九年级人教版上册数学课件:2414圆周角
合集下载
人教版九年级上册 数学 课件 24.1.4圆周角(共29张PPT)
人教版《数学》(九年级·上册)
课标分析 教材分析 学情分析 教学重难点 教学设计
教学板书
教学评价 教学得失
课标与教材双向关联表
说明:第三学段 7——9 年级
人民教育出版社九年级数学上册
课标分析
教材分析
课
课标具体要求
完成的内容
行为 其它重要 维度 学习 教材
考核点 教学后
标
动词 信息 目标 水平 章节
技能 运用 24.1 圆 同弧或等弧 所对圆周角
运用
上的圆心角度数的一半;直径所 心角度数的一半;直径所对的 证明
几 对的圆周角是直角;90°的圆周 圆周角是直角;90°的圆周角
等于圆心角 的一半
角所对的弦是直径;圆内接四边 所对的弦是直径;圆内接四边
何 形的对角互补。
形的对角互补。
教材分析
圆心角、弧、弦
❖ ❖
。 ❖ 4、若符合其中的某一个条件,这样的角是否是圆周角呢?试着举例说明。(评
价+2分)
❖ ❖
❖ 5、预习检测:完成自主探究的第3题。(评价+1分)
活动探究画一画:请同学们动手画出⊙O中BC所
对的圆周角.观察BC所对的圆周角与圆心O有几种
位置关系?
学生动手在纸上操作,得出结论 圆周角与圆心的位置关系:
应达到
分
(方法、
内容
的水平
项
数量、
内
条件等)
容
图 二..圆
圆周角与圆心角及其所对弧 探索
技能 运用 24.1 圆 圆周角与圆 了解
(3)探索圆周角与圆心角及其 的关系
心角及其所
形 所对弧的关系
对弧的关系
了解并证明圆周角定理及其推 圆周角定理及其推论:圆周角 了解
课标分析 教材分析 学情分析 教学重难点 教学设计
教学板书
教学评价 教学得失
课标与教材双向关联表
说明:第三学段 7——9 年级
人民教育出版社九年级数学上册
课标分析
教材分析
课
课标具体要求
完成的内容
行为 其它重要 维度 学习 教材
考核点 教学后
标
动词 信息 目标 水平 章节
技能 运用 24.1 圆 同弧或等弧 所对圆周角
运用
上的圆心角度数的一半;直径所 心角度数的一半;直径所对的 证明
几 对的圆周角是直角;90°的圆周 圆周角是直角;90°的圆周角
等于圆心角 的一半
角所对的弦是直径;圆内接四边 所对的弦是直径;圆内接四边
何 形的对角互补。
形的对角互补。
教材分析
圆心角、弧、弦
❖ ❖
。 ❖ 4、若符合其中的某一个条件,这样的角是否是圆周角呢?试着举例说明。(评
价+2分)
❖ ❖
❖ 5、预习检测:完成自主探究的第3题。(评价+1分)
活动探究画一画:请同学们动手画出⊙O中BC所
对的圆周角.观察BC所对的圆周角与圆心O有几种
位置关系?
学生动手在纸上操作,得出结论 圆周角与圆心的位置关系:
应达到
分
(方法、
内容
的水平
项
数量、
内
条件等)
容
图 二..圆
圆周角与圆心角及其所对弧 探索
技能 运用 24.1 圆 圆周角与圆 了解
(3)探索圆周角与圆心角及其 的关系
心角及其所
形 所对弧的关系
对弧的关系
了解并证明圆周角定理及其推 圆周角定理及其推论:圆周角 了解
24.1.4 圆周角 课件-2024-2025学年人教版九年级数学上册
究
与
应
用
[概括新知]
推论:(1)同弧或等弧所对的圆周角 相等
(2)半圆(或直径)所对的圆周角是
对的弦是
直径
.
直角
.
,90°的圆周角所
探
究
与
应
用
[理解应用]
例2 (教材典题)如图24-1-24,☉O的直径AB为10 cm,弦AC为
6 cm,∠ACB的平分线交☉O于点D,求BC,AD,BD的长.
