩阵 rA n |A 0 |
2.矩阵秩的求法 定理 矩阵经初等变换后秩不变 推论1 注: 推论2 若A ≌ B , 则 rA= rB 若rA= rB , A 与B不一定等价
若A 、B是同阶矩阵, 则A ≌ B当且仅当rA= rB
1 A 4 2 2 5 0 3 6 1 4 0 8 1 三阶子式: 4 2 2 5 0 4 0 8
说 明
例
定义
若在m×n矩阵A中 有一个r阶子式不为0, 而所有r +1阶子式全为0, 则称数r为A的秩. 记为rank(A)=r 或 rA = r
rA=m, 则称A为行满秩矩阵;
五. 矩 阵 的 秩
1. 概念
2.矩阵秩的求法
1. 概念
定义 设A=(aij)m×n , 任取k行k列,1≤k ≤min{m, n}, 位于 这些行列交点处的k2 个元素, 按其在A中原相对 位置构成的k阶行列式称为A的k阶行列式 (1) aij即为A的1阶子式 (2)n阶矩阵A, 其行列式|A|是A的唯一的n阶子式
线性代数第二章矩阵及其运算

线性代数第二章矩阵及其运算$1.矩阵定义1 由m*n个数a_{ij}(i=1,2,3...,n)排成的m行n列的数表称为m行n列矩阵,简称mn矩阵。
为表示它是一个整体,总是加一个括弧,并用大写黑体字母表示,记作这mn个数称为矩阵A的元素,简称为元,数位于矩阵A的第i行第j列,称为矩阵A的(i,j)元。
以数. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵,本书中的矩阵除特别说明者外,都指实矩阵。
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
n阶矩阵A也记作An。
只有一行的矩阵 . 只有一列的矩阵称为列矩阵,又称列向量。
两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵。
如果那么就称矩阵A与矩阵B相等,记作 A=B 元素都为零的矩阵称为零矩阵,记作O。
注意不同型的零矩阵是不同的。
矩阵的应用非常广泛,下面仅举几例。
例1工厂三个商店发送四种产品的数量可列成矩阵其中这四种产品的单价及单件重量也可列成矩阵其中。
例2一般的,若干个点之间的单向通道都可以用这样的矩阵表示。
例3n个变量x_1,x_2,...,x_n与m个变量y_1,y_2,...,y_m之间的关系式表示一个从变量给定了线性变换(2),它的系数所构成的矩阵(称为系数矩阵)也就确定。
反之,如果给出一个矩阵作为线性变换的系数矩阵,则线性变换也就确定。
在这个意义上,线性变换和矩阵之间存在着一一对应的关系。
例如线性变换叫做恒等变换,它对应的一个n阶方阵叫做n阶单位矩阵,简称单位阵。
这个方阵的特点是:从左上角到右下角的直线(叫做(主)对角线上的元素都是1,其他元素都是0.即单位阵E的(i,j)元为)又如线性变换对应n阶方阵这个方阵的特点是:不在对角线上的元素都是0.这种方阵为对角矩阵,简称对角阵。
对角阵也记作$2.矩阵的运算一、矩阵的加法定义2 设有两个m*n矩阵A=(a_{ij})和B={b_{ij}},那么矩阵A和B的和记作A+B,规定为应该注意,只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算。
线性代数知识点总结第二章

线性代数知识点总结第二章 矩阵及其运算第一节 矩阵 定义由m n ⨯个数()1,2,,;1,2,,ija i m j n ==排成的m 行n 列的数表111212122212nn m m mna a a a a a a a a 称为m 行n 列矩阵;简称m n ⨯矩阵,记作111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,简记为()()m n ij ij m nA A a a ⨯⨯===,,m n A ⨯这个数称为的元素简称为元;说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵; 扩展几种特殊的矩阵:方阵 :行数与列数都等于n 的矩阵A ; 记作:A n; 行列矩阵:只有一行列的矩阵;也称行列向量; 同型矩阵:两矩阵的行数相等,列数也相等; 相等矩阵:AB 同型,且对应元素相等;记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零;单位阵:主对角线上元素都是1,其它元素都是0,记作:E n 不引起混淆时,也可表示为E 课本P29—P31注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同;第二节 矩阵的运算矩阵的加法 设有两个m n ⨯矩阵()()ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +,规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时,才能进行加法运算;课本P33 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记,A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-;课本P33数与矩阵相乘,A A A λλλ数与矩阵的乘积记作或规定为111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵,,λμ为数()()()1A