因式分解的常用方法(目前最牛最全的教案)解析
(人教版)初中数学因式分解教案(5篇)
(人教版)初中数学因式分解教案(5篇)第一篇:(人教版)初中数学因式分解教案1,教学目标【课前预习】:知识回顾1、单项式乘单项式的法则是把之积作为积的系数,相同字母的作为积里这个字母的指数,只在一个单项式中含有的字母,则连同其指数作为积的一个。
2、单项式与多项式相乘,就是根据乘法律,用单项式乘多项式的,再把所得的。
3、多项式与多项式相乘,先用一个多项式的乘另一个多项式的再把所得的。
4、写出完全平方公式写出平方差公式。
5、叫多项式的因式分解。
6、因式分解与整式乘法的关系怎样?7、填空: m(a+b+c)=(a+b)(c+d)=(a+b)(c+d)=(a+b)2=(a-b)2= 2,例题例1、已知a+b=-3, ab=2, 求a2+b2;(a-b)2 的值。
例2、先化简,后求值:2x2(x2-x+1)-x(2x3-10x2+2x), 其中x=0.25例 3.计算:(1)(a+9)(a+1)(2)(5-2x+y)(2x+5-y)(3)(2x+3y)2(2x-3y)2例4: 分解因式(1)x4-1(2)49(a-b)2-6(a+b)2(3)x4y4-8x2y2+16 3,作业一、耐心填一填(每小题2分,共18分)1、计算:(5⨯10)⨯(3⨯10)=________;(用科学记数法表示)42a(a+b)-b(a-b)=_____________.2、⑴·3ab2c=—24a3b5c;⑵(—a—b)2=a22ab+b23、.多项式—3x2y3z+9x3y3z—6x4yz2的公因式是___________;分解因式a3—4ab2=.4、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸cm2.5、若a—b=2,3a+2b=3,则3a(a—b)+2b(a—b)=.二、精心选一选6、下列四个等式从左至右的变形中,是因式分解的是:()A.(a+1)(a—1)=a2—1;B.(x—y)(m—n)=(y—x)(n—m);C.ab—a—b+1=(a—1)(b—1); D.m23⎫⎛—2m—3=m m—2—⎪.m⎭⎝7、计算(3a+b)(-3a-b)等于:()A.9a2-6ab-b2 B.—b2-6ab-9a2 C.b2-9a2 D.9a2-b212、下列多项式, 在有理数范围内不能用平方差公式分解的是:()A.—x2+y2 B.4a2—(a+b)2 C. a2—8b2 D. x2y2—113、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.(a—b)2=a2—2ab+b2 B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a—b)=a2—b214、如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为:()A.4 B.8 C.—8 D.±8215、(x-mx+1)(x-2)的积中x的二次项系数为零,则m的值是:A.1B.–1 C.–2D.2三、用心做一做 1.计算:(1)(2x-3y)2-(y+3x)(3x-y)(2)(x+y)(x2+y2)(x-y)(x4+y4)(3).(a-2b+3)(a+2b-3)(4).[(x-y)2+(x+y)2](x2-y2)222⎡⎛11⎫⎛⎫、先化简,再求值:⎢a—⎪— a+⎪⎤⎥(a+3),其中2⎭2⎭⎥⎝⎢⎣⎝⎦a= —23、分解因式:(1)4x3y+4x2y2+xy3;(3)x3-25x(4)4x4-4x3+x2;(5)ab+a+b+14、已知(a+b)2=7,(a—b)2=4,求a2+b2和ab的值.5、阅读解答题:(2)(a+b)2+2(a+b)+1 有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:(2004年河北省初中数学竞赛题)若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a—2)=a2—a—2,y=a(a—1)=a2—a ∵x—y=(a∴x<y 看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算 1.345⨯0.345⨯2.69—1.3452 —1.345⨯0.3452 2用这种方法不仅可比大小,也能解计算题哟!—a—2—a2—a=—2<0 )()第二篇:初中数学因式分解练习题1.(2014•黔南州)下列计算错误的是()A.a•a2=a3 C.2m+3n=5mnA.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3B.a2-6a+9 B.-1B.a2b-ab2=ab(a-b)D.(x2)3=x6B.a2+4a-21=(a-3)(a+7)D.a2+4a-21=(a+2)2-25 C.x2+5y C.1D.x2-5y D.316.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b (a+1)(a-1)A.x(x2-9)A.a(x-6)(x+2)A.x2+y2 A.(x+y)2=x2+y2 C.x2y+xy2=(xy)3 A.(a2+1)2 A.(x+2)(x-2)A.(x-2)2 A.m2+n2=(m+n)2 D.(a-2)(a+1)C.(a-b)2=a2-2ab+b2 A.(x2)3=x6 C.x2-2xy+y2=(x-y)2 A.x2+2x-1=(x-1)2 C.(x+1)2=x2+2x+1 A.x2-xy A.x(x2-4)A.y(x-y)2 A.a2(a-2)+aD.y(x+y)(x-y)D.2(x+9)(x-9)A.x2+2x-1=(x-1)2 C.x3-4x=x(x+2)(x-2)B.x2+xyB.x(x+4)(x-4)B.y(x+y)(x-y)B.a(a2-2a)B.(a2-1)2 B.(x+2)2 B.x2B.a(b+1)(b-1)B.x(x-3)2 B.a(x-3)(x+4)B.x2-yC.b(a2-1)C.x(x+3)2 C.a(x2-4x-12)C.x2+x+1 B.x2y2=(xy)4 D.x4÷x2=x2 C.a2(a2-2)C.(x-4)2 C.(x-1)2D.(a+1)2(a-1)2 D.(x-2)2 D.x(x-2)D.b(a-1)2 D.x(x+3)(x-3)D.a(x+6)(x-2)D.x2-2x+117.(2014•广东)把x3-9x分解因式,结果正确的是()18.(2014•怀化)多项式ax2-4ax-12a因式分解正确的是()19.(2014•玉林)下面的多项式在实数范围内能因式分解的是()21.(2014•官渡区一模)下列运算正确的是()2.(2014•海南)下列式子从左到右变形是因式分解的是()3.(2014•安徽)下列四个多项式中,能因式分解的是()4.(2014•台湾)若x2-4x+3与x2+2x-3的公因式为x-c,则c 之值为何?()5.(2014•台湾)(3x+2)(-x6+3x5)+(3x+2)(-2x6+x5)+(x+1)(3x6-4x5)与下列哪一个式子相同?()A.