解:如图,连接OD.
得AB=12 cm,BC=5 cm,则圆形镜面的半径为
图24-1-32
13
2
cm .
谢 谢 观 看!
D.100°
图24-1-27
课
堂
小
结
与
检
测
[本课时认知逻辑]
圆心角
圆周角
的定义
类比
圆周角
圆周角与直
径的关系
圆周角定理
圆周角定理
的推论
课
堂
小
结
与
检
测
[检测]
1.如图24-1-28,△ABC是☉O的内接三角形.若∠ABC=70°,则
∠AOC的度数为
A.140°
B.130°
C.120°
D.110°
( A )
图24-1-28
课
堂
小
结
与
检
测
2.如图24-1-29,BD是☉O的直径,点A,C在圆上,∠A=50°,则
∠DBC的度数是
A.50°
B.45°
C.40°
D.35°
( C )
图24-1-29
课
堂
小
结
与
应
用
[概括新知]
推论:(1)同弧或等弧所对的圆周角 相等
(2)半圆(或直径)所对的圆周角是
对的弦是
直径
.
直角
.
,90°的圆周角所
探
究
与
应
用
[理解应用]
例2 (教材典题)如图24-1-24,☉O的直径AB为10 cm,弦AC为
6 cm,∠ACB的平分线交☉O于点D,求BC,AD,BD的长.
解:如图,连接OD.
得AB=12 cm,BC=5 cm,则圆形镜面的半径为
图24-1-32
13
2
cm .
谢 谢 观 看!
D.100°
图24-1-27
课
堂
小
结
与
检
测
[本课时认知逻辑]
圆心角
圆周角
的定义
类比
圆周角
圆周角与直
径的关系
圆周角定理
圆周角定理
的推论
课
堂
小
结
与
检
测
[检测]
1.如图24-1-28,△ABC是☉O的内接三角形.若∠ABC=70°,则
∠AOC的度数为
A.140°
B.130°
C.120°
D.110°
( A )
图24-1-28
课
堂
小
结
与
检
测
2.如图24-1-29,BD是☉O的直径,点A,C在圆上,∠A=50°,则
∠DBC的度数是
A.50°
B.45°
C.40°
D.35°
( C )
图24-1-29
课
堂
小
结
人教版九年级数学上册24.1.4 圆周角课件(共27张PPT)
三、圆内接四边形的性质
观察图中三角形与圆的位置关系。
答:如图,我们把△ABC叫做圆内接三角形;而
圆叫做三角形的外接圆。
A
O
B
C
圆内接多边形:
若一个多边形各顶点都在同一个圆上,
那么,这个多边形叫做圆内接多边形,这
个圆叫做这个多边形的外接圆。
D E
B
C
C
O
A
B
A
OD
F
E
如图,四边形ABCD为圆内接四边形; ⊙O为四边形ABCD外接圆。
圆周角定理
圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半;
互动探究
问题1 如图,OB,OC都是⊙O的半径,点A ,D 是上
任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC 相等吗?请说明理由.
相等。理由如下:
D
BDC 1 BOC, 2
∴∠BAC=∠BDC
知识要点
圆周角定理的推论
∠DCB的对角,我们把∠A叫做
∠DCE的内对角。
D
A
O
E
圆内接四边形的一个 B
C
外角等于它的内对角。
圆的内接四边形性质定理:
圆的内接四边形的对角互补,并且任何 一个外角都等于它的内对角。
巩固练习:
1、如图,四边形ABCD为⊙O 的内 接四边形,已知∠BOD=100°, 求∠BAD及∠BCD的度数。A
同弧或等弧所对的圆周角相等.
A2
A
A1
3
知识要点
圆周角和直径的关系
半圆(或直径)所对的圆周角是直角,90° 的圆周角所对的弦是直径.
课堂能力提升
1 . 如 图 , 已 知 圆 心 角 ∠BOC=76° , 则 圆 周 角 ∠BAC的度数是__3_8_°_.
初中数学教学课件:24.1.4圆周角(人教版九年级上)
C
等于( B ).