A λμλμ=; ()()2A A A λμλμ+=+;()()3A B A B λλλ+=+;课本P33矩阵相加与数乘矩阵统称为矩阵的线性运算;矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵,(b )ij B =是一个s n ⨯矩阵,那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =,其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫ ⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑,()1,2,;1,2,,i m j n ==,并把此乘积记作C AB = 注意1;A 与B 能相乘的条件是:A 的列数=B 的行数;2;矩阵的乘法不满足交换律,即在一般情况下,AB BA ≠,而且两个非零矩阵的乘积可能是零矩阵;3;对于n 阶方阵A 和B,若AB=BA,则称A 与B 是可交换的;矩阵乘法的运算规律()()()1AB C A BC =;()()()()2AB A B A B λλλ==()()3A B C AB AC +=+,()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯== ()5若A 是n 阶方阵,则称 A k 为A 的k 次幂,即kk A A AA =个,并且m k m k A A A +=,()km mk A A =(),m k 为正整数;规定:A 0=E注意 矩阵不满足交换律,即AB BA ≠,()kk k AB A B ≠但也有例外课本P36纯量阵 矩阵0E 0λλλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为纯量阵,作用是将图形放大λ倍;且有()(E)E A A A λλλ==,A 为n 阶方阵时,有()(E )n n n n n E A A A λλλ==,表明纯量阵与任何同阶方阵都是可交换的;课本P36 转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作A T ,如122458A ⎛⎫= ⎪⎝⎭,142528T A ⎛⎫⎪= ⎪ ⎪⎝⎭; 转置矩阵的运算性质()()1TT AA =;()()2TT T A B A B +=+;()()3TT A A λλ=;()()4TT T AB B A =;课本P39方阵的行列式由n 阶方阵A 的元素所构成的行列式,叫做方阵A 的行列式,记作A 或注意矩阵与行列式是两个不同的概念,n 阶矩阵是n 2个数按一定方式排成的数表,而n 阶行列式则是这些数按一定的运算法则所确定的一个数; 运算性质()1T A A =;()2nA A λλ=;(3)AB A B B A BA ===课本P40对称阵 设A 为n 阶方阵,如果满足A =A T ,即(),1,2,,ij jia a i j n ==那么A 称为对称阵;说明对称阵的元素以主对角线为对称轴对应相等,如果TA A =-则称矩阵A 为反对称的;即反对称矩阵A =a ij 中的元素满足a ij =-a ji ,i ,j =1,2,…n 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵; 性质 AA A A A E **==易忘知识点课本P总结1只有当两个矩阵是同型矩阵时,才能进行加法运算;2只有当第一个矩阵的列数等于第二个矩阵的行数时,两个矩阵才能相乘,且矩阵相乘不满足交换律;3矩阵的数乘运算与行列式的数乘运算不同;第三节 逆矩阵定义对于n 阶矩阵A ,如果有一个n 阶矩阵B ,使得AB =BA =E 则说矩阵A 是可逆的,并把矩阵B 称为A 的逆矩阵;1A A -的逆矩阵记作,1A B -=即;说明1 A ,B 互为逆阵, A = B -12 只对方阵定义逆阵;3.若A 是可逆矩阵,则A 的逆矩阵是唯一的;定理1 矩阵A 可逆的充分必要条件是0A ≠,并且当A 可逆时,有1*1AA A-=重要证明见课本P奇异矩阵与非奇异矩阵当0A =时,A 称为奇异矩阵,当0A ≠时,A 称为非奇异矩阵;即0A A A ⇔⇔≠可逆为非奇异矩阵;推论若(A=E)AB E =或B ,则1B A -=证明见课本P求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。
线性代数第二章 n维向量

第二章 n维列向量
§2.2 向量组的秩和线性相关性
例4. 设有两个向量组 I: α1=[1, 1], α2=[1, −1], α3=[2, 1], II: β1= [1, 0], β2= [1, 2]. 1 β + 1β , α = 3 β − 1β , 则 α 1= 2 1 2 2 2 2 1 2 2 3 β + 1β , α3= 2 1 2 2 即I可以由II线性表示. 可以由II线性表示 线性表示. 1 α + 1 α +0α , β = 3 α − 1 α +0α , β1= 2 1 2 2 2 2 1 2 2 3 3 II可以由 线性表示. 可以由I 即II可以由I线性表示. 故向量组I II等价 等价. 故向量组I与II等价.
β2 = α2 + 2α3, β3 = α3 + 2α1.
证明: 证明: β1, β2, β3线性无关. 线性无关.