(3x-4x)(2x+1)C.-(3x6-4x5)(2x+1)A.x2-1 A.-1 A.a(a-1)22.(2014•下城区一模)分解因式a4-2a2+1的结果是()23.(2014•衡阳二模)把代数式x2-4x+4分解因式,下列结果中正确的是()24.(2014•滨湖区二模)分解因式(x-1)2-1的结果是()25.(2014•上城区二模)下列因式分解正确的是()B.m2-4n2=(m-2n)(m+2n)D.a2-3a+1=a(a-3)+1 B.x2•x3=x5 D.3x-2x=1B.-x2+(-2)2=(x-2)(x+2)D.x2-4x=x(x+2)(x-2)C.x2+y2C.x(x+2)(x-2)C.y(x+y)2 C.a(a-1)2D.x2-y2D.(x+2)(x-2)D.y(x2-2xy+y2)D.a(a+1)(a-1)B.(3x-4x)(2x+3)D.-(3x6-4x5)(2x+3)C.x2-2x+1 C.1C.(a-2)(a-1)B.(x-4)x=x-4x D.m2-2mn+n2=(m+n)26.(2014•威海)将下列多项式分解因式,结果中不含因式x-1的是()B.x(x-2)+(2-x)B.0 B.a(a-2)D.x2+2x+1 D.27.(2014•漳州)若代数式x2+ax可以分解因式,则常数a不可以取()8.(2014•仙桃)将(a-1)2-1分解因式,结果正确的是()9.(2014•常德)下面分解因式正确的是()A.x+2x+1=x(x+2)+1 C.ax+bx=(a+b)x10.(2014•河北)计算:852-152=()A.70A.x2-y2=(x-y)2 C.xy-x=x(y-1)B.700C.4900B.a2+a+1=(a+1)2 D.2x+y=2(x+y)D.700011.(2014•岳阳)下列因式分解正确的是()26.(2014•郯城县模拟)下列运算错误的是()27.(2014•路北区二模)下列各因式分解正确的是()29.(2014•长清区一模)下列多项式中,能运用公式法因式分解的是()30.(2014•天桥区二模)把多项式x3-4x分解因式所得的结果是()31.(2014•朝阳区一模)把多项式x2y-2xy2+y3分解因式,正确的结果是()32.(2014•邢台一模)分解因式:a3-2a2+a=()33.(2014•南充模拟)下列各因式分解正确的是()12.(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y)A.3个B.2个C.1个B.x2+2x-1=(x-1)2 D.x-x+2=x(x-1)+2B.y(x-y)B.2(x-3)2D.0个13.(2014•毕节地区)下列因式分解正确的是()A.2x2-2=2(x+1)(x-1)C.x+1=(x+1)A.y(x+y)A.2(x2-9)14.(2014•泉州)分解因式x2y-y3结果正确的是()C.y(x-y)C.2(x+3)(x-3)B.-x2+(-2)2=(x-2)(x+2)D.(x+1)2=x2+2x+115.(2014•义乌市)把代数式2x2-18分解因式,结果正确的是()第三篇:初中数学因式分解(练习题)初中因式分解的常用方法例1、分解因式:am+an+bm+bn例2、分解因式:2ax-10ay+5by-bx练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1例3、分解因式:x2-y2+ax+ay例4、分解因式:a2-2ab+b2-c2练习:分解因式3、x2-x-9y2-3y4、x2-y2-z2-2yz综合练习:(1)x3+x2y-xy2-y3(2)ax2-bx2+bx-ax+a-b(3)x2+6xy+9y2-16a2+8a-1(4)a2-6ab+12b+9b2-4a(5)a4-2a3+a2-9(6)4a2x-4a2y-b2x+b2y(7)x2-2xy-xz+yz+y2(8)a2-2a+b2-2b+2ab+1(9)y(y-2)-(m-1)(m+1)(10)(a+c)(a-c)+b(b-2a)(11)a2(b+c)+b2(a+c)+c2(a+b)+2abc(12)a3+b3+c3-3abc 例5、分解因式:x2+5x+6例6、分解因式:x2-7x+6练习5、分解因式(1)x2+14x+24(2)a2-15a+36(3)x2+4x-5练习6、分解因式(1)x2+x-2(2)y2-2y-15(3)x2-10x-24例7、分解因式:3x2-11x+10练习7、分解因式:(1)5x2+7x-6(2)3x2-7x+2(3)10x2-17x+3(4)-6y2+11y+10例8、分解因式:a2-8ab-128b2练习8、分解因式(1)x2-3xy+2y2(2)m2-6mn+8n2(3)a2-ab-6b2例9、2x2-7xy+6y2例10、x2y2-3xy+2练习9、分解因式:(1)15x2+7xy-4y2(2)a2x2-6ax+8综合练习10、(1)8x6-7x3-1(2)12x2-11xy-15y2(3)(x+y)2-3(x+y)-10(4)(a+b)2-4a-4b+3(5)x2y2-5x2y-6x2(6)m2-4mn+4n2-3m+6n+2(7)x2+4xy+4y2-2x-4y-3(8)5(a+b)2+23(a2-b2)-10(a-b)2 (9)4x2-4xy-6x+3y+y2-10(10)12(x+y)2+11(x2-y2)+2(x-y)2思考:分解因式:abcx2+(a2b2+c2)x+abc例11、分解因式:x2-3xy-10y2+x+9y-2练习11、分解因式(1)x2-y2+4x+6y-5(2)x2+xy-2y2-x+7y-6(3)x2+xy-6y2+x+13y-6(4)a2+ab-6b2+5a+35b-36例12、分解因式(1)x2-3xy-10y2+x+9y-2(2)x2+xy-6y2+x+13y-6练习12、分解因式(1)x2+xy-2y2-x+7y-6(2)6x2-7xy-3y2-xz+7yz-2z2第四篇:【初中数学】复习资料--因式分解常用技巧总结因式分解常用技巧总结基本的四种技巧:一.提取公因式法:ma+mb+mc=m(a+b+c);例:6xy2-9x2y-y3=二.公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2推广:a3±b3=(a±b)(a2μab+b2);an-bn=(a-b)(an-1+an-2b+an-3b+Λ+abn-2+bn-1)an+bn=(a+b)(an-1-an-2b+an-3b+Λ-abn-2+bn-1)(n为奇数)例:8x-3127y3=变式1:x8+x6+x4+x2+1=答案:(x4+x3+x2+x+1)(x4-x3+x2-x+1)三.十字相乘法:x+(a+b)x+ab=(x+a)(x+b)推广:a1a2x+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),(a1a2≠0)xy-ax+by-ab=(x+b)(y-a)22例:6m+7mn-20n=变式1:x+xy-6y+x+13y-6=四.分组分解法:分组以后能提公因式或利用公式分解,从而把原多项式因式分解例:9a-6a+2b-b=25-4x-8xy-4y22222222=推广:(1)拆项法:把多项式里的某一项拆成两项或多项,使其能进行分组分解例:x4-7x2+1=答案:(x2-3x+1)(x2+3x+1)(2)添项法:在多项式中适当地添上一些项,使其能转化为可进行分组分解例:3x6-x12-1=答案:(x3-x6+1)(x3+x6-1)变式1:x3-9x+8=变式2:x4+4=其他重要的因式分解技巧:1.换元法:换元法是在分解因式时,通过将原式的代数式用字母代替后,达到简化原式结构的目的例1:(x+1)(x+2)(x+3)(x+6)+x2=提示:令m=x2+6,原式=(x2+6x+6)2 例2:xy(xy+1)+(xy+3)-2(x+y+答案:(x+1)(y+1)(x-1)(y-1)变式1:(x+1)(x+2)(x+3)(x+4)-24=变式2:(x-4x+1)(x+3x+1)+10x=2.主元法:主元法就是将多元(多个字母)中某个元作为主要字母,视其他元为常数,重新按主元排列多项式,排除非主元字母的干扰,从而简化问题。