A.30° B.60° C.90° D、45°
A
B
P
1.如图,∠A=50°,∠AOC=60° BD是⊙O的直径,则∠AEB等于( B ). A.70° B.110° C.90° D.120°
2.(南通·中考) 如图,⊙O的直径
A
ED O
B
C
AB=4,点C在⊙O上,∠ABC=30°,则AC的
24.1.4 圆周角
1.理解圆周角的概念,掌握圆周角的定理的内容及简单 应用; 2.掌握圆周角的定理的三个推论及简单应用; 3.渗透由“特殊到一般”,由“一般到特殊”的数 学思想方法.
C
C
O
O
B
A
B
B A
A
C
O
圆周角:顶__点__在__圆__上__,并且角_两__边__都__和__圆__相__交_. 圆心角: 顶__点__在__圆__心___ 的角.
∠COB=120°.∴∠CBD=1 ∠COD=1 ×1 ∠COB=30°.
2
22
又∠AOB=98°,∠COB=120°.∴∠OAB=41°,
∠OBC=∠OCB=30°, ∠ABD=41°+30°+30°=101°.
答案:101°
4.如图,△ABC的顶点A、B、C都在⊙O
上,∠C=30°,AB=2,则⊙O的半径是多少?
又在Rt△ABD中,AD2+BD2=AB2,
A D B D 2 A B 2 1 0 52 ( c m )
2
2
跟踪训练
1、如图,在⊙O中,∠ABC=50°, 则∠AOC等于( D ). A.50° B.80° C.90° D.100°
人教版数学九年级上册 24.1.4圆周角(共21张PPT)
和∠AEB)和同学乙的视角相同吗?
1、什么叫做圆心角?
定 义
顶点在圆心的角叫做加圆心角。如图(1)
学 习
B
B
O
O
C
(1)
C A
(2)
2、圆周角的定义:
如图(2),∠BAC的顶点在圆上,它的两边分别与圆相交,像这样的角, 叫做圆周角。
3、圆心角与圆周角的差别:
定
义
B
B
学
习
O
O
C
C
A
(1)
(2)
一是对角的顶点的位置的规定,圆心角的顶点在圆心处, 而圆周角的顶点在圆周上;
运
AP
用
连结OD,
直径AB CD
COB DOB 1 COD 2
CPD是圆周角, 对的弧是CBD
O
C
D
B
CPD 1 COD 2
CPD COB
1、本节课的主要内容是什么?
课
圆周角的定义和性质
堂
小
结
2、本节课你学到了什么数学方法来证明圆周角的性质?
分类法 ,数形结合法
[推论] 半圆(或直径)所对的圆周角是
直角;90°的圆周角所对的弦是直径.
C2 C1
C3
知
识
探
探究与思考
A
O
B
索
(1)如图,弧AB是⊙O半圆(AB是⊙O的直
径),那么∠C1、∠C2、∠C3的度数 是_9_0_°_
(2) 若∠C1、∠C2、∠C3是直角,那么∠AOB
是180° 。点O在_A_B_上,弦AB是 直__径_
2
2
BAC 1 BOC
2
知 识 探 索
24.1.4 第1课时 圆周角定理 初中数学人教版数学九年级上册课件
1.圆 周 角 与 圆心 的 位置 有 以下 几 种关 系 ,试 测 量 各图 中 ∠BOC与∠BAC的关系.
圆心在角 圆心在角 的一边上 的内部
圆心在角的外部
通过测量,可得∠BAC=
1∠BOC
2
2.如图,当圆心O在∠BAC内部时,请说明∠A=12∠BOC.
解:如图,连接AO并延长交☉O于点D. ∵OA=OB,OA=OC, ∴∠B=∠3,∠C=∠4.
2
归纳总结 圆周角定理:一条弧所对的圆周角等于它所对 的圆心角的 一半 .
合作探究
圆周角定理的推论
1.(1) 如 图 , 在 ☉O 中 , AB = MN , 则
∠MDN与∠ACB的大小关系是
.
(2)直径所对的圆周角是多少度?请说径吗?
请说明理由.
