第二章禁忌搜索算法
禁忌搜索
禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
禁忌搜索
禁忌长度:
禁忌表的大小
候选解:
利用当前解的邻域函数产生其所有(或若干) 邻域解,并从中确定若干候选解。 候选解集的确定是选择策略的关键,对算法 性能影响很大。
藐视准则:
当一个禁忌移动在随后T次的迭代内再度出现
时,如果它能把搜索带到一个从未搜索过的区域,
则应该接受该移动即破禁,不受禁忌表的限制。
4.迭代③ 编码:4-2-7-1-5-6-3
Cx 14, C x* 18
结论:因渴望水平发挥作用,交换在破禁 表中的4和5
5.迭代④ 编码:5-2-7-1-4-6-3
Cx C x* 20
结论:交换7和1
6.迭代⑤ 编码:5-2-1-7-4-6-3
Cx C x* 20
*
.更新T表,转步骤2
四、禁忌算法示例
问题:由七层不同的绝缘材料构成的一种绝 缘体,应如何排列顺序,可获得最好的绝 缘性能
编码方式:顺序编码
初始编码:2-5-7-3-4-6-1
目标值:极大化目标值 邻域定义:两两交换是一个邻 域移动 邻域大小:Tabu Size: 3 NG: 5
禁忌搜索
专业:物流工程 姓名:冯颖 学号:201322303100
一、禁忌搜索概述
二、禁忌搜索的重要参数与基本
原理 三、禁忌搜索的算法步骤 四、禁忌算法示例
一、概述
禁忌搜索(Tabu Search或Taboo Search,简称TS ) 的思想最早由Glover提出,它是对局部领域搜索的一 种扩展,是一种全局逐步寻优算法,是对人类智力过 程的一种模拟。TS算法通过引入一个灵活的存储结构 和相应的禁忌准则来避免迂回搜索,并通过藐视准则 来赦免一些被禁忌的优良状态,进而保证多样化的有 效搜索以最终实现全局优化。
禁忌搜索算法
3 禁忌搜索的关键参数和操作
3.1 变化因素
目标值的变化
局部搜索主要依赖起点的选取和邻域的结构; 为了得到好的解,可以比较不同的邻域结构和不同 的初始点; 如果初始点的选择足够多,
总可以计算出全局最优解。
2 禁忌搜索
2.1 算法的背景
禁忌搜索算法(Tabu Search)是由美国 科罗拉多州大学的Fred Glover教授在 1986年左右提出来的,是一个用来跳出 局部最优的搜寻方法。在解决最优问题 上,一般区分为两种方式:一种是传统 的方法,另一种方法则是一些启发式搜 索算法。
4.5 T 3.5 T
2 禁忌搜索
2 禁忌搜索示例
四城市非对称TSP问题
第5步
解的形式 A D B C f(x4)=4.5 禁忌对象及长度 B A B 0 C 1 2 C D 候选解
对换 评价值
CD BC BD
7.5 T 8 ☻ 4.5 T
TS算法 框架
(1)是否有其他形式的候选集? (2)禁忌的长度如何确定?如果在算法中记忆下搜索到 的当前最优解,极端的两种情况是:一是将所有的对换 个数作为禁忌长度,此时等价于将候选集中的所有的对 换遍历;另外则取为1,这等价于局部搜索算法。 (3)是否有评价值的其他替代形式?有时计算目标值的 工作量较大,或无法接受计算目标值所花费的时间,于 是需要其他的方法。 (4)被禁的对换能否再一次解禁?有这样的直观现象, 当搜索到一个局部最优解后,它邻域中的其他状态都被 禁,我们是否解禁一些状态以便跳出局部最优?解禁的 功能就是为了获得更大的搜索范围,以免陷入局部最优 。 (5)如何利用更多的信息?在禁忌搜索算法中,还可记 录其他一些信息。如一个被禁对象(交换)被禁的次数 ,评价值变化的大小等。 (6)终止原则,即一个算法停止的条件,怎样给出?
禁忌搜索算法ppt课件
个候选解?
