高中数学概念总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学概念总结

一、 函数

1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为

n 2,所有非空真子集的个数是22-n 。

二次函数c bx ax y ++=2

的图象的对称轴方程是a

b

x 2-

=,顶点坐标是⎪⎪⎭

⎫ ⎝⎛--a b ac a b 4422,。用待定系数法求二次函数的解析式时,解

析式的设法有三种形式,即(一般式)c bx ax x f ++=2

)(,

(零点式))()()(21x x x x a x f -⋅-=和

n m x a x f +-=2)()(

(顶点式)。

2、 幂函数n

m

x y = ,当n 为正奇数,m 为正偶数,m

3、 函数652+-=x x y 的大致图象是

由图象知,函数的值域是)0[∞+,,单调递增区间是

)3[]5.22[∞+,和,,单调递减区间是]35.2[]2(,和,-∞。

二、 不等式

1、若n 为正奇数,由b a <可推出n

n

b a <吗? ( 能 )

若n 为正偶数呢? (b a 、仅当均为非负数时才能) 2、同向不等式能相减,相除吗 (不能) 能相加吗? ( 能 )

能相乘吗? (能,但有条件)

3、两个正数的均值不等式是:ab b

a ≥+2

三个正数的均值不等式是:3

3

abc c b a ≥++

n 个正数的均值不等式是:

n

n n a a a n

a a a ΛΛ2121≥+++

4、两个正数b a 、的调和平均数、几何平均数、算术平均数、均方根之间的关系是

4、 双向不等式是:b a b a b a +≤±≤-

左边在)0(0≥≤ab 时取得等号,右边在)0(0≤≥ab 时取得等号。

三、 数列

1、等差数列的通项公式是d n a a n )1(1-+=,前n 项和公式是:

2)(1n n a a n S +=

=d n n na )1(2

1

1-+。 2、等比数列的通项公式是1

1-=n n q a a ,

前n 项和公式是:⎪⎩⎪⎨⎧≠--==)

1(1)1()1(11q q

q a q na S n

n

3、当等比数列{}n a 的公比q 满足q <1时,n n S ∞

→lim =S=

q

a -11

。一般地,如果无穷数列{}n a 的前n 项和的极限n n S ∞

→lim 存在,就把这个极限称为这

个数列的各项和(或所有项的和),用S 表示,即S=n n S ∞

→lim 。

4、若m 、n 、p 、q ∈N ,且q p n m +=+,那么:当数列{}n a 是等差数

列时,有q p n m a a a a +=+;当数列{}n a 是等比数列时,有

q p n m a a a a ⋅=⋅。

5、 等差数列{}n a 中,若S n =10,S 2n =30,则S 3n =60;

6、等比数列{}n a 中,若S n =10,S 2n =30,则S 3n =70;

四、 排列组合、二项式定理

1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类独立;乘法分步,步步相关。

2、排列数公式是:m

n P =)1()1(+--m n n n Λ=

)(m n n -;

排列数与组合数的关系是:m

n m n C m P ⋅=!

组合数公式是:m

n C =

m

m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅; 组合数性质:m

n C =m

n n

C - m n C +1-m n C =m

n C 1+

∑=n

r r n C

=n

2 r n rC =1

1--r n nC

3、 二项式定理:

n

n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)(二项展开式的通项公式:r

r n r n r b a C T -+=1)210(n r ,,,

Λ= 五、 解析几何

1、 沙尔公式:A B x x AB -=

2、 数轴上两点间距离公式:A B x x AB -=

3、 直角坐标平面内的两点间距离公式:

22122121)()(y y x x P P -+-=

4、 若点P 分有向线段21P P 成定比λ,则λ=

2

1PP P

P 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P

成定比λ,则:λ=

x x x x --21=y

y y y --21

6、 x =

λλ++12

1x x

y =

λ

λ++12

1y y

若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是

⎪⎭

⎝⎛++++33321321y y y x x x ,。

6、求直线斜率的定义式为k=αtg ,两点式为k=1

21

2x x y y --。

7、直线方程的几种形式:

点斜式:)(00x x k y y -=-, 斜截式:b kx y += 两点式:

121121x x x x y y y y --=--, 截距式:1=+b

y

a x

一般式:0=++C By Ax

经过两条直线0022221111=++=++C y B x A l C y B x A l :和:的

交点的直线系方程是:0)(222111=+++++C y B x A C y B x A λ

相关文档
最新文档