解:(1)∠MDN=∠ACB. (2)因为直径所对的圆心角是180°,所以直径所对的圆周 角是90°.(3)90°圆周角所对的弧是半圆,所以90°圆周 角所对的弦是直径.
(2)当点P在使PC=AB的位置时,有AF=EF. 证明:∵PC=AB,∴∠EBD=∠C. ∵∠FAE=90°-∠C,∠AEF=∠BED=90°-∠EBD,
∴∠FAE=∠AEF,AF=EF.
圆周角定理、推论的应用 认真阅读课本“例4”,体会圆周角定理、推论的应用,解决下 面的问题. 2.如图,在☉O中,弦AB=3 cm,点C在☉O上,∠ACB=30°.求 ☉O的直径.
(1)当AP=AB时,求证:AE=BE. (2)当点P在什么位置时,AF=EF,证 明你的结论.
解:(1)证明:如图,连接AB,AP. ∵AP=AB,∴∠ABP=∠P. ∵BC为☉O直径, ∴∠BAC=90°. 又AD⊥BC,可证∠BAE=∠C. ∵∠C=∠P,∴∠BAE=∠P, ∴∠ABE=∠BAE,∴AE=BE.
圆心在角 圆心在角 的一边上 的内部
圆心在角的外部
通过测量,可得∠BAC=
1∠BOC
2
2.如图,当圆心O在∠BAC内部时,请说明∠A=12∠BOC.
解:如图,连接AO并延长交☉O于点D. ∵OA=OB,OA=OC, ∴∠B=∠3,∠C=∠4.
2
归纳总结 圆周角定理:一条弧所对的圆周角等于它所对 的圆心角的 一半 .
合作探究
圆周角定理的推论
1.(1) 如 图 , 在 ☉O 中 , AB = MN , 则
∠MDN与∠ACB的大小关系是
.
(2)直径所对的圆周角是多少度?请说径吗?
请说明理由.
解:(1)∠MDN=∠ACB. (2)因为直径所对的圆心角是180°,所以直径所对的圆周 角是90°.(3)90°圆周角所对的弧是半圆,所以90°圆周 角所对的弦是直径.
(2)当点P在使PC=AB的位置时,有AF=EF. 证明:∵PC=AB,∴∠EBD=∠C. ∵∠FAE=90°-∠C,∠AEF=∠BED=90°-∠EBD,
∴∠FAE=∠AEF,AF=EF.
圆周角定理、推论的应用 认真阅读课本“例4”,体会圆周角定理、推论的应用,解决下 面的问题. 2.如图,在☉O中,弦AB=3 cm,点C在☉O上,∠ACB=30°.求 ☉O的直径.
(1)当AP=AB时,求证:AE=BE. (2)当点P在什么位置时,AF=EF,证 明你的结论.
解:(1)证明:如图,连接AB,AP. ∵AP=AB,∴∠ABP=∠P. ∵BC为☉O直径, ∴∠BAC=90°. 又AD⊥BC,可证∠BAE=∠C. ∵∠C=∠P,∴∠BAE=∠P, ∴∠ABE=∠BAE,∴AE=BE.
人教版九年级数学上册24.1.4圆周角课件
• 课后作业:“学生用书”的“课后作业” 部分.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时48分38秒09:48:3822.4.12
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午9时48分22.4.1209:48April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二9时48分38秒09:48:3812 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论.
• 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理.
• 3. 会用圆周角定理及推论进行证明和计算.
合作探究 达成目标
一、概念 顶点在圆上,并且两边都和圆相交的角
顶点在圆上,并且两边都和圆相交的角.
【针对训练】
(1)(3)(4 圆周角定理及其推论的 应用
【针对训练】
总结梳理 内化目标
1.两个概念:圆周角,圆内接四边形. 2.圆周角定理及其推论. 3.圆内接四边形的性质. 4.分类讨论的数学思想方法.
达标检测 反思目标 C
C
C
C 40
课后作业
• 上交作业: 教科书第89页习题24.1第4,5,6题 .
谢谢观赏
You made my day!
