晶体生长
晶体生长原理与技术
晶体生长原理与技术晶体是一种具有高度有序结构的固体材料,其结构和性质受到其生长过程的影响。
晶体生长是一个复杂的过程,受到多种因素的影响,包括温度、溶液浓度、溶剂选择、晶种质量等等。
本文将从晶体生长的基本原理和常见的生长技术两个方面进行探讨。
晶体生长的基本原理主要包括熔融法、溶液法和气相法。
熔融法是指将晶体原料加热至熔化状态,然后缓慢冷却,使晶体从熔融状态逐渐结晶出来。
溶液法是指将晶体原料溶解在溶剂中,通过控制溶液的温度、浓度和溶剂的选择,使晶体逐渐从溶液中析出。
气相法是指将晶体原料蒸发成气体,然后在一定的条件下使其在固体基底上生长成晶体。
这些方法各有优劣,可以根据具体的情况选择合适的方法进行晶体生长。
在晶体生长技术方面,常见的方法包括悬浮法、自组装法和气相沉积法。
悬浮法是指将晶体原料悬浮在溶液中,通过控制溶液的温度和浓度,使晶体逐渐生长出来。
自组装法是指利用分子自组装的原理,在固体基底上自发形成晶体结构。
气相沉积法是指将晶体原料蒸发成气体,然后在基底上沉积成晶体。
这些方法在不同的领域有着不同的应用,可以根据具体的需求选择合适的方法进行晶体生长。
晶体生长的过程受到多种因素的影响,其中温度是一个重要的因素。
温度的变化会影响晶体生长的速率和晶体的形貌,过高或过低的温度都会对晶体生长产生不利影响。
此外,溶液的浓度和溶剂的选择也会影响晶体的生长过程,合适的浓度和溶剂可以促进晶体的生长,提高晶体的质量。
晶种的质量也是影响晶体生长的重要因素,优质的晶种可以促进晶体的生长,并且对晶体的形貌和性能有着重要的影响。
总之,晶体生长是一个复杂的过程,受到多种因素的影响。
了解晶体生长的基本原理和常见的生长技术,可以帮助我们更好地控制晶体的生长过程,提高晶体的质量和产量。
希望本文对您有所帮助,谢谢阅读!。
最全的材料晶体生长工艺汇总
最全的材料晶体生长工艺汇总材料晶体生长是一种重要的制备材料的方法,它可以获得具有优良性能的晶体材料,广泛应用于各个领域。
下面是一个最全的材料晶体生长工艺汇总,详细介绍了各种常用的生长方法和工艺步骤。
1.物质熔融法物质熔融法是最常用的晶体生长方法之一、它适用于高熔点物质的晶体生长,通过将材料加热到熔融状态,然后缓慢冷却,使晶体从熔融液中生长出来。
这种方法包括Czochralski法、Bridgman法等,它们的主要过程是将熔融物质加热至适当温度,然后撇去熔融液表面的杂质,然后用适当的速度慢慢降低温度,使晶体在逐渐凝固过程中从熔融液中生长出来。
2.溶液法溶液法是一种常用的低温晶体生长方法。
它适用于低熔点材料的晶体生长,通过将溶解了材料的溶液缓慢蒸发或者用化学反应生成晶体。
溶液法包括坩埚法、溶液蛹法、溶液冷温法等。
其中,坩埚法是将溶解到溶剂中的物质加热至溶解温度,然后慢慢冷却,使晶体从溶液中生长出来。
3.气相法气相法是一种高温高真空条件下进行晶体生长的方法。
它适用于高熔点、不易溶解或化学反应性强的材料的晶体生长。
气相法包括化学气相沉积法(CVD)和物理气相沉积法(PVD)等。
这些方法通过将气体或蒸汽中的原料转化成固态晶体,然后在衬底上生长出晶体。
4.熔盐法熔盐法是一种利用熔盐作为溶剂和晶体生长培养物质的方法。
它适用于高温高熔点材料的生长和掺杂晶体的制备。
熔盐法包括坩埚熔盐法和区域熔盐法等,其中坩埚熔盐法是将晶体原料和熔盐混合,加热至溶解温度,然后通过缓慢冷却使晶体从熔盐中生长出来。
5.拉伸法拉伸法是一种通过拉伸单晶将其变成纤维或片状晶体的方法。
这种方法适用于一些难以获得大尺寸单晶的材料,通过拉伸使晶体在拉应力下断裂,形成纤维或片状晶体。
总结:以上是最全的材料晶体生长工艺汇总,介绍了物质熔融法、溶液法、气相法、熔盐法和拉伸法等常用的生长方法和工艺步骤。