2024年因式分解优秀标准教案通用
2024年因式分解优秀标准教案通用一、教学内容1. 因式分解的意义与基本概念2. 提公因式法与十字相乘法3. 完全平方公式与平方差公式4. 应用因式分解解决实际问题二、教学目标1. 理解因式分解的定义,掌握基本的因式分解方法。
2. 能够运用提公因式法、十字相乘法、完全平方公式及平方差公式解决因式分解问题。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
三、教学难点与重点重点:因式分解的基本概念及常用方法。
难点:灵活运用因式分解方法解决实际问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、笔、橡皮。
五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中的因式分解问题,激发学生的兴趣。
2. 知识讲解(10分钟)详述因式分解的定义、意义,介绍提公因式法、十字相乘法、完全平方公式及平方差公式。
3. 例题讲解(15分钟)通过讲解典型例题,使学生掌握因式分解的基本方法。
4. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。
5. 小组讨论(10分钟)将学生分成小组,讨论解决实际问题时的因式分解方法。
6. 答疑解惑(5分钟)针对学生提出的问题,进行解答。
六、板书设计1. 因式分解的定义2. 常用因式分解方法:提公因式法、十字相乘法、完全平方公式、平方差公式3. 例题及解题步骤4. 练习题七、作业设计1. 作业题目:(1)利用提公因式法分解因式:2x^3 + 4x^2 6x(2)利用十字相乘法分解因式:x^2 5x + 6(3)利用完全平方公式分解因式:4x^2 4x + 1(4)利用平方差公式分解因式:9a^2 16b^22. 答案:(1)2x(x^2 + 2x 3)(2)(x 2)(x 3)(3)(2x 1)^2(4)(3a + 4b)(3a 4b)八、课后反思及拓展延伸2. 拓展延伸:布置一道具有挑战性的因式分解题目,鼓励学生思考,提高学生的逻辑思维能力。
因式分解的14种方法讲解
因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。
在因式分解过程中,有多种方法可以使用。
下面我将为您介绍14种常见的因式分解方法。
方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。
例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
方法二:配方法2. 配方法适用于二次型多项式的因式分解。
对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。
例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。
方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。
这种情况下,可以将其分解为两个因子(x+a)(x-a)。
方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。
例如,x²-y²可以通过公式(x-y)(x+y)分解。
方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。
这种情况下,可以将其分解为平方项的和或差。
(a ± b)²。
方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。
这种情况下,可以分解为两个平方差相乘。
方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。
这种情况下,可以将其分解为立方项的和或差。
(a ± b)(a² ∓ ab + b²)。
方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。
这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。
方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。
因式分解的常用方法(目前最牛最全的优秀教案)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的常用方法(方法最全最详细)
因式分解的经常使用方法之迟辟智美创作第一部份:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步伐是:(1)通常采纳一“提”、二“公”、三“分”、四“变”的步伐.即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步伐都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行欠亨,可以检验考试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;.注意:将一个多项式进行因式分解应分解到不能再分解为止.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中经常使用的公式,例如:(1) (a+b)(a-b) =a2-b2-----------a2-b2=(a+b)(a-b);(2)(a±b)2=a2±2ab+b2---------a2±2ab+b2=(a±b)2;(3)(a+b)(a2-ab+b2)=a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4)(a-b)(a2+ab+b2) =a3-b3--------a3-b3=(a-b)(a2+ab+b2).下面再弥补两个经常使用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);,,是ABCa b c∆的三边,且222++=++,a b c ab bc ca则ABC∆的形状是()A.