第二章 n维列向量
§2.2 向量组的秩和线性相关性
二. 向量组之间的关系 1. 给定两个向量组 A: α1, α2, …, αr B: β1, β2, …, βs 若B组中的每个向量都能由A组中的向 组中的每个向量都能由A 量线性表示, 则称向量组B 量线性表示, 则称向量组B能由向量组 A线性表示. 线性表示. 2 , 3 1 , 0 能由 例如: 例如: 线性表示, 线性表示, 0 0 0 1 1 , 0 2 , 3 不能由 但 线性表示. 线性表示. 0 1 0 0
第二章 n维列向量
§2.1 n维向量及其运算
例1. n维基本单位向量组
ε1 =
1 0 … … 0
, ε2 =
0 1 … … 0
, …, εn =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 矩阵
2.1 矩阵概述 2.2 矩阵的运算 2.3 逆矩阵 2.4 矩阵的初等变换 2.5 行最简形矩阵与矩阵的秩 2.6 行最简形矩阵与矩阵的秩 2.7 应用实例——矩阵密码法
2.1 矩阵概述
2.1.1 矩阵的概念
Hale Waihona Puke 定义1由 m n 个数 aij (i 1,2,L ,m;j 1,2,L ,n) 排成的 m 行 n 列数表,并用括号括起来,
a11 a12 L
A
a21
a22
L
M M
am1 am2 L
a1n
a2n
,
M
amn
a11 a21 L
则
AT
a12
M
a22 M
L
a1n a2n L
am1
am2 M
.
amn
2.2.4 矩阵的转置
矩阵的转置的性质
(1) ( A ) A ;
(2) ( A B)T AT BT ;
C 表示各工厂的总收入及总利润,且 C AB .具体如下:
a11
A
a21 a31
a41
a12 a22 a32 a42
a13 a23 a33 a43
Ⅰ Ⅱ Ⅲ Ⅳ
,
B
b11 b21 b31
b12 b22 b32
甲
乙
丙
,C
c11
c21
c31
c41
c12 Ⅰ
c22 c32 c42
4 7
.
2.2.2 数与矩阵相乘
定义2
数 k 与矩阵 A (aij )mn 的乘积,称为数乘,记作 kA ,规定为
ka11 ka12 L
kAmn
ka21 M
ka22 M
L
kam1 kam2 L
ka1n
ka2n
.
M
kamn
注:(1) A (1) A .
(2)矩阵数乘,就是把矩阵的每个元素都乘以 k,而不是用 k 乘矩阵的某一行(列).
1 0 L
En
0 M
1 M
L O
0
0
L
0
0
M
.
1
注:上三角矩阵、下三角矩阵、对角矩阵、数量矩阵、单位矩阵都是方阵。
10.同型矩阵
具有相同行数和相同列数的矩阵,称为同型矩阵。
2.1.2 几种特殊形式的矩阵
11.矩阵相等 如果 A (aij ) 与 B (bij ) 是同型矩阵,并且它们对应元素相等,即
,an )
,B
b2
M
,求
AB ,BA .
bn
b1a1 b1a2 L b1an
解: AB a1b1 a2b2 L
anbn
,
BA
b2 a1 M
b2 a2 M
L
b2 an M
.
bna1 bna2 L bnan
此例表明: 即使AB和BA都有意义,AB与BA的行数及列数也不一定相同。
aij bij (i 1,L ,m;j 1,L ,n) , 则称矩阵 A 和矩阵 B 相等,记作 A B . 注:不是同型的矩阵是不能进行相等比较的;同型矩阵之间不能比较大小.
2.1.2 几种特殊形式的矩阵
12.负矩阵
对于矩阵 A (aij )mn ,每个元素取相反数,得到的矩阵称为 A 的负矩阵,记为 A ,即
例2
设
A
1
5
7
,
B
5
1
9
,且
A
2X
B
5 4 3
3 2 1
2 3 3
解:由
A 2X
B 得,
X
1 2
(B
A)
=
2
1
2 3
1 . 2
2.2.3 矩阵的乘法
定义3
设 A (aij )ms ,B (bij )sn , AB 称为矩阵 A 与 B 的乘积,记 C (cij )mn AB ,
Ⅱ Ⅲ Ⅳ
,
甲 乙丙
单位 单位
总收入 总利润
价格 利润
2.2.3 矩阵的乘法
例题
其中,aik (i 1,2,3,4;k 1,2,3) 是第 i 个工厂生产第 k 种产品的数量,bk1 ,bk2 分别表 示第 k 种产品的单位价格及单位利润, ci1 ,ci2 (i 1,2,3,4) 分别是第 i 个工厂生产三种产品 的总收入及总利润.