不同方法适用于不同的材料和应用领域,科学家可以根据具体情况选择最适合的生长方法,以获得优质晶体材料。
晶体材料生长实验报告(3篇)
第1篇实验目的本次实验旨在通过实验室方法生长晶体材料,观察晶体生长过程,分析影响晶体生长的因素,并评估所生长晶体的质量。
实验时间2023年10月15日实验地点材料科学与工程学院晶体生长实验室实验人员实验指导教师:张教授实验助手:李同学、王同学实验参与者:全体实验小组成员实验材料1. 母液:高纯度金属盐溶液2. 晶体生长设备:晶体生长炉、温度控制器、搅拌器3. 实验仪器:电子天平、显微镜、X射线衍射仪(XRD)实验方法1. 制备母液:按照一定比例将高纯度金属盐溶解于去离子水中,制备母液。
2. 设定生长条件:根据实验需求,设定晶体生长炉的温度、搅拌速度等参数。
3. 晶体生长:将母液倒入晶体生长炉中,开启生长炉,使母液在设定的温度下进行晶体生长。
4. 观察与记录:使用显微镜观察晶体生长过程,记录晶体形态、生长速度等数据。
5. 晶体分析:使用XRD对晶体进行结构分析,评估晶体质量。
实验过程1. 制备母液:按照实验要求,将高纯度金属盐溶解于去离子水中,制备浓度为0.1 mol/L的母液。
2. 设定生长条件:将晶体生长炉的温度设定为250℃,搅拌速度为100 rpm。
3. 晶体生长:将母液倒入晶体生长炉中,开启生长炉,等待晶体生长。
4. 观察与记录:使用显微镜观察晶体生长过程,记录晶体形态、生长速度等数据。
在晶体生长过程中,发现晶体形态逐渐从无序变为有序,生长速度逐渐加快。
5. 晶体分析:使用XRD对晶体进行结构分析,结果显示晶体为单晶,结晶度良好。
实验结果与分析1. 晶体生长过程:在实验过程中,晶体生长过程可以分为三个阶段:晶核形成、晶核生长和晶体成熟。
在晶体生长初期,晶核形成速度较慢,但随着时间的推移,晶核数量逐渐增多,生长速度逐渐加快。
2. 影响晶体生长的因素:通过实验,发现以下因素对晶体生长有显著影响:- 温度:温度对晶体生长速度和晶体质量有显著影响。
温度过高或过低都会导致晶体生长速度变慢,甚至无法形成晶体。
晶体生长_精品文档
对于玻璃聚合物, ΔT增加, 扩散系 数减小, DL/DLM起主导作用, ΔT增 加、I 增加。当DL到达极大值后减小, 则I减小, 一直到零。
2.均匀形核理论与实验结果的比较
50年代初,Turnbull等人作了实验,发现 Φ ~10μm的金属液滴的ΔT大约为TM(K)的
18%~20%左右。
基本原理: 以凝胶作为扩散和支持介质,使一 些在溶液中进行的化学反应通过凝胶扩散, 缓慢进行。
近似认为凝固时, ΔH、 ΔS与温度无关, 则
ΔGV= ΔH-T ΔS= ΔH-(ΔH/TM)T
= ΔH(1-T/TM)= ΔH[(TM-T)/TM]
= ΔHΔT/TM
ΔH为凝固潜热, 由系统放出, 为负值, 单 位为J/mol。
显然, 过冷度越大, 即凝固的驱动力越大。
单位体积的ΔGV=LΔT/ TM , L为相变潜热(KJ/mol)。
• 图示 •
循环流动育晶装置 1.原料 2.过滤器 3.泵 4.晶体 5.加热电阻丝
※ 蒸发法
• 基本原理: 将溶剂不断蒸发,使溶液保持在 过饱和状态,从而使晶体不断生长。
• 特点: 比较适合于溶解度较大而溶解温度系 数很小或者是具有负温度系数的物质。与 流动法一样也是在恒温条件下进行的。
※ 凝胶法
致密度低的晶体, 液态的密度略高于固体, 如 Si, Ge。
一般认为,在液体中会存在一些大小不等、 随机取向的短程有序原子团。原子团内部排列象 晶体那样有规则,原子团间有一定的自由空间, 随能量起伏,这些原子团时而形成,时而变大, 时而变小以致消失。
由热力学,一定温度下不同大小原子团的 相对数目为: .