直角三角形B等腰三角形 C 等边三角形D等腰直角三角形解:222222++=++⇒++=++a b c ab bc ca a b c ab bc ca222222三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn++am+anbm分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.解:原式=)++anam+)(bn(bm=)nma+++每组之间b()(nm还有公因式!=)m+n+)((ba例2、分解因式:bx-5102+byayax-解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组. 第二、三项为一组.解:原式=)ax-5(-原式ay+)102(bxby=)ayax+-+-bx510()2(by=)5xya-b--5()(2yx=)ax-2(-b-y)5a2(b=)2(y)(x-a-b-=)5(b2x-5)(ay练习:分解因式1、bc22、-+aca-abxxy-y+-1(二)分组后能直接运用公式例3、分解因式:ay2+-2x+axy分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组.解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项式ax2+bx+c ,都要求24b ac ∆=->0而且是一个完全平方数.于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要即是5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5. 1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要即是一次项的系数.例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1-1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a(3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y(3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a =1a 1c(2)21c c c =2a 2c(3)1221c a c a b +=1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解.1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1-2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法.(1)、换单项式例1 分解因式x6 + 14x3 y + 49y2.分析:注意到x6=(x3)2,若把单项式x3换元,设x3 = m ,则x6= m2,原式变形为m2 + 14my + 49y2= (m + 7y)2 = ( x3 + 7y)2.(2)、换多项式例2 分解因式(x2+4x+6) + (x2+6x+6) +x2.分析:本题前面的两个多项式有相同的部份,我们可以只把相同部份换元,设x2 +6= m,则x2+4x+6= m+4x,x2+6x+6= m+6x,原式变形为(m+4x)(m+6x)+x2= m2 +10mx+24x2+x2= m2 +10mx+25x2= (m+5x)2= ( x2 +6+5x)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.以上这种换元法,只换了多项式的一部份,所以称为“局部换元法”. 固然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”. 比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为m(m+2x)+ x2 = m2+2mx+x2= (m+x)2= ( x2+4x+6+x)2= ( x2+5x+6)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算. 对本例,设m= 1 2[(x2+4x+6) + (x2+6x+6)]= x2+5x+6,则x2+4x+6=m-x,x2+6x+6=m+x,(m+x)(m-x)+x2= m2-x2+x2 = m2= (x2+5x+6)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.例3 分解因式(x-1)(x+2)(x-3)(x+4)+24.分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积. 无论如何分组,最高项都是x2,常数项不相等,所以只能设法使一次项相同. 因此,把(x-1)(x+2)(x-3)(x+4)分组为[(x-1) (x+2)][(x-3)(x+4)] = (x2+x-2) (x2+x-12),从而转化成例2形式加以解决.我们采纳“均值换元法”,设m= 12[ (x2+x-2)+(x2+x-12)]=x2+x-7,则x2+x-2=m+5,x2+x-2= m-5,原式变形为(m+5)(m-5)+24=m2-25+24=m2-1=(m+1)(m-1)=( x2+x-7+1)( x2+x-7-1)= ( x2+x-6)( x2+x-8)= (x-2)(x+3)( x2+x-8).(3)、换常数例1 分解因式x2(x+1)-2003×2004x.分析:此题若依照一般思路解答,很难奏效. 注意到2003、2004两个数字之间的关系,把其中一个常数换元. 比如,设m=2003,则2004=m+1. 于是,原式变形为x2(x+1) –m(m+1)x= x[x(x+1)-m(m+1)] = x(x2+x-m2-m)= x[(x2 -m2) +(x-m)]= x[(x+m) (x-m)+(x-m)]= x(x-m)(x+m+1)= x(x-2003)(x+2003+1)= x(x-2003)(x+2004).例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22 =))(1(a x ax -+=)2005)(12005(-+x x(2)型如的多项式,分解因式时可以把四个因式两两分组相乘.原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x(3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x 观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,而且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保管系数,然后再用换元法. 