我们,还在路上……
D
A
试找出图中的圆周角 C
O·
E
BB
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时48分38秒09:48:3822.4.12
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午9时48分22.4.1209:48April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二9时48分38秒09:48:3812 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
圆周角
创设情景 明确目标
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论.
• 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理.
• 3. 会用圆周角定理及推论进行证明和计算.
合作探究 达成目标
一、概念 顶点在圆上,并且两边都和圆相交的角
顶点在圆上,并且两边都和圆相交的角.
【针对训练】
(1)(3)(4 圆周角定理及其推论的 应用
【针对训练】
总结梳理 内化目标
1.两个概念:圆周角,圆内接四边形. 2.圆周角定理及其推论. 3.圆内接四边形的性质. 4.分类讨论的数学思想方法.
达标检测 反思目标 C
C
C
C 40
课后作业
• 上交作业: 教科书第89页习题24.1第4,5,6题 .
谢谢观赏
You made my day!
我们,还在路上……
D
A
试找出图中的圆周角 C
O·
E
BB
(人教版)九年级数学上册课件-【24.1.4 圆周角】
什么关系?
证明• : 根据圆周角定理可知,
A
D
BAC 1 BOC, BDC 1 BOC.
2
2
O
∴ BAC BDC.
B
C
同弧所对的圆周角相等.
状元成才路
等弧:B⌒C=C⌒E,∠BDC与∠CAE有什么关系?
• 如图,作出两弧所对应的圆心角.
• 根据圆周角定理可知,
BDC 1 BOC, 2
1
CAE COE. 2
∠A=
12∠BOC=
1 2
×80°=40°.
状元成才路
上节课我们学习了一个反映圆心角、弧、弦三个 量之间关系的一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一 组量相等,那么它们所对应的其余两个量都分别相等.
C
那么,圆周角与弧、弦有什么 关系吗?
状元成才路
O
A
B
知识点2 圆周角定理的推论 同弧:∠BAC与∠BDC同B⌒C,∠BAC与∠BDC有
C
圆内接四边形的对角 互补 .
D O
A
B
状元成才路
随堂演练
基础巩固
• 1.下列四个图中,∠x是圆周角的是(C )
状元成才路
• 2.如图,⊙O中,弦AB、CD
相交于E点,且∠A=40°,
∠AED=75°,则∠B=( D)
• A.15°
B.40°
C.5°
D.35°
状元成才路
• 3.如图,⊙O的直径AB与弦CD垂 直,且∠BAC=40°,则∠BOD=
• 80° .
• 4.如图,点B、A、C都在⊙O上, • ∠BOA=110°,则∠BCA= • 125° .
状元成才路
证明• : 根据圆周角定理可知,
A
D
BAC 1 BOC, BDC 1 BOC.
2
2
O
∴ BAC BDC.
B
C
同弧所对的圆周角相等.
状元成才路
等弧:B⌒C=C⌒E,∠BDC与∠CAE有什么关系?
• 如图,作出两弧所对应的圆心角.
• 根据圆周角定理可知,
BDC 1 BOC, 2
1
CAE COE. 2
∠A=
12∠BOC=
1 2
×80°=40°.
状元成才路
上节课我们学习了一个反映圆心角、弧、弦三个 量之间关系的一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一 组量相等,那么它们所对应的其余两个量都分别相等.
C
那么,圆周角与弧、弦有什么 关系吗?
状元成才路
O
A
B
知识点2 圆周角定理的推论 同弧:∠BAC与∠BDC同B⌒C,∠BAC与∠BDC有
C
圆内接四边形的对角 互补 .
D O
A
B
状元成才路
随堂演练
基础巩固
• 1.下列四个图中,∠x是圆周角的是(C )
状元成才路
• 2.如图,⊙O中,弦AB、CD
相交于E点,且∠A=40°,
∠AED=75°,则∠B=( D)
• A.15°
B.40°
C.5°
D.35°
状元成才路
• 3.如图,⊙O的直径AB与弦CD垂 直,且∠BAC=40°,则∠BOD=
• 80° .
• 4.如图,点B、A、C都在⊙O上, • ∠BOA=110°,则∠BCA= • 125° .