第二编 相 变 与 相 图
第五章 晶体生长
第三章 晶体生长
A
B
图3-11 共晶系相图
LE ⇄(C + D)
第二节 相图及其在晶体生长中的应用
• 共晶反应过程
具有共晶成分的合金溶液,温度降到E点 时,开始同时从液体中开始析出成分为C的α 相和成分为D的β相,两相的相对含量可以用 杠杆定律求出
A
B
继续降温,最终形成α相和β相的机械混合物 ,但是晶体的总体成分仍是共晶成分。 形成的两相混合物具有显微组织特征。
①两种组分中金属原子或离子的半径必须接近,其半径差要小于15% ,否则,不同大小的原子或离子产生的晶格畸变将很大,以致影响 固溶度; ②两种组分必须具有相同的晶体结构,否则固体中将出现不同结构 的相,或固溶度仅限于一定范围; ③金属原子必须具有相同的价电子数,否则价电子数之差有可能导 致形成化合物而不形成固溶体; ④金属原子必须具有几乎相同的电负性,如果两种金属具有显著地 电负性差,则将倾向于形成金属间化合物。
L L+ L+
相图分析
相和相区与共晶相似 包晶线PDC:该线成分对应的合金在该 温度下发生包晶反应。该反应是液相L 包着固相, 新相β在L与α的界面 上形核,并向L和两个方向长大。
+
图3-12 包晶系相图
第二节 相图及其在晶体生长中的应用
• 包晶反应过程
第二节 相图及其在晶体生长中的应用
下面以凝固结晶为例说明形核过程: 短程有序(Short range order):由于液态金属中有序原子集团的尺 寸很小,所以把液态金属结构的特点概括为短程有序(长程无序), 通常用团簇结构cluster来表征。 晶胚(Embryo):温度降低至熔点以下时,这些近程有序的原子集 团就成为均匀形核的晶胚,尺寸会增大。晶胚内部原子呈晶态有序 排列,而外层原子与液体中不规则排列的原子相接触构成界面。 晶核(Nucleus):当具备结晶条件时,大于一定尺寸的晶胚就会成 为晶核。
晶体生长技术
在高温高压下,通过各种碱性或酸性的水溶液使材料溶解而达到过饱和进而析晶的生长晶体方法叫水热生长 法。这个方法主要用来合成水晶,其他晶体如刚玉、方解石、蓝石棉以及很多氧化物单晶都可以用这个方法生成。 水热法生长的关键设备是高压釜,它是由耐高温、高压的钢材制成。它通过自紧式或非自紧式的密封结构使水热 生长保持在200~1000°C的高温及1000~10000大气压的高压下进行。培养晶体所需的原材料放在高压釜内温度 稍高的底部,而籽晶则悬挂在温度稍低的上部。由于高压釜内盛装一定充满度的溶液,更由于溶液上下部分的温 差,下部的饱和溶液通过对流而被带到上部,进而由于温度低而形成过饱和析晶于籽晶上。被析出溶质的溶液又 流向下部高温区而溶解培养料。水热合成就是通过这样的循环往复而生长晶体。
气相外延 材料在气相状况下沉积在单晶基片上,这种生长单晶薄膜的方法叫气相外延法,气相外延有开管 和闭管两种方式,半导体制备中的硅外延和砷化镓外延,多半采用开管外延方式。
液相外延 将用于外延的材料溶解在溶液中,使达到饱和,然后将单晶基片浸泡在这溶液中,再使溶液达到 过饱和,这就导致材料不断地在基片上析出结晶。控制结晶层的厚度得到新的单晶薄膜。这样的工艺过程称为液 相外延。这方法的优点是操作简单,生长温度较低,速率也较快,但在生长过程中很难控制杂质浓度的梯度等。 半导体材料砷化镓的外延层,磁泡材料石榴石薄膜生长,多半用这种方法。
这个方法是指在高温下把晶体原材料溶解于能在较低温熔融的盐溶剂中,形成均匀的饱和溶液,故又称熔盐 法。通过缓慢降温或其他办法,形成过饱和溶液而析出晶体。它类似于一般的溶液生长晶体。对很多高熔点的氧 化物或具有高蒸发气压的材料,都可以用此方法来生长晶体。这方法的优点是生长时所需的温度较低。此外对一 些具有非同成分熔化(包晶反应)或由高温冷却时出现相变的材料,都可以用这方法长好晶体。BaTiO3晶体及 Y3Fe5O12晶体的生长成功,都是此方法的代表性实例,使用此法要注意溶质与助熔剂之间的相平衡问题。
材料学基础中的晶体生长
材料学基础中的晶体生长晶体是许多材料的重要结构基础,所以晶体生长的研究对于材料学有着至关重要的影响。
晶体生长是指在固体、液体或气体中某种物质形成晶体的过程,晶体的形成可以是自发的,也可以是人为地加速反应。
很多重要的材料,如半导体、金属、陶瓷等,都需要通过晶体生长来进行制备。
因此,晶体生长作为材料学的基础,在学习和研究中占有重要的地位。