解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x x x x 设t x x =+1,则21222-=+t xx ∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x(2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x 设y x x =-1,则21222+=+y xx ∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----xx x x x =()()13122----x x x x 练习14、(1)673676234+--+x x x x(2))(2122234x x x x x +++++六、添项、拆项、配方法.例15、分解因式(1)4323+-x x解法1——拆项.解法2——添项.原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x=2)2)(1(-+x x =2)2)(1(-+x x(2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x=)1()1)(1()1)(1(333363-++-+++-x x x x x x=)111)(1(3363+++++-x x x x=)32)(1)(1(362++++-x x x x x练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++(6)444222222222c b a c b c a b a ---++七、待定系数法.例16、分解因式613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式肯定可分为)2)(3(n y x m y x +-++解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++ ∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622 ∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622比较左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231m n m n n m ,解得⎩⎨⎧=-=32n m ∴原式=)32)(23(+--+y x y x例17、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(1)分析:前两项可以分解为))((y x y x -+,故此多项式分解的形式必为))((b y x a y x +-++解:设6522-++-y mx y x =))((b y x a y x +-++则6522-++-y mx y x =ab y a b x b a y x +-+++-)()(22比力对应的系数可得:⎪⎩⎪⎨⎧-==-=+65ab a b m b a ,解得:⎪⎩⎪⎨⎧==-=132m b a 或⎪⎩⎪⎨⎧-=-==132m b a∴那时1±=m ,原多项式可以分解;那时1=m ,原式=)3)(2(+--+y x y x ;那时1-=m ,原式=)3)(2(--++y x y x(2)分析:823+++bx ax x 是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如c x +的一次二项式.解:设823+++bx ax x =))(2)(1(c x x x +++则823+++bx ax x =c x c x c x 2)32()3(23+++++∴⎪⎩⎪⎨⎧=+=+=82323c c b c a 解得⎪⎩⎪⎨⎧===4147c b a ,∴b a +=21练习17、(1)分解因式2910322-++--y x y xy x(2)分解因式6752322+++++y x y xy x(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 而且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.第二部份:习题年夜全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式.2分解因式: m3-4m= .3.分解因式: x2-4y2= _______.4、分解因式:244x x ---=_________________.5.将xn-yn 分解因式的结果为(x2+y2)(x+y)(x-y),则n 的值为 .6、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________.二、选择题7、多项式3222315520m n m n m n +-的公因式是( )A 、5mnB 、225m nC 、25m nD 、25mn8、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭ 10.下列多项式能分解因式的是()(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+411.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y -1)C.(y-x)(y-x-1)D.(y-x)(y-x +1)12.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)2-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b +c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)13.若k-12xy+9x2是一个完全平方式,那么k应为()A.2B.4 C三、把下列各式分解因式:14、nx ny - 15、2294n m -16、()()m m n n n m -+- 17、3222a a b ab -+ 18、()222416x x +- 19、22)(16)(9n m n m --+;五、解答题20、如图,在一块边长a =的正方形纸片中,挖去一个边长b =的正方形.求纸片剩余部份的面积.21、如图,某环保工程需要一种空心混凝土管道,它的规格是内径45d cm =,外径75D cm =,长3l =方米的混凝土?(π取3.14字)22、观察下列等式的规律,并根据这种规律写出第(5)个等式.经典二:1. 通过基本思路到达分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式酿成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式酿成三项式,提取公因式后再进行分解.解一:原式=-+--+()()x x x x x 54321解二:原式=()()()x x x x x 54321-+-+-2. 