的解替换当前解
用新的解替换 当前解;
否
找出下一个 次好的新解
更新tabulist NI=NI+1
NI=0 Intensification
n=n+1
否 NI=M?
是 Diversification
NI=0 是
n<N
否
25
End
判断是否为tabu, 决定接受与否
接受最好的候选解,并替换当前解
NI=0 是
n<N
否
21
End
求得初始解 BS=初始解
初始解
Sequence The length of the route
132456
28
BS
Sequence The length of the route
132456
28
22
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
Sequence The length of the route
当前解 413256
30
Sequence The length of the route
BS
132456
28
Tabu list {41, },NI=1,n=1
26
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
The length of the route
30
35
38
40
45
24
Start
Tabu list 初始化(清空) 设M,N的值
求得初始解 BS=初始解
n=0;NI=0
【计算机科学】_禁忌搜索算法_期刊发文热词逐年推荐_20140726
科研热词 网格仿真环境 禁忌搜索算法 发布规则 sprs
推荐指数 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8
科研热词 遗传算法 跳跃逃逸 禁忌搜索 特征选择 流分类 局部极小 决策树 优化算法
推荐指数 1 1 1 1 1 1 1 1
科研热词 推荐指数 软硬件划分 1 计算统一设备架构(cuda) 1 组合优化 1 禁忌搜索 1 现代优化算法 1 并行计算 1 图形处理器(gpu) 1 启发式算法 1 0-1背包问题 1
2014年 序号 1 2 3 4
科研热词 禁忌搜索 特征选择 特征约减 主成分分析
推荐指数 1 1 1 1
2010年 序号 1 2 3 4 5
科研热词 调度算法 能耗最小Leabharlann 禁忌搜索 异构式系统 动态电压缩放
推荐指数 1 1 1 1 1
2011年 序号 1 2 3 4
2011年 科研热词 禁忌搜索 特征选择 特征分类 情感识别 推荐指数 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8 9
物流配送中的车辆路径优化
物流配送中的车辆路径优化第一章:引言物流配送是指将货物从生产地点送达目的地的过程,是现代供应链管理中不可或缺的一环。
而车辆路径优化则是物流配送过程中的关键问题之一。
在这个信息化时代,优化车辆路径可以提高配送效率、降低成本,并确保及时送达客户手中。
第二章:车辆路径规划的挑战2.1 配送需求多样性在现实的物流配送中,不同的货物有不同的重量、体积和价值,而不同的客户也有不同的需求,这就导致了配送需求的多样性。
2.2 多目标优化问题车辆路径优化既要满足配送效率的最大化,又要兼顾交通拥堵的最小化,同时还要考虑物流成本的降低,这就使得车辆路径优化变成了一个多目标优化的问题。
2.3 实时交通信息获取难题车辆进行路径规划需要了解路况状况,但实时交通信息的获取并不容易,尤其是在庞大的城市交通网络中,很难准确把握路况。
第三章:车辆路径优化算法3.1 蚁群算法蚁群算法是模拟蚂蚁觅食行为而提出的一种启发式算法,它模拟了蚂蚁在寻找食物时释放信息素以指引其他蚂蚁前往食物的过程。
通过不断迭代,蚁群算法可以找到全局最优解。
3.2 遗传算法遗传算法是模拟自然界的进化过程而提出的一种启发式算法,它通过模拟个体的基因变异、交叉等操作来搜索问题的最优解。
遗传算法具有全局寻优能力,适用于求解复杂的优化问题。
3.3 禁忌搜索算法禁忌搜索算法通过定义禁忌表和禁忌准则来避免算法陷入局部最优解,并通过引入随机扰动来寻求更优解。
禁忌搜索算法可以在较短时间内找到较好的解。
第四章:车辆路径优化实践案例4.1 电子商务配送中的车辆路径优化在电子商务配送中,配送需求复杂多样,要求配送速度快、配送成本低,而车辆路径优化可以满足这些需求。
通过应用车辆路径优化算法,可以大幅度缩短配送时间,提高配送效率,并减少配送成本。
4.2 快递行业中的车辆路径优化快递行业是现代物流配送的典型代表,快速、准确地送达客户手中是快递行业的核心竞争力。
通过优化车辆路径,快递公司可以实现快速配送、精确时间预计,并提高用户满意度。
禁忌搜索实验报告
一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
运筹学中的优化算法与算法设计
运筹学中的优化算法与算法设计运筹学是一门研究如何寻找最优解的学科,广泛应用于工程、经济、管理等领域。