1. 晶体的成长方式晶体的成长可以有多种方式,有些晶体的成长方式可能很快,而另一些则需要很长时间才能完成。
(1) 液相成长液相成长是指在溶液中,模板分子和溶液中其它分子结合而形成晶体的成长方式。
溶液中的溶质会在解离后形成离子或分子,这些离子和分子缓慢地进入结晶器,然后在结晶的表面聚集,逐渐形成晶体。
液相成长需要严格控制晶体的生长速度,否则就会导致不同方向的晶面生长速度不均匀,最终形成多种不同纯度和颗粒大小的晶体。
(2) 气相成长气相成长是指在气相中,模板分子在高温和高压条件下结合成为晶体的成长方式。
气相中的溶质在空气压力的作用下表现出反应活性,受到温度、压力、冷却速度等因素的影响,形成不同生长方向和形态的晶体。
(3) 固相成长固相成长是指随着晶体核心的长大,固体中相应的固相物质向着晶体核心聚集并成长。
固相成长是一种在极值条件下的成长方式,每个晶体的生长速度极为缓慢,需要一定的时间才能移动晶体核心。
2. 晶体成长机理晶体成长的机理比较复杂,主要受到以下因素的影响:(1) 溶液中的化学反应晶体的形成需要先有离子或分子发生化学反应形成,形成的离子或分子在晶体核心处结晶,逐渐贯穿细胞成长。
(2) 磁场作用磁场会影响晶体的形态和大小,磁场产生的电场可能会引起离子或分子的聚集并形成晶体。
(3) 温升作用当温度升高时,晶体中各种物质之间的相互作用能够促进晶体的生长。
温度过高时,物质的分解将会对晶体生长造成不利影响。
(4) 核形成条件核是晶体成长的核心,晶体生长的最终速度和晶体形态都与核的形成条件有关。
化学晶体生长
化学晶体生长化学晶体生长是指无机物质或有机物质在固态中形成有序排列的晶体结构的过程。
这是一门涉及化学、物理和材料科学的综合学科,对于理解晶体的性质和应用具有重要意义。
本文将介绍化学晶体生长的基本原理及其应用。
一、晶体的结构与形成晶体是由原子、离子或分子通过空间有序排列而形成的固体。
在晶体中,原子、离子或分子按照规律的方式组成晶胞,晶胞的重复堆积构成晶体的空间结构。
晶体的生长过程包括凝聚核的形成、晶体单位元的逐渐有序排列和晶体尺寸的增长。
晶体生长的速度受到溶液中物质浓度、温度、压力、pH值以及溶液中的杂质等因素的影响。
二、晶体生长的机制1. 溶液晶体生长机制溶液晶体生长是指在溶液中溶质和溶剂的相互作用下形成晶体的过程。
具体而言,溶液中的溶质分子与溶剂分子发生化学吸附或物理吸附,形成活性吸附层,然后通过扩散和复分解等过程在溶液中逐渐有序排列,并最终沉积在晶体表面,进一步增长晶体。
2. 蒸发晶体生长机制蒸发晶体生长是指通过溶剂蒸发,使溶质逐渐聚集并沉积形成晶体的过程。
当溶液中的溶剂逐渐蒸发时,溶质浓度逐渐升高,达到饱和后,溶质开始结晶并形成晶体。
3. 熔融晶体生长机制熔融晶体生长是指在高温下,由于溶质在熔融体中具有较高的溶解度,然后通过熔融体中的扩散、结晶和固态反应来形成晶体的过程。
具体而言,将合适的溶质和溶剂混合,并在高温下熔融,然后通过冷却使其逐渐结晶。
三、化学晶体生长的应用化学晶体生长在生物学、医学、材料科学和电子领域具有广泛的应用。
1. 材料科学中的应用化学晶体生长为制备高质量的单晶提供了重要的方法。
通过调控晶体生长的条件和参数,可以获得优良的晶体,用于制备具有特殊性能的材料,如半导体材料、光学材料和磁性材料等。
2. 生物学和医学中的应用晶体生长可以用于研究生物分子的结构和性质。
通过生长蛋白质、核酸和其他生物大分子的晶体,可以利用X射线衍射等方法解析其分子结构,进一步理解其功能和相互作用。
此外,晶体生长也可用于制备药物的结晶体以及生物医学材料的制备。
晶体生长原理
晶体生长原理晶体生长是指晶体在适当条件下从溶液或气相中吸收物质并逐渐增大的过程。
晶体生长是固体物理学和化学中的一个重要研究领域,对于材料科学、地质学、生物学等领域都具有重要意义。
晶体生长的原理涉及到热力学、动力学、表面化学等多个方面的知识,在实际应用中也有着广泛的应用价值。
晶体生长的原理可以归纳为以下几个方面:1. 原子或分子的扩散。
晶体生长的第一步是溶液或气相中的原子或分子通过扩散运动到达晶体表面。
这一过程受到温度、浓度梯度、表面形貌等多种因素的影响。
原子或分子在溶液或气相中的扩散速率决定了晶体生长的速度和形貌。
2. 晶体表面的吸附和解吸。
当原子或分子到达晶体表面时,它们会发生吸附和解吸的过程。
吸附是指原子或分子附着在晶体表面,解吸则是指原子或分子从晶体表面脱离。
吸附和解吸的平衡状态决定了晶体表面的活性,进而影响晶体生长的速率和形貌。