a11 a12 L
a21
a22
L
M M
am1 am2 L
a1n a11 a12 L
a2n
或
a21
a22
L
M M M
amn
am1
am 2
L
a1n
a2n
,
M
amn
称为 m 行 n 列矩阵,简称 m n 矩阵.通常用大写字母 A,B ,C ,L 表示矩阵, aij 表示
矩阵中第 i 行、第 j 列的元素,一个 m n 矩阵可以简记为 A=Am×n=(aij) m×n
8.数量矩阵
1 0 L 0
A diag(1 ,2 ,L
,n
)
0 M
2 M
L O
0
M
0
0L
n
主对角线元素相同的对角矩阵,称为数量矩阵,记为
0 L 0
A
0 M
M
L O
0
M
0 0 L
2.1.2 几种特殊形式的矩阵
9.单位矩阵
主对角线元素全为 1 的数量矩阵,称为单位矩阵,n 阶单位矩阵简记为 En 或 E ,即
定义4
若矩阵 A 与 B 满足 AB BA,则称 A 与 B 可交换。 只有当 A 与 B 可交换时,(A B)2 A2 2AB B2 ,(A B)(A B) A2 B2 等公式才 成立。
2.2.3 矩阵的乘法
矩阵乘法的性质
根据矩阵乘法定义,矩阵乘法满足下列性质(假定以下运算都能进行)。 (1)结合律: ( AB)C A(BC) ; (2)分配律: A(B C) AB AC ,(B C)A BA CA ;
2 1
0 3
1 0
2 1
1 1
1 2 2 1 0 0 1 3 2 (2) 0 1 1 0 2 (1) 0 1
0
2
11
3
0
0 3 1 (2) 31
0
0
1
(1)
3
1
4 1
1 1
2 2
.
2.2.3 矩阵的乘法
例题
例4
设
A
1 1
1 1
,B
1 1
1 1
,求
a11 b11 a12 b12 L
C
A
B
a21
b21
a22 b22 L
M
M
am1 bm1 am2 bm2 L
a1n b1n
a2n
b2n
M
amn bmn mn
2.2.1 矩阵的加法
矩阵加法性质
(1)交换律: A B B A ; (2)结合律: (A B) C A (B C) ; (3) A O O A A ; (4) A (A) A A O . 其中, A,B ,C 均为 m n 矩阵, O 为 m n 零矩阵.
(3)矩阵加减法与矩阵数乘统称为矩阵的线性运算.
2.2.2 数与矩阵相乘
矩阵数乘的性质
(1)分配律: k( A B) kA kB,(k l)A kA lA ; (2)结合律: (kl)A k(lA) ; (3)1A A,0A O .
2.2.2 数与矩阵相乘
例题
3 1 2
7 5 4
a11
只有一列的矩阵
A
a21
M
称为列矩阵或列向量。
am1
注:列矩阵也可记为 A a11 ,a12 ,L ,a1n 。
2.1.2 几种特殊形式的矩阵
3.零矩阵
所有元素全为零的矩阵称为零矩阵, m n 零矩阵记为 Omn 或简记为 O . 4.方阵
对于矩阵 Amn ,当 m n 时,称为 n 阶方阵,记作 Ann 或 An ,即
a11 a12 L 注:矩阵 A 不可写成 A a21 a22 L
MM am1 am2 L
a1n a2n . M amn
2.1.2 几种特殊形式的矩阵
1.行矩阵
只有一行的矩阵 A (a11 a12 L a1n ) 称为行矩阵或行向量。 注:为避免元素之间混淆,也可将行矩阵记为 A (a11 ,a12 ,L ,a1n ) 。 2.列矩阵
2.2.3 矩阵的乘法
定义6
设 n 次多项式为 f (x) an xn an1xn1 L a1x a0 ,则 f ( A) an An an1 An1 L a1A a0 E
称为 n 阶方阵 A 的 n 次多项式。
2.2.3 矩阵的乘法
例题
例8
设
f
(x)
x2
x
2
,
A
1
1
0 1
(3)数乘结合律: (AB) ( A)B A(B) ; (4)设 A 是 m n 矩阵,则 Em Amn Amn En Amn ,简记为 EA AE A .
2.2.3 矩阵的乘法
例题
例 7 某地区有Ⅰ,Ⅱ,Ⅲ,Ⅳ四个工厂,生产甲、乙、丙三种产品,矩阵 A 表示一年内各
工厂生产各种产品的数量,矩阵 B 表示各种产品的单位价格(元)及单位利润(元),矩阵
AB
,BA
.
解:
AB
1 1
1 1
1
1
1 0
1
0
0 0