在运筹学中,优化算法是重要的工具之一,用于解决各种复杂的最优化问题。
本文将介绍一些常见的优化算法以及它们的算法设计原理。
一、贪婪算法贪婪算法是一种简单而直观的优化算法。
它每一步都选择局部最优的解,然后将问题缩小,直至得到全局最优解。
贪婪算法的优点是实现简单、计算效率高,但它不能保证一定能得到全局最优解。
二、动态规划算法动态规划算法通过将原问题分解为一系列子问题来求解最优解。
它通常采用自底向上的方式,先求解子问题,再通过递推求解原问题。
动态规划算法的特点是具有无后效性和最优子结构性质。
它可以用于解决一些具有重叠子问题的优化问题,例如背包问题和旅行商问题。
三、回溯算法回溯算法是一种穷举搜索算法,通过递归的方式遍历所有可能的解空间。
它的基本思想是逐步构建解,如果当前构建的解不满足条件,则回退到上一步,继续搜索其他解。
回溯算法通常适用于解空间较小且复杂度较高的问题,例如八皇后问题和组合优化问题。
四、遗传算法遗传算法是一种借鉴生物进化过程中的遗传和适应度思想的优化算法。
它通过模拟自然选择、交叉和变异等过程,生成新的解,并通过适应度函数评估解的质量。
遗传算法具有全局搜索能力和并行搜索能力,适用于解决复杂的多参数优化问题。
五、模拟退火算法模拟退火算法是一种模拟金属退火过程的优化算法。
它通过接受劣解的概率来避免陷入局部最优解,从而有一定概率跳出局部最优解寻找全局最优解。
模拟退火算法的核心是温度控制策略,逐渐降低温度以减小接受劣解的概率。
它适用于求解连续变量的全局优化问题。
六、禁忌搜索算法禁忌搜索算法是一种基于局部搜索的优化算法。
它通过维护一个禁忌表来避免回到之前搜索过的解,以克服局部最优解的限制。
禁忌搜索算法引入了记忆机制,能够在搜索过程中有一定的随机性,避免陷入局部最优解。
它适用于求解离散变量的组合优化问题。
综上所述,运筹学中的优化算法涵盖了贪婪算法、动态规划算法、回溯算法、遗传算法、模拟退火算法和禁忌搜索算法等多种方法。
AAI_2禁忌搜索算法
N : x D N ( x) 2 D , 且x N ( x),称为一个邻域映射, 其中2 D 表示D 的所有子集组成的集合 。 N ( x)称为x的邻域,y N ( x)称为x的一个邻居。
2015/8/18 Advanced AI 3/77
智能优化计算
2.1 局部搜索
2015/8/18 Advanced AI
10/77
智能优化计算
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
方法2:一步随机搜索
第 2步 从N(xbest)中又随机选一点,如xnow=(ADBCE), 对应目标函数为f(xnow)=44> 43
xbest:=xnow=(ACBDE)
2015/8/18
Advanced AI
23/77
智能优化计算
2.3 禁忌搜索的关键参数和操作
2.3.1 变化因素
向量分量的变化
设原有的解向量为(x1, …, xi-1, xi, xi+1, …, xn),向量 分量的最基本变化为
(x1, …, xi-1, xi, xi+1,…, xn)→(x1, …, xi-1, yi, xi+1,…, xn) 即只有第i个分量发生变化。 也包含多个分量变化的情形。
15/77
智能优化计算
2.2 禁忌搜索
2.2.2 禁忌搜索示例
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
对换 评价值
B
C 3
CD BC BD
4.5 T 3.5 ☻ 4.5
2015/8/18
供应链中使用的优化算法及其应用实践
供应链中使用的优化算法及其应用实践随着全球贸易的快速发展,供应链管理日益成为企业成功的关键因素之一。
在供应链中,如何优化运营,提高效率和降低成本已成为企业追求的目标。
优化算法可以帮助企业实现这些目标。
本文将介绍供应链中常用的优化算法,以及它们在实践中的应用。
1.线性规划算法线性规划是一种优化算法,通过最大化或最小化线性目标函数的方法,在满足一定约束条件下找到最优解。
在供应链中,线性规划可以用于优化资源分配、生产计划和库存管理等方面。
例如,在生产计划中,线性规划可以帮助确定最佳的生产量,以满足需求并最大化利润。
2.整数规划算法整数规划是线性规划的扩展,其中决策变量被限制为整数值。
在供应链中,许多决策变量,如订单数量和仓库位置,通常是离散的。
整数规划算法可以用于优化这些决策变量,以满足需求并最小化成本。
例如,在配送中心位置选择上,整数规划可以帮助确定最佳的仓库位置,以减少运输成本和配送时间。
3.遗传算法遗传算法是一种模拟自然进化过程的优化算法。
它通过对候选解进行交叉、变异和选择操作,逐步优化解空间,找到最优解。
在供应链中,遗传算法可以用于优化生产计划、货车路径规划和仓库布局等方面。
例如,在货车路径规划中,遗传算法可以优化货车的路径,以最小化运输成本和配送时间。