通过变形到达分解的目的例1. 分解因式x x 3234+-解一:将32x 拆成222x x +,则有解二:将常数-4拆成--13,则有3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值.本题要证明这个多项式是非负数,需要变形成完全平方数.证明:()()x x x 2241021100--++设y x x =-25,则4. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法.解:设a+b=A ,b+c=B ,a+2b+c=A+B说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的.中考点拨∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b +=2证明: a b c ab bc 222166100--++=说明:此题是代数、几何的综合题,难度不年夜,学生应掌握这类题不能丢分.例2. 已知:x x x x +=+=12133,则__________ 解:x x x x x x 3321111+=+-+()() 说明:利用x x x x 222112+=+-()等式化繁为易.题型展示1. 若x 为任意整数,求证:()()()7342---x x x 的值不年夜于100.解:100)4)(3)(7(2----x x x说明:代数证明问题在初二是较为困难的问题.一个多项式的值不年夜于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种经常使用的方法.2. 将a a a a 222222216742++++++()()分解因式,并用分解结果计算。
因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2 -----------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ---------a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 --------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的通用方法(目前最牛完整的课程教案)(4)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2———a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解教案 (优秀5篇)
因式分解教案(优秀5篇)因式分解教案篇一【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。
㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。
(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2,20x2+60x=20x(x+3),找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?)3、类比小学学过的因数分解概念,得出因式分解概念。
(学生概括,老师补充。
)板书课题:§6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?2、因式分解与整式乘法的关系:因式分解结合:a2-b2 (a+b)(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
因式分解的常用方法(目前最牛最全的教案)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法。
:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a—b) =a2—b2———----—-a2—b2=(a+b)(a—b);(2)(a±b)2=a2±2ab+b2——-a2±2ab+b2=(a±b)2;(3)(a+b)(a2—ab+b2) =a3+b3—-—-—- a3+b3=(a+b)(a2—ab+b2);(4)(a—b)(a2+ab+b2) = a3-b3——-———a3-b3=(a—b)(a2+ab+b2).下面再补充两个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc—ca);例。
已知是的三边,且,则的形状是()A.直角三角形B等腰三角形 C 等边三角形D等腰直角三角形解:三、分组分解法。
(一)分组后能直接提公因式例1、分解因式:分析:从“整体"看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.解:原式== 每组之间还有公因式!=例2、分解因式:解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组. 第二、三项为一组. 解:原式= 原式== == =练习:分解因式1、2、(二)分组后能直接运用公式例3、分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
因式分解的十大方法讲解
因式分解的十大方法讲解因式分解是代数学中十分重要且常用的方法,在数学学习中,因式分解通常是一个非常基础且常见的内容。
因式分解是一种能够将一个代数式表示成乘积的过程,其重要性不言而喻。
在学习因式分解的过程中,我们会遇到各种各样的方法来进行因式分解。
本文将介绍因式分解的十大方法,帮助大家更好地理解和掌握这一重要的数学技能。
一、提公因式法提公因式法是一种将多项式提取公因式的方法。
通过找到多项式中的公因式,并将其提取出来,可以简化多项式的运算和化简。
二、分组分解法分组分解法适用于四次或更高次的多项式。
通过将多项式按照一定规则进行分组,使得每组内部出现公因式,然后再提取公因式进行分解。
这种方法在解决高次多项式因式分解问题时非常有效。
三、换元法换元法是一种通过引入变量来简化多项式的方法。
通过引入合适的变量进行变换,可以使得多项式的结构更加清晰,从而更容易进行因式分解。
四、平方法平方法是一种用于因式分解完全平方的方法。
当多项式为完全平方时,可以通过这种方法快速进行因式分解。
五、辗转相除法辗转相除法是一种可以求得多项式的不可约因式的方法。
通过反复进行辗转相除的运算,可以得到多项式的所有实根和不可约因式。
六、提公式法提公式法是一种用于将多项式提取公式进行因式分解的方法。
通过找到多项式中的公式,并进行提取,可以更快速地进行因式分解。
七、分圆法分圆法是一种用于因式分解一元高次多项式的方法。
通过对多项式进行分圆,可以得到多项式的所有根和不可约因式。
八、差减法差减法是一种用于将多项式化为差或差的方法。
通过将多项式进行差减,可以得到多项式的不可约因式。
九、提多项式法提多项式法是一种用于将多项式提取多项式的方法。