状元成才路
24.1.4圆周角 教学课件(共33张PPT)初中数学人教版(2012)九年级上册
∴△AOF 是等边三角形,
∴OF=OA=AF=2, ∵OG⊥AF,∴
2
∴OG=√2²-1²=√3Hale Waihona Puke 即它的内切圆半径为 √3,故选:D.
练 习5 如 图 ,oO 的半径为2,正六边形 ABCDEF 内接于⊙0,则这
个正六边形的边心距OG 的长为(D )
A.2
B.1
上
C.
D.√3
2
解析:∵六边形ABCDEF为正六边形,
A.6
B.6√3
C.6√5
D.4√ 13
解析:如图,连接OA、OB 由题意可得:∠AOB=360÷6=60°
∵OA=OB=2
∴△OAB 为等边三角形,∴AB=2 过 点 0 作OM⊥AB 于 点M, 则 AM=BM=1
在Rt△AOMR中 ,OM= √2²-1²= √3
∴OO 的面积约为6SAog=6 √3,故选:B.
△AOF 都是等边三角形,
∵O0 的周长为12π,∴⊙0的半径为
I
正六边形的边长是6.故选:B.
小结
正多边形的外接圆的圆心叫做这个正 多边形的中心. 外接圆的半径叫做正多边形的半径. 正多边形的每一边所对的圆心角叫做 正多边形的中心角. 中心到正多边形的一边的距离叫做正 多边形的边心距.
E D
F 中心角 半径R
正十六边形等.
练习1下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最大 的是( D )
B.
C.
D.
解析:随着圆内接正多边形边数的增加,它的周长和面积 越来越接近圆周长和圆面积,
故选:D.
练 习2如图,点A、B、C、D 为一个正多边形的顶点,点0为正 多边形的中心,若∠ADB=18°, 则这个正多边形的边数为( B )
∴OF=OA=AF=2, ∵OG⊥AF,∴
2
∴OG=√2²-1²=√3Hale Waihona Puke 即它的内切圆半径为 √3,故选:D.
练 习5 如 图 ,oO 的半径为2,正六边形 ABCDEF 内接于⊙0,则这
个正六边形的边心距OG 的长为(D )
A.2
B.1
上
C.
D.√3
2
解析:∵六边形ABCDEF为正六边形,
A.6
B.6√3
C.6√5
D.4√ 13
解析:如图,连接OA、OB 由题意可得:∠AOB=360÷6=60°
∵OA=OB=2
∴△OAB 为等边三角形,∴AB=2 过 点 0 作OM⊥AB 于 点M, 则 AM=BM=1
在Rt△AOMR中 ,OM= √2²-1²= √3
∴OO 的面积约为6SAog=6 √3,故选:B.
△AOF 都是等边三角形,
∵O0 的周长为12π,∴⊙0的半径为
I
正六边形的边长是6.故选:B.
小结
正多边形的外接圆的圆心叫做这个正 多边形的中心. 外接圆的半径叫做正多边形的半径. 正多边形的每一边所对的圆心角叫做 正多边形的中心角. 中心到正多边形的一边的距离叫做正 多边形的边心距.
E D
F 中心角 半径R
正十六边形等.
练习1下列图形中,正多边形内接于半径相等的圆,其中正多边形周长最大 的是( D )
B.
C.
D.
解析:随着圆内接正多边形边数的增加,它的周长和面积 越来越接近圆周长和圆面积,
故选:D.
练 习2如图,点A、B、C、D 为一个正多边形的顶点,点0为正 多边形的中心,若∠ADB=18°, 则这个正多边形的边数为( B )
24.1.4 圆周角 人教版九年级数学上册第1课时课件
∠BAD= 1∠BOD,
2
∴∠BAC=∠2 CAD-∠BAD= (∠1 COD-∠BOD)= ∠B10C.
2
2
圆周角定理:一条弧所对的圆周角等 于它所对的圆心角的一半.
数学思想方法:分类思想、化归思 想、由特殊到一般的数学方法.