4.模拟退火算法模拟退火算法是一种模拟金属退火过程的优化算法。
它通过接受差解的概率来避免局部最优解,以便在全局解空间中寻找最优解。
在供应链中,模拟退火算法可以用于优化库存管理、订单分配和生产排程等方面。
例如,在库存管理中,模拟退火算法可以帮助确定最佳的库存策略,以满足需求并最小化库存成本。
5.禁忌搜索算法禁忌搜索算法是一种通过禁止某些移动操作,从而避免重复搜索相同解的优化算法。
它通过维护一个禁忌表来避免搜索到已经搜索过的解,并在搜索过程中不断更新禁忌表。
在供应链中,禁忌搜索算法可以用于优化订单分配、仓库布局和供应商选择等方面。
例如,在供应商选择中,禁忌搜索算法可以帮助选择最佳的供应商组合,以满足质量要求并最小化成本。
禁忌搜索算法原理及应用
禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。
禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。
一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。
其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。
禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。
禁忌搜索算法的核心是寻找最优化解。
具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。
当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。
在禁忌搜索算法中,选择邻域解是非常重要的一环。
邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。
邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。
而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。
二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。
下面我们就通过几个实际案例来了解禁忌搜索算法的应用。
1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。
在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。
禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。
2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。
比如在公路路径设计中,需要从成千上万的路径中选择最优解。
禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。
禁忌搜索算法
无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。
无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须满足,且只能由一台配送车辆送货。
一、禁忌搜索算法的原理禁忌搜索算法是解决组合优化问题的一种优化方法。
该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。
在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。
为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。
另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。
二、算法要素的设计1.禁忌对象的确定禁忌对象是指禁忌表中被禁的那些变化元素。
由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。
一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。
根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。
举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。
2013年数学建模第一题方法总结禁忌搜索算法
禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
禁忌搜索算法代码
int i=0,j=0,count=0;
int n;
while(count<sum)
{