3. 晶体生长的动力学过程。
晶体生长的动力学过程包括原子或分子在晶体表面的扩散、吸附、解吸等过程,以及晶体内部的结构调整和排列。
这一过程受到温度、浓度、界面能等因素的影响,对晶体生长的速率和形貌起着决定性作用。
4. 晶体生长的形貌控制。
晶体生长的形貌受到晶体生长条件和晶体本身特性的影响。
在实际应用中,通过调控溶液或气相中的成分、温度、pH值等条件,可以实现对晶体生长形貌的控制,获得特定形状和尺寸的晶体。
总的来说,晶体生长是一个复杂的过程,受到多种因素的影响。
在实际应用中,通过深入研究晶体生长的原理,可以实现对晶体生长过程的控制,获得具有特定形貌和性能的晶体材料,为材料科学和其他领域的发展提供重要支持。
同时,对晶体生长原理的深入理解也有助于揭示自然界中晶体的形成和演化规律,对地质学、生物学等领域的研究具有重要意义。
晶体生长ppt
晶体缺陷与晶体的物理性质之间存在密切关系。例如,位错 密度越高,材料的强度和韧性越差;空位浓度越高,材料的 导电性越差等。通过对晶体缺陷的控制和优化,可以改善材 料的性能。
03
晶体生长的化学基础
化学键与晶体结构
共价键
01
共价键是原子间通过共享电子对而形成的强相互作用力,它决
定了晶体的结构和化学性质。
固相生长是指通过固态物质之间的反应或扩散过 程,形成新的固态晶体的过程,包括机械研磨法 、热压烧结法等。
晶体生长的应用
1
晶体生长在材料科学和物理学领域具有广泛的 应用价值,如制备高性能材料、制造光学器件 、制备半导体材料等。
2
在能源领域,晶体生长技术也被广泛应用于太 阳能电池、燃料电池等新能源器件的制造过程 中。
04
晶体生长方法
气相生长法
物理气相沉积法
包括真空蒸发、激光烧蚀等,通过 在真空中蒸发原料,使原料原子或 分子沉积在基底表面形成晶体。
化学气相沉积法
通过化学反应的方式,使用气体原 料在基底表面形成晶体。
气相生长法的优点
可以生长出高质量、大尺寸的单晶 ,同时具有高沉积速率。
气相生长法的缺点
需要高真空设备,生产成本较高, 且生长速度较慢。
3
同时,晶体生长技术还可以应用于生物医学领 域,如制备生物材料、药物传递等。
02
晶体生长的物理基础
晶体的结构与性质
晶体结构
晶体具有格子构造,原子或分子在空间中按照一定的规律重复排列。不同的 晶体结构具有不同的物理性质,如硬度、导电性、光学特性等。
晶体对称性
晶体具有对称性,即晶体的形状和内部结构可以在空间中重复出现。这种对 称性也影响了晶体的物理性质。
晶体生长过程
晶体生长过程一、晶体生长的概述晶体是由具有一定规律排列的原子、离子或分子组成的固体物质,它们在自然界中广泛存在。
晶体生长是指从溶液或气态中将原料分子聚集成晶体的过程。
这个过程涉及到许多因素,如温度、压力、浓度、溶剂等。
二、晶体生长的分类根据晶体生长的方式和条件,可以将其分为以下几类:1. 溶液法:将溶质加入溶剂中,通过控制温度和浓度来促进晶体生长。
2. 气相法:通过在高温下使气态原料在固相表面上沉积而形成晶体。
3. 熔融法:将物质熔化后,在适当条件下冷却结晶形成晶体。
4. 生物合成法:利用生物细胞或酵素来控制晶种生成和调节结构。
三、溶液法晶体生长的步骤1. 源液制备:根据需要选择适当的原料和溶剂,并按照一定比例混合制备源液。
2. 清洁容器:选用干净的容器,并用去离子水或其他清洗剂进行清洗,避免污染源液。
3. 源液加热:将源液加热至适当温度,以促进晶体生长。
4. 晶种制备:将晶种(已有的微小晶体)加入源液中,以便新的晶体可以在其上生长。
5. 晶体生长:在温度和浓度控制下,源液中的原料分子逐渐聚集形成新的晶体。
这个过程需要一定时间,并且需要不断地添加原料和调节条件。
6. 分离和洗涤:当晶体生长到一定大小后,需要将其从溶液中分离出来,并用去离子水或其他溶剂进行洗涤和干燥。
四、影响晶体生长的因素1. 温度:温度是影响晶体生长速率和结构的重要因素。
通常情况下,温度越高,晶体生长速率越快。
2. 浓度:浓度也是影响晶体生长速率和结构的关键因素。
一般来说,浓度越高,晶体生长速率越快。
3. 溶剂选择:不同的溶剂对晶体生长的影响也不同。
有些溶剂可以促进晶体生长,而有些则会抑制晶体生长。
4. 晶种:晶种的质量和数量对晶体生长也有很大的影响。
好的晶种可以提高晶体生长速率和质量。
5. 搅拌:搅拌可以使源液中的原料分子更加均匀地分布,从而促进晶体生长。