共同探究2
思考: 1.同弧所对的圆周角是否相等? 2.如果改为等弧,那么所对的圆周角还
(2)如图(2)圆心O在∠BAC的内部上时.
作直径AD,则由(1)可得∠BAD= 1 ∠BOD,
∠CAD= 1 ∠COD,
2
∴∠BAC=2∠BAD+∠CAD= (∠1 BOD+∠COD)
= 1 ∠BOC.
2
2
证明:
(3)如图(3) ,圆心O在∠BAC的外部上时.
作直径AD,则由(1)可得∠CAD= 1 ∠COD,
圆周角:顶点在圆上,并且两边都和圆相交, 我们把这样的角叫做圆周角.
观察下列图形中的角都是圆周角吗?
O
共同探究1
动手操作:
1.画⊙O,在⊙O上任意画弧AB,分别画出弧AB所
对的圆心角和圆周角.
2.你能画出几个弧AB所对的圆心角和圆周角?
3.分别测量所画圆心角和圆周角的度数,它们之 间有什么关系?
思考:
第二十四章 圆
24.1.4 圆周角(第1课时)
问题思考
足球训练场上教练在球门前划了一个圆圈进
行无人防守的射门训练如图,甲、乙两名运动员
分别在C、D两处,他们争论不休,都说在自已所
在的位置对球门AB的张角大,如果你是教练,请
评一评他们两个人谁的位置对球门AB的张角大?
为什么?
A
B
C D
人教版数学九年级上册24.1.4圆周角课件(31张PPT)
推论 2
半圆(或直径)所对的圆周角是直角, 90°的圆周角所对的弦是直径.
符号语言:
如图,在⊙O 中,若 AB 为⊙O 的直径, 则∠C1 = ∠C2 = ∠C3 = 90°. 若∠C1(或∠C2,∠C3 )= 90°, 则 AB 为 ⊙O 的直径.
思考 若将“同弧或等弧所对的圆周角相等”中的“同 弧或等弧”改为“同弦或等弦”,则结论成立吗?
证明 3
你会证明吗?
定理
一条弧所对的圆周角等于它所对的圆心角的一半
圆心在圆周角的 情况
一条边上
圆心在圆周角 的内部
圆心在圆周角 的外部
图示
结论
∠BAC = ∠BOC.
思考 AB 所对的两个圆周角,∠ACB 与∠ADB 之间 有什么关系?
同弧所对的圆周角相等.
思考 AB = BC ,∠ADB 与∠BEC 之间有什么关系?
解:∠1 = ∠4, ∠3 = ∠6, ∠2 = ∠7, ∠5 = ∠8.
理由:同弧所对的圆周角相等.
【教材P88练习 第3题】
3. 如图,OA,OB,OC 都是 ⊙O 的半径,∠AOB = 2∠BOC. 求证:∠ACB = 2∠BAC.
证明:∵ ∠ACB = ∠AOB,
∠BAC = ∠BOC,
∠AOB = 2∠BOC,
不一定成立,因为 一条弦所对的圆周 角有两种情况.
例题4
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm, ACB 的平分线交 ⊙O 于点 D,求 BC,AD,BD 的长.
解:连接 OD. ∵ AB 是⊙O 的直径, ∴ ACB =ADB = 90°. 在 Rt△ABC 中, BC AB2 AC 2 102 62 8cm.
人教版九年级数学上册第24章第1节《圆周角》优秀课件
1.什么叫圆心角?
回忆
顶点在圆心的角叫圆心角
O.
2. 圆心角、弧、弦三个量之间关系的 A
B
一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等, 那么它们所对应的其余两个量都分别相等。
探究
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察 得到的∠ACB有什么特征?
C
O.
也可以看成经过折叠而成折痕与圆周角的关系.swf
分析论证
1.首先考虑一种特殊情况:
当圆心(O)在圆周角(∠BAC)的一边(BA)
上时,圆周角∠BAC与圆心角∠BOC的大小
关系. ∵ OA=OC
A
∴∠A=∠C
O
又 ∠BOC=∠A+∠C
B
C
∴∠BOC=2∠A
即∠A= 1 ∠BOC 2
分析论证
你能证明第2种情况吗?