for(n=0;n<count;n++)/*根据禁忌表判断此人是否还在圈内*/
if(result[n]==data[i])
break;
if(n>=count)/*若此人还在圈内*/
Байду номын сангаасj++;
if(j==k)
{
result[count++]=data[i];/*把出圈的人的编号存入禁忌表*/
禁忌搜索法:使用一个禁忌表,记录下不允许搜索的元素。在后面的搜索中,根据禁忌表来决定如何处理当前元素。用在约瑟夫环中,我们可以用一个数组记录下已经出圈的人的编号,这样再数数时,可以根据禁忌表来判断此人是否还在圈内。
#define N 100
void yuesefu1(int data[],int result[],int sum,int k)
scanf("%d",&k);
yuesefu1(data,result,total,k);
printf("\nThe sequence is:\n");
for(i=0;i<total;i++)
printf("%d ",result[i]);
{
int input;
scanf("%d",&input);
if(input==0)
break;
for(j=0;j<i;j++)
if(data[j]==input)
禁忌算法
基于禁忌搜索算法求解TSP问题(JA V A)时间2013-04-17 22:38:51 CSDN博客原文/wangqiuyun/article/details/8816463一、TSP问题TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。
假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得的路径路程为所有路径之中的最小值。
TSP问题是一个组合优化问题。
该问题可以被证明具有NPC计算复杂性。
TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。
所有的TSP问题都可以用一个图(Graph)来描述:V={c 1 , c 2, …, c i, …, c n },i = 1,2, …, n ,是所有城市的集合. c i表示第i个城市,n为城市的数目;E={(r, s): r,s∈ V}是所有城市之间连接的集合;C = {c rs : r,s∈ V} 是所有城市之间连接的成本度量(一般为城市之间的距离);如果c rs = c sr, 那么该TSP问题为对称的,否则为非对称的。
一个TSP问题可以表达为:求解遍历图G = (V, E, C),所有的节点一次并且回到起始节点,使得连接这些节点的路径成本最低。
二、禁忌搜索算法禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来跳出局部最优点。
禁忌搜索算法
邻域选优的规则模拟了人类的记忆功能,找过的地方都 记下来,不再找第二次。一定的迭代次数后,早期进入 禁忌表的解被解禁退出。
7.5T 8☻ 4.5T
四城市非对称TSP问题
第 6步
解的形式 A DCB f(x5)=8 禁忌对象及长度 B A C D 候选解
对换 评价值
B
2 C
0 1
CD BC BD
3.5T 4.5T 4☻
谢谢观赏
2、禁忌对象为目标值变化 3、禁忌对象为分量变化 解的简单变化比解的分量变化和目标值变化的受禁范围要小,可 能造成计算时间的增加,但也给予了较大的搜索范围; 解分量的变化和目标值变化的禁忌范围大,减少了计算时间,可 能导致陷在局部最优点。
禁忌长度的选取
禁忌长度过短,一旦陷入局部最优点,出现循环无法跳出; 禁忌长度过长,造成计算时间较大,也可能造成计算无法继续下去。
(2)动态频率信息:从一个解、对换或目标值到另一个解、对换或目标值的变化趋势。
终止规则
(1)确定步数终止,无法保证解的效果,应记录当前最优解; (2)频率控制原则,当某一个解、目标值或元素序列的频率超过 一个给定值时,终止计算; (3)目标控制原则,如果在一个给定步数内,当前最优值没有变 化,可终止计算。
B
C
CD BC BD
4.5☻ 7.5 8
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
对换 评价值
禁忌搜索算法
破禁策略
• 相关文献亦称藐视准侧、特赦准则、释放准侧等;破禁策 略通常指渴望水平(Aspiration)函数选择,当一个禁忌移动 在随后T次的迭代内再度出现时,如果它能把搜索带到一 个从未搜索过的区域,则应该接受该移动即破禁,不受禁 忌表的限制。 • 衡量标准就是定义一个渴望水平函数,渴望水平函数通常 选取当前迭代之前所获得的最好解的目标值或此移动禁忌 时的目标值作为渴望水平函数。 • 破禁准侧保证了搜索过程在全部候选解被禁或者是有优于 当前最优解的候选解被禁时,能够释放特定的解,从而实 现全局优化搜索。
禁忌搜索算法的关键要素