6. pH值:pH值对于一些化学反应和分子聚集也有很大影响,因此它也会影响晶体生长。
晶体生长简介
晶体生长是一门研究晶体生长过程及其所 涉及到的物理化学原理、实验方法设计等的 专门学科。我们在此仅仅介绍其中最基本的 生长模型与实验方法。
一、成核
成核是一个相变过程,即在母液相中形成固相小 晶芽,这一相变过程中体系自由能的变化为: ΔG=ΔGv+ΔGs 式中△Gv为新相形成时体自由能的变化,且△Gv< 0, △GS为新相形成时新相与旧相界面的表面能,且 △GS>0。 也就是说,晶核的形成,一方面由于体系从液相 转变为内能更小的晶体相而使体系自由能下降,另 一方面又由于增加了液 - 固界面而使体系自由能升 高。
1.层生长理论模型(科塞尔理论模型)
这一模型要讨论的关键问题是:在一个正在生长的晶面上 寻找出最佳生长位置,有平坦面、两面凹角位、三面凹角位。 其中平坦面只有一个方向成键,两面凹角有两个方向成键,位,其次是两面凹角位, 最不容易生长的位置是平坦面。 这样,最理想的晶体生长方式就是:先在三面凹角上生 长成一行,以至于三面凹角消失,再在两面凹角处生长一 个质点,以形成三面凹角,再生长一行,重复下去。
思考以上三个法则-理论-原理的联系:面网密 度大-PBC键链多-表面能小
五、决定晶体生长形态的外因 温度 杂质 粘度 结晶速度 涡流
所有这些外因是通过内因起作用的。
本章重点总结:
1.成核的条件; 2.晶体生长的两个模型及其相互联系; 3.影响晶体形态的内因:布拉维法则、 PBC理论及其相互联系。
只有当ΔG <0时,成核过 程才能发生,因此,晶 核是否能形成,就在于 ΔGv与ΔGs的相对大小。 见图8-1: 体系自由能由升高到 降低的转变时所对应 的晶核半径值rc称为 临界半径。
思考:怎么理解在晶核很小时表面能大于体自由能, 而当晶核长大后表面能小于体自由能?
6-晶体生长基础解析
在晶体生长的不同阶段有不同的热传递方式起主导作用
一般来说:高温时,以晶体表面辐射为主,传导和对流为 次;低温时,热量运输主要以传导为主。
上一内容 下一内容 回主目录
返回
2024/7/15
二、热损耗和稳定温度
单位时间内向环境传输的热量称为热损耗。 热损耗的大小取决于发热体和环境温度间的差值:正比。即 :炉温↑,发热体和环境温度差值↑,热损耗↑。 发热体所能达到的最高温度通常与加热功率成正比。 当热损耗的大小与加热功率相等时,炉内热量交换达到平衡 ,发热体的温度不再随时间而变化,为稳定温度。 为提高发热体可能达到的稳定温度,须尽量减小热损耗。方 法:在发热体和环境之间放置保温层。
晶体侧面热损耗
10瓦
0.5 ﹪
熔体液面热损耗 150瓦 7.1 ﹪
坩埚侧面热损耗 500瓦 23.8 ﹪
坩埚底部热损耗 200瓦 9.5 ﹪
上一内容 下一内容 回主目录
返回
2024/7/15
三、温场和温度梯度
当炉膛内热交换达到平衡,且发热 体的加热功率和各种热损耗都保持不变 时,炉膛内各点都有一个不随时间变化 的确定温度,这种温度的空间分布称为 温场。
热量、溶质:中心→边缘
熔体中的强迫对流
返回
2024/7/15
提拉法中晶体以不同速度转动时的流体效应模拟实验
0转/分
10转/分
100转/分
自然对流
强迫对流 自然对流
强迫对流
上一内容 下一内容 回主目录
返回
2024/7/15Fra bibliotek6.2.3 边界层
在固体-流体系统中,靠近固体表面的一个极薄液体层内,溶 质的浓度、速度、温度均有较大变化,该薄层称为边界层。
晶体生长方法简介
结晶分两种,一种是降温结晶,另一种是蒸发结晶。
01
降温结晶:首先加热溶液,蒸发溶剂成饱和溶液,此时降低热饱和溶液的温度,溶解度随温度变化较大的溶质就会呈晶体析出,叫降温结晶。
02
蒸发结晶:蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。
03
结晶
晶体生长(crystal growth )
1
均匀性:晶体内部各个部分的宏观性质是相同的。
2
各向异性:晶体中不同的方向上具有不同的物理性质。
3
对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。
4
自限性:晶体具有自发地形成封闭几何多面体的特性。
5
解理性:晶体具有沿某些确定方位的晶面劈裂的性质。
6
最小内能:成型晶体内能最小。
7
晶面角守恒:属于同种晶体的两个对应晶面之间的夹角恒定不变。