B
A D
O C
巩固练习
2.如图,∠A是圆O的圆周角, ∠A=40°,求∠OBC的度数。
练一练
3、如图,在⊙O中,∠ABC=50°,
A
则∠AOC等于( D )
A、50°;
B、80°;
C、90°;
D、100°
BO C
4、如图,△ABC是等边三角形,
C
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( B )
A、70°; C、90°;
B、100°; D、120°
B
C
练习:1,如图 AB是⊙O的直径, C ,D是圆上 的两点,若∠ABD=40°,则∠BCD=_5_00___ .
D
A
O 40° B
C
3,如图所示,AB,AC是⊙O的弦,AD⊥BC 于D,交⊙O于F,AE与⊙O的直径,试问 两 弦 BE 与 CF 的 大 小 有 何 关 系 , 说 明 理 由.
回忆
顶点在圆心的角叫圆心角
O.
2. 圆心角、弧、弦三个量之间关系的 A
B
一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等, 那么它们所对应的其余两个量都分别相等。
探究
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察 得到的∠ACB有什么特征?
C
O.
也可以看成经过折叠而成折痕与圆周角的关系.swf
分析论证
1.首先考虑一种特殊情况:
当圆心(O)在圆周角(∠BAC)的一边(BA)
上时,圆周角∠BAC与圆心角∠BOC的大小
关系. ∵ OA=OC
A
∴∠A=∠C
O
又 ∠BOC=∠A+∠C
B
C
∴∠BOC=2∠A
即∠A= 1 ∠BOC 2
分析论证
你能证明第2种情况吗?
B
A D
O C
巩固练习
2.如图,∠A是圆O的圆周角, ∠A=40°,求∠OBC的度数。
练一练
3、如图,在⊙O中,∠ABC=50°,
A
则∠AOC等于( D )
A、50°;
B、80°;
C、90°;
D、100°
BO C
4、如图,△ABC是等边三角形,
C
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( B )
A、70°; C、90°;
B、100°; D、120°
B
C
练习:1,如图 AB是⊙O的直径, C ,D是圆上 的两点,若∠ABD=40°,则∠BCD=_5_00___ .
D
A
O 40° B
C
3,如图所示,AB,AC是⊙O的弦,AD⊥BC 于D,交⊙O于F,AE与⊙O的直径,试问 两 弦 BE 与 CF 的 大 小 有 何 关 系 , 说 明 理 由.
人教版九年级上册 24.1.4 圆周角 课件30张
五、思维拓展
与圆有关的角除了圆心角、圆周角还有其 它的角,比较∠A、∠D、∠E的大小关系,你 有什么发现?能说明你的结论吗?
D’
A
E’ E
D
B
C
练习. 如图,在⊙O中,BC=2DE,∠BOC=84°,求
∠A的度数.
C E
A
O
D
B
活动六:反思提升
目标检测
1.如左图,OA、OB、OC都是⊙O的半径,
24.1.4圆周角
一、温故探新 定义 顶点在圆心的角叫做圆心角.
O
B
C
二、建立概念
圆周角
类 比 思
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.
想
圆心角
B C
· · B 定义O 顶点A 在圆心 O
A
的角叫做圆心角.
C
(1)√
(2) ×
A O
B
C
A C
·O
B
(3)×
圆周角
定义 顶点在圆上, 并且两边都和圆相交 的角叫做圆周角.
四边形ABCD的对角线.填空:
(1)∠1=∠ 4 ; (2)∠2=∠ 7 ; (3)∠3=∠ 6 ; (4)∠5=∠ 8 .
1.如图,点A、B、C都在⊙O上. (1)若∠AOC=120°,则求∠ABC的度数. (2)写出∠AOC与∠ABC的数量关系.
O
C
A
B
2.如图,点A、B、C都在⊙O上. ∠AOB = 2∠BOC. 请说明∠ACB = 2∠BAC.
O
C
A
B
一、温故探新 定义 顶点在圆心的角叫做圆心角. 性质 弧的度数等于它所对圆心角的度数.
O
B