通过找到多项式中的多项式,并进行提取,可以更快速地进行因式分解。
十、其他方法除了以上介绍的十种方法外,还有一些其他的因式分解方法,例如配方法、公因式提取等。
虽然这些方法在实际应用中使用较少,但在特定的问题中仍然有其独特的作用。
《因式分解》优秀教案一等奖
《因式分解》优秀教案一等奖1、《因式分解》优秀教案一等奖教学目标:1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:应用平方差公式分解因式.教学难点:灵活应用公式和提公因式法分解因式,并理解因式分解的要求.教学过程:一、复习准备导入新课1、什么是因式分解?判断下列变形过程,哪个是因式分解?2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2xa2b-ab3、根据乘法公式进行计算:(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=二、合作探究学习新知(一) 猜一猜:你能将下面的多项式分解因式吗?(1)= (2)= (3)=(二)想一想,议一议: 观察下面的公式:=(a+b)(a—b)(这个公式左边的多项式有什么特征:_____________________________________公式右边是__________________________________________________________ 这个公式你能用语言来描述吗?_______________________________________(三)练一练:1、下列多项式能否用平方差公式来分解因式?为什么?① ② ③ ④2、你能把下列的数或式写成幂的形式吗?(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2(四)做一做:例3 分解因式:(1) 4x2- 9 (2) (x+p)2- (x+q)2(五)试一试:例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
因式分解的常用方法(方法最全最详细)
因式分解的常用方法(方法最全最详细)因式分解的常用方法方法介绍因式分解是将一个多项式化成几个整式的积的形式。
常用的因式分解方法有提公因式法、公式法、十字相乘法、分组分解法和换元法等。
一般的因式分解步骤是先提公因式,再利用乘法公式,若不能实施则采用分组分解法或其他方法。
将一个多项式进行因式分解应分解到不能再分解为止。
提公因式法提公因式法是将多项式中的公因式提取出来,例如ma+mb+mc=m(a+b+c)。
公式法公式法是将整式的乘、除中的乘法公式反向使用,例如(a+b)(a-b) = a^2-b^2,(a±b)^2= a^2±2ab+b^2等。
分组分解法分组分解法是将多项式分为若干组,使得每组都含有公因式,然后再进行因式分解。
换元法换元法是将多项式中的一部分用一个新的变量代替,然后再进行因式分解。
注意:因式分解应分解到不能再分解为止。
例题已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形解:a+b+c=ab+bc+ca,移项得2a+2b+2c=2ab+2bc+2ca,化简得(a+b+c)^2=4(ab+bc+ca),即(a-b)^2+(b-c)^2+(c-a)^2=0.因为三角形ABC的三边不全为零,所以(a-b)^2≥0,(b-c)^2≥0,(c-a)^2≥0.所以(a-b)^2=(b-c)^2=(c-a)^2=0,即a=b=c,所以三角形ABC是等边三角形。
以上是因式分解的常用方法,希望对大家有所帮助。
凡是能十字相乘的二次三项式ax^2+bx+c,都要求Δ=b^2-4ac>0且是一个完全平方数。
因此,Δ=9-8a为完全平方数,故a=1.对于分解因式x+5x+6,我们可以将6分解成两个数相乘,且这两个数的和要等于 5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),我们可以发现只有2×3的分解适合,即2+3=5.因此,x+5x+6=(x+2)(x+3)。
因式分解的十大方法讲解
因式分解的十大方法讲解因式分解就像是给数学式子做一场奇妙的拆解游戏,那可是相当有趣的。
提公因式法是最基本的一种方法。
比如说你有一堆苹果和一堆橘子,要把它们分别放在不同的篮子里,公因式就像是那些共同的篮子。
比如式子3x + 6,3就是公因式,就像能把所有苹果和橘子分类装的那个公共的工具,提出来就变成3(x + 2)。
这多简单明了啊,把式子中大家都有的那部分先拎出来,式子一下子就变得清爽多了。
要是你看到一个式子,你不会想着就这么乱糟糟地放着吧,肯定得把公因式找出来整理一下呀。
再来说公式法。
这就像是你有一些特定形状的积木,你知道它们按照某种公式就能组合或者拆分。
平方差公式a² - b² = (a + b)(a - b),就像一个魔法公式。
你看,x² - 9,这9不就是3²嘛,那按照公式就可以直接分解成(x + 3)(x - 3)。
还有完全平方公式,a² + 2ab + b² = (a + b)²或者a² -2ab + b² = (a - b)²。
这就好比是你有一些特定的拼图块,按照特定的方式就能拼成完整的一块。
比如说x² + 6x + 9,这里面3²是9,2×3×x是6x,那它就可以分解成(x + 3)²。
分组分解法就像是给一群小动物分组。
有时候一个式子你直接分解不好办,那就把它们分成小组。
比如ax + ay + bx + by,你可以把有a的放在一组,有b的放在一组,就变成a(x + y)+b(x + y),然后再提公因式就得到(a + b)(x + y)。
这就好比把一群动物按照颜色或者习性分成小组,然后再进行下一步的安排,不然它们混在一起乱糟糟的怎么处理呀?十字相乘法可是很神奇的一种方法。
这就像是在搭一座小桥梁。
比如说x² + 5x + 6,你要找到两个数,它们相乘等于6,相加等于5,那不就是2和3嘛。
因式分解常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因2-b 2=(a+b)(a-b) ;3 (a+b)(a 2-ab+b 2) =a 3+b 34 (a-b)(a 2+ab+b 2) = a 3-b 32±2ab+b 2=(a ±b) 2;a 3 4+b 3=(a+b)(a 2-ab+b 2) ; a 3-b 3=(a-b)(a 2+ab+b 2).式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 ----------- a(2) (a ±b) 2= a 2±2ab+b 2 -------------- a面再补充两个常用的公式:(5) a 2+b 2+c2+2ab+2bc+2ca=(a+b+c) 2;(6) a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca) ;ab bc ca ,例.已知a,b,c是ABC 的三边,且a2 b2 c2则ABC 的形状是( )A.直角三角形B等腰三角形 C 等边三角形 D 等腰直角三角形2 2 2 2 2 2解:a2b2 c2ab bc ca 2a22b22c22ab 2bc 2ca(a b)2 (b c)2 (c a)2 0 a b c三、分组分解法.(一)分组后能直接提公因式例 1 、分解因式:am an bm bn 分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