因此,水热法逐渐发展成为溶剂热法。 一般情况下,对于稀土金属人们习惯使用水做溶剂,对于过渡金属人们习惯使用DMF和醇做溶剂,但需具体问题具体分析。
1
2
溶剂热法
在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水中氧的污染;
由于较低的反应温度,反应物中结构单元可以保留到产物中,且不受破坏,同时,有机溶剂官能团和反应物或产物作用,生成某些新型在催化和储能方面有潜在应用的材料;
晶体生长方法
1.水热法 2.溶液法
人工合成晶体的主要途径是从溶液中培养和在高温高压下通过同质多相的转变来制备(如用石墨制备金刚石)等。具体方法很多,下面简要介绍几种最常用的方法。
晶体生长方法
2.1.挥发法 2.2.扩散法
2.2.1.液液扩散 汽液扩散
晶体材料基础第九讲晶体生长方法优选文档
就必须掌握溶质在水中的溶解度及溶解度随温度的变化,并在溶液中 放上一个或几个籽晶,使溶质在籽晶上析出,慢慢地沿着一定的结构 方向生长。
使用这种方法,生长温度很低,生长设备简单,而且容易长成大块的、 均匀性良好又有完整外形的晶体,但是生长速度很慢,生长周期长。
分
水热法
类
高温溶液法 (助熔剂法、熔盐法)
生长条件
压力
温度
溶剂
水溶液生长 水热法
高温溶液法
常压 高压(200-10000atm)
常压
低温( <100oC) 高温(200-1100oC)
高温(1000oC)
水(+无机盐) 水+矿化剂
低熔点 助溶剂
A、水溶液生长
从海水中提取食盐就是水溶液生长晶体最简单的例子。 ——用日晒蒸发让NaCl从海水中自发形成晶核,随意生长。
(3)摩尔分数(x):x = 溶质(mol数) / 溶液总mol数。
(4)重量百分数( c):c = 溶质克数 / 100g(or 1000g)溶液。
(5)重量比:溶质克数 / 100g(or 1000g)溶剂。
不同的浓度表示方式适用于不同的场合,在溶解度数据中 经常使用(3)和(5)。
2、溶解度和溶解度曲线 ( 1)溶解度
过饱和曲线将过饱和溶液分为亚稳区和不稳区。
溶液状态图
t t*
不饱和溶液区 过饱和溶液区
稳定区 亚稳区 不稳区
不可能发生结晶现象
不会发生自发结晶,如将籽晶放入 溶液中,晶体就会在籽晶上生长 自发地发生结晶现象
晶体生长方法简介
05
晶体生长的前沿和挑战
Chapter
晶体生长的前沿和挑战
• 晶体生长是一个复杂的过程,涉及到多个因 素和步骤。为了更好地理解和控制晶体生长 ,需要对其研究前沿和挑战有深入的认识。
THANKS
感谢观看
光学晶体:通过固相法可以 制备高质量的光学晶体,如 蓝宝石、石英等,用于光学 器件和激光器等领域。
功能陶瓷:利用固相法晶体 生长技术,可以制备具有特 殊功能(如压电、铁电、热 电等)的陶瓷材料。
这些应用实例体现了固相法 晶体生长在材料科学和工程 技术领域的重要性。通过不 断优化生长条件和技术手段 ,可以进一步拓展固相法晶 体生长的应用范围和提高晶 体质量。
籽晶法
通过提供一个籽晶作为生 长核,在适宜的条件下, 使晶体从籽晶开始逐渐生 长。
熔融法
将原料加热至熔融状态, 然后在控制条件下慢慢冷 却,从而在熔融固体中形 成晶体。
气相沉积法
通过气相反应在固相基底 上沉积晶体材料,进而实 现晶体的生长。
固相法晶体生长应用与实例
半导体材料:固相法晶体生 长在半导体材料制备中具有 广泛应用,如硅、锗等半导 体的单晶生长。
气相法晶体生长应用与实例
1 2
半导体工业
化学气相沉积用于生产大面积、高质量的硅、锗 等半导体材料晶体,满足电子器件的需求。
光学涂层
物理气相沉积用于制备光学薄膜和涂层,如增透 膜、高反膜等,提高光学元件的性能。
3
纳米材料合成
通过控制气相法中的生长条件,可以合成具有特 定形貌和尺寸的纳米晶体,应用于催化、生物医 学等领域。
以上这些方法各有特点,适用于不同类型的晶体 和生长条件。在实际应用中,需要根据具体需求 和条件选择合适的方法来进行晶体生长研究。
晶体生长过程
晶体生长过程晶体生长的定义和概述晶体生长是指无机物或有机物在固态条件下,由无序状态逐渐转变为有序结构的过程。
晶体生长在自然界中广泛存在,不仅对于理解地质、生物、化学等方面的现象有重要意义,还在材料科学、电子器件等领域具有广泛应用。
晶体生长的基本步骤晶体生长过程可以分为三个基本步骤:核形成、核增长和晶体成长。
核形成晶体生长的第一步是核形成。