就这些参数含义一般而言,设计一个禁忌搜索算法需要确 定以下环节: • 初始解 • 邻域和移动 • 候选集 • 禁忌表及其长度 • 选择策略 • 破禁策略 • 停止规则 • 下面对这些环节的一般操作予以讨论。
初始解 • 禁忌搜索对初始解的依赖较大,不同的初始解, 在搜索过程中耗费时间和资源往往不同,同一邻 域结构,不同的初始点会得到不同的计算结果, 好的初始解往往会提高最终的优化效果。一个直 观的结论就是:如果初始点选择的足够好,总可 以计算出全局最优解。 • 初始解的构造可以随机产生,但效果往往不够理 想,常用方法是基于问题的特征信息,借助一下 启发式方法产生,这样可以保证初始解的性能[4] 。
• 四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A B C 3 C D 候选解
对换 评价值
CD BC BD
4.5T 3.5 * 4.5
• 四城市非对称TSP问题
•
• 1997年,Glover与 Laguna合著的第一本禁忌 搜索专著正式出版,标志 着关于禁忌搜索的相关研 究日趋完善,并得到了同 行的认可。 • 目前关于TS的研究主要分 为对TS算法过程和关键步 骤的改进,用TS改进已有 优化算法和应用TS相关算 法求解工程优化问题。
基于禁忌搜索算法参数设置的探讨
[ ] Go e, F 1 lvr .Hert sfritgrpormmiguig sr gt u sc o nee rga n s ur ae ii n o
从表 2可以得 出:①初始解越好 ,T S算 法求 得的最优 解越佳 ;② 2阶 T s法 ( 先利用 求 得初始解 ,再利用
具体实验如下 。
( )迭 代 次 数 :随 机 产 生 2 0个 城 市 坐 标 ,经 历 不 同 1 4
的迭 代 次 数 的实 验 数 据 如 表 l所 示
, 计 数 器 tO = 。设 置 禁 忌 表 为
表 1 迭代次数对 T S算 法 的 影 响
的 目标 函数 值 ,则 = 【 。 f + ”
来 求 解 Q P ( uda cA s n et rbe 问 题 ,L - A Q art si m n olm) i g P a
gn u a& G oe 以小 、 中 、 大 三 种 不 同 变 动 范 围 的禁 忌 表 大 l r v
小 来 求 解 通 信 带 宽 封包 问 题 ( e cmm n ai a d i h T l o u i t nB n wd e c o t
[ ]G o e,F T b a h a J OR A Ju a o o - 3 l r . aus r :pr I[ v ec t ]. S o r l nC r n n
示 , 两 个 城 市 之 间 的 距 离 利 用 两点 问 的 距 离 公 式 来 求 得 。
常 见 的 有 :循 环 迭 代 次 数 、C U 运 行 时 间 、连 续 获 得 没 有 P
改 进 过 解 的次 数 。一 旦 搜 索 达 到 这 些 预设 的 停 止 条 件 .则 停 止 搜 索 ,当 前 的 最 优 解 即 为 最 终 解 。 一 般 情 况 下 选 择 “ 环 迭 代 次 数 ” 作 为停 止 条 件 ,可 以 保 证 在 一 段 迭 代 次 循 数 后 终 止 搜 索 且 不 因使 用 电脑 的 系 统 不 同 而 影 响 解 。 1 法基本步骤如下 : ’ S算 Se :初 始 化 。选 择 一 个 初 始 可 行 解 ( tp0 m.最 大 迭 代 次 数 一, 当 前 解 = 空 以及 禁 忌 表 的大 小 £ 。 Se :停 止 。 如 果 # ,那 么停 止 搜 索 , 当前 解 t 1 p =一 就是最优解 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C
D E
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
方法1:全邻域搜索
第 2步 N(xbest)={(ACBDE),(ABCDE),(ADBCE), (AEBDC),(ACDBE),(ACEDB),(ACBED)}, 对应目标函数为f(x)={43, 45, 44, 59, 59, 58, 43} xbest:=xnow=(ACBDE)
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
初始解为xbest=(ABCDE),f(xbest)=45,定义邻域映射 为对换两个城市位置的2-opt,选定A城市为起点。
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
简单易行,但无法保证全局最优性;
局部搜索主要依赖起点的选取和邻域的结构; 为了得到好的解,可以比较不同的邻域结构和不同 的初始点; 如果初始点的选择足够多,
总可以计算出全局最优解。
智能优化计算