(完整版)因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的12种方法的详细解析
因式分解的12种方法的详细解析因式分解是将一个多项式写成几个较简单的乘积的形式。
在数学中,因式分解是一项重要的基础技能,常用于求解方程、化简表达式和研究多项式的性质等方面。
以下是因式分解的12种常见方法的详细解析。
1.提取公因式法:当多项式的各项中存在公共因子时,可以提取出这个公因式,例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。
这种方法常用于求解关系式和化简分式等问题。
2.公式法:利用一些常用的公式进行因式分解。
例如,二次平方差公式(x^2-y^2)=(x+y)(x-y),互补公式a^2-b^2=(a+b)(a-b)等。
这种方法常用于解决关于二次方程、三角函数等问题。
3.配方法:对于二次型的多项式,可以利用配方法进行因式分解。
例如,对于多项式x^2+3x+2,可以进行配方法得到(x+1)(x+2)。
这种方法需要将多项式转化为二次型形式,然后利用配方法进行分解。
4.求因子法:当多项式为多个因子的乘积时,可以用求因子的方法进行因式分解。
例如,对于多项式x^3-8,可以将8进行因式分解为2^3,然后利用立方差公式进行因式分解,即x^3-8=(x-2)(x^2+2x+4)。
5.幂的分解法:当多项式中有幂函数时,可以利用幂的分解法进行因式分解。
例如,对于多项式x^3-y^3,可以利用立方差公式进行因式分解,即x^3-y^3=(x-y)(x^2+xy+y^2)。
6.多项式整除法:当多项式可以被另一个多项式整除时,可以利用多项式整除法进行因式分解。
例如,对于多项式x^3-1,可以利用x-1整除得到(x-1)(x^2+x+1)。
7.韦达定理:韦达定理是将多项式表示为二次型的形式,然后利用二次型进行因式分解。
例如,对于多项式x^3+y^3+z^3-3xyz,可以将其表示为(x+y+z)(x^2+y^2+z^2-xy-xz-yz)。
8.根的关系法:利用多项式的根的关系进行因式分解。
例如,对于一元二次多项式ax^2+bx+c,可以利用二次方程求根公式进行因式分解,即ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为多项式的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
例4、分解因式:2222c b ab a -+-解:原式=)()(22ay ax y x ++- 解:原式=222)2(c b ab a -+-=)())((y x a y x y x ++-+ =22)(c b a --=))((a y x y x +-+ =))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x(4)a b b ab a 4912622-++-(5)92234-+-a a a(6)y b x b y a x a 222244+--(7)222y yz xz xy x ++--(8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y(10))2())((a b b c a c a -+-+四、十字相乘法.直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。
1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++五、换元法。
例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+=)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。
原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++ (2)90)384)(23(22+++++x x x x六、添项、拆项、配方法。
例15、分解因式(1)4323+-x x解法1——拆项。
解法2——添项。
原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x =2)2)(1(-+x x =2)2)(1(-+x x练习15、分解因式(2)4224)1()1()1(-+-++x x x (3)1724+-x x 4)22412a ax x x -+++第二部分:习题大全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式。
2分解因式: m 3-4m= .3.分解因式: x 2-4y 2= __ _____.4、分解因式:244x x ---=___________ ______。
5.将x n -y n 分解因式的结果为(x 2+y 2)(x+y)(x-y),则n 的值为 .6、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________。
二、选择题7、多项式3222315520m n m n m n +-的公因式是( )A 、5mnB 、225m nC 、25m nD 、25mn8、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭10.下列多项式能分解因式的是( )(A)x 2-y (B)x 2+1 (C)x 2+y+y 2 (D)x 2-4x+411.把(x -y )2-(y -x )分解因式为( )A .(x -y )(x -y -1)B .(y -x )(x -y -1)C .(y -x )(y -x -1)D .(y -x )(y -x +1)12.下列各个分解因式中正确的是( )A .10ab 2c +6ac 2+2ac =2ac (5b 2+3c )B .(a -b )2-(b -a )2=(a -b )2(a -b +1)C .x (b +c -a )-y (a -b -c )-a +b -c =(b +c -a )(x +y -1)D .(a -2b )(3a +b )-5(2b -a )2=(a -2b )(11b -2a )13.若k-12xy+9x 2是一个完全平方式,那么k 应为( )A.2B.4C.2y 2D.4y 2三、把下列各式分解因式:14、nx ny - 15、2294n m -16、()()m m n n n m -+- 17、3222a a b ab -+18、()222416x x +- 19、22)(16)(9n m n m --+;五、解答题20、如图,在一块边长a =6.67cm 的正方形纸片中,挖去一个边长b =3.33cm 的正方形。