华东理工大学自动化系 2007年
2.2 禁忌搜索
在距离空间中,通常的邻域定义是以一点为中心的 一个球体;
组合优化问题中
N : x D N ( x) 2 D , 且x N ( x),称为一个邻域映射, 其中2 D 表示D 的所有子集组成的集合 。 N ( x)称为x的邻域,y N ( x)称为x的一个邻居。
智能优化计算
华东理工大学自动化系 2007年
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.1 邻域的概念
例
TSP问题解的邻域映射可由2-opt,推广到k-opt。
邻域概念的重要性
邻域的构造依赖于决策变量的表示, 邻域的结构在现代优化算法中起重要的作用。
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
智能优化计算
华东理工大学自动化系 2007年
第二章 禁忌搜索算法
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.1 邻域的概念 2.1.2 局部搜索算法 2.1.3 局部搜索示例
2.2 禁忌搜索
2.2.1 算法的主要思路 2.2.2 禁忌搜索示例
2.3 禁忌搜索的关键参数和操作
2.1.3 局部搜索示例
五个城市的对称TSP问题
方法1:全邻域搜索
第 1步 N(xbest)={(ABCDE),(ACBDE),(ADCBE), (AECDB),(ABDCE),(ABEDC),(ABCED)}, 对应目标函数为f(x)={45, 43, 45, 60, 60, 59, 44} xbest:=xnow=(ACBDE)
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
方法2:一步随机搜索
第 1步 从N(xbest)中随机选一点,如xnow=(ACBDE),45
xbest:=xnow=(ACBDE)
智能优化计算
2.3.1 变化因素 2.3.2 禁忌表 2.3.3 其他
2.4 禁忌搜索的实现与应用
2.4.1 30城市TSP问题(d*=423.741 by D B Fogel) 2.4.2 基于禁忌搜索算法的系统辨识
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.1 邻域的概念
函数优化问题中
第 1步
解的形式 A B CD f(x0)=4 禁忌对象及长度 B A C D 候选解
对换 评价值
B
C
CD BC BD
4.5 ☻ 7.5 8
智能优化计算
华东理工大学自动化系 2007年
2.2 禁忌搜索
2.2.2 禁忌搜索示例
四城市非对称TSP问题
第 2步
解的形式 A B DC f(x1)=4.5 禁忌对象及长度 B A C D 候选解
2.1 局部搜索
2.1.1 邻域的概念
例
TSP问题解的一种表示方法为D={x=(i1,i2,…,in)|
i1,i2,…,in是1,2,…,n的排列},定义它的邻域映射为2
-opt,即x中的两个元素进行对换,N(x)中共包含 x的Cn2=n(n-1)/2个邻居和x本身。 例如:x=(1,2,3,4),则C42=6,N(x)={(1,2,3,4), (2,1,3,4), (3,2,1,4), (4,2,3,1), (1,3,2,4), (1,4,3,2), (1,2,4,3)}
2.1.2 局部搜索算法
STEP 1
选定一个初始可行解x0,记录当前最优解xbest:=x0, T=N(xbest);
STEP 2
当T\{xbest}=Φ时,或满足其他停止运算准则时,输出 计算结果,停止运算;否则,从T中选一集合S,得 到S中的最好解xnow;若f (xnow)<f(xbest),则xbest := xnow ,T=N(xbest);否则T:=T\S;重复SETP 2。
2.2.1 算法的主要思路
算法的提出
禁忌搜索(Tabu search)是局部邻域搜索算法的 推广,Fred Glover在1986年提出这个概念,进而 形成一套完整算法。
算法的特点
禁忌——禁止重复前面的工作。
跳出局部最优点。
/~glover/
智能优化计算
华东理工大学自动化系 2007年
2.1 局部搜索
2.1.3 局部搜索示例
五个城市的对称TSP问题
方法2:一步随机搜索
第 2步 从N(xbest)中又随机选一点,如xnow=(ADBCE), 对应目标函数为f(xnow)=44> 43
xbest:=xnow=(ACBDE)
智能优化计算
华东理工大学自动化系 2007年
华东理工大学自动化系 2007年
2.2 禁忌搜索
2.2.2 禁忌搜索示例
四城市非对称TSP问题
初始解x0=(ABCD),f(x0)=4,邻域映射为两个城市 顺序对换的2-opt,始、终点都是A城市。
智能优化计算
华东理工大学自动化系 2007年
2.2 禁忌搜索
2.2.2 禁忌搜索示例
四城市非对称TSP问题