在一定的温度、浓度和压力条件下,溶液中的溶质逐渐聚集形成微小的团聚体,即晶体的初生核。
初生核必须克服表面张力和界面能的阻力才能发展为稳定的晶体核。
初生核的形成往往是一个随机性的过程,必须具备适宜的条件才能发生。
核增长核形成过程结束后,稳定的晶体核将开始快速增长。
这个过程中,溶剂中的溶质会聚集到晶体核表面,形成晶体。
晶体的增长速度与溶液中的溶质浓度、温度和溶液的动力学条件密切相关。
晶体的增长是一个非常复杂的过程,涉及到晶面生长速率、溶质扩散、溶液对晶体的溶解等多个因素。
晶体成长核增长过程持续进行,晶体逐渐成长。
在晶体生长过程中,会出现晶面重建、聚集等现象,从而影响晶体的形状和结构。
晶体成长的最终结果是形成具有完整结构和规则形状的晶体。
影响晶体生长的因素晶体生长的过程受到多个因素的影响,包括温度、浓度、溶液动力学条件、晶体生长介质等。
温度温度是影响晶体生长的重要因素之一。
晶体生长速度通常随着温度的升高而加快,因为高温可以提高溶剂的溶解能力,促进溶质向晶体表面的扩散。
但是,过高或过低的温度都可能导致晶体生长的异常,产生缺陷或不完整的晶体。
浓度溶液中溶质的浓度对晶体生长速度和晶体形态有着重要影响。
通常情况下,溶液中溶质浓度越高,晶体生长速度越快。
但是过高的浓度可能导致溶液过饱和,不利于晶体的正常生长。
溶液动力学条件溶液动力学条件包括搅拌、溶剂的流动速度等因素,对于晶体生长也具有重要影响。
适当的搅拌可以促进溶质向晶体表面的传质,加快晶体生长速度。
而溶剂的流动速度能够影响晶体表面的溶质浓度分布,进而影响晶体的形态和生长速度。
晶体生长原理
晶体生长原理晶体生长是指晶体在固体、液体或气体中逐渐形成的过程。
在自然界和工业生产中,晶体生长是一个非常重要的过程,它直接影响着材料的性能和质量。
了解晶体生长的原理对于控制晶体的形貌和性能具有重要意义。
晶体生长的原理可以归纳为以下几个方面:1. 晶体核形成。
晶体生长的第一步是晶体核形成。
晶体核是指在溶液中或固体表面上形成的一小团晶体,它是晶体生长的起始点。
晶体核的形成需要克服一定的能垒,当溶液中的过饱和度达到一定程度时,晶体核才能形成。
晶体核的形成受到溶液中溶质浓度、温度、溶剂性质等因素的影响。
2. 晶体生长方式。
晶体生长方式可以分为表面生长和体内生长两种。
表面生长是指晶体在固体表面上逐层生长,而体内生长是指晶体在溶液中或固体内部生长。
晶体生长方式受到溶液中溶质浓度、温度、溶剂性质以及晶体表面能等因素的影响。
3. 晶体生长速率。
晶体生长速率是指单位时间内晶体尺寸的增加量。
晶体生长速率受到溶液中溶质浓度、温度、溶剂性质、搅拌速度等因素的影响。
晶体生长速率与生长条件之间存在一定的关系,可以通过改变生长条件来控制晶体的生长速率。
4. 晶体形貌。
晶体的形貌是指晶体的外形特征,如晶体的形状、尺寸、表面结构等。
晶体形貌受到晶体生长速率、生长方式、溶质浓度等因素的影响。
通过控制晶体生长条件,可以调控晶体的形貌,获得不同形态的晶体。
总之,晶体生长是一个复杂的过程,受到多种因素的影响。
了解晶体生长的原理对于控制晶体的形貌和性能具有重要意义。
只有深入研究晶体生长的原理,才能更好地应用于实际生产和科研中,为材料的制备和性能调控提供理论指导和技术支持。
晶体生长专题知识
1)晶核形成时,系统自由能变)
新增表面能
△G =
△GV +
=
V.△gv +
=4r3 △gv /3 +
△GS S.σ 4r2 σ
• 0 r r*
r , △G 消失几率长大几率 晶核不能长大
• r =r* (临界半径) △G= △G max= △G *
➢相平衡条件:各组元在各相旳化学势相等 ➢热平衡条件:系统各部分温度相等 ➢力学平衡条件:系统各部分压强相等
(1)固相生长:固体固体
• 在具有固相转变旳材料中进行
石墨金刚石
• 经过热处理或激光照射等手段,将一部 分构造不完整旳晶体转变为较为完整旳 晶体 微晶硅单晶硅薄膜
(2)液相生长:液体固体
• 溶液中生长 从溶液中结晶 当溶液到达过饱和时,才干析出晶体. 可在低于材料旳熔点温度下生长晶体,所以它们尤其适
• 一块具有所需要晶向旳单晶硅作为籽晶来生 长硅锭,生长旳单晶硅就像是籽晶旳复制品
• 坩锅里旳硅被单晶炉加热,硅变成熔体
• 籽晶与熔体表面接触,并旋转,旋转方向与 坩锅旳旋转方向相反。
• 伴随籽晶在直拉过程中离开熔体,熔体上旳 液体会因为表面张力而提升。伴随籽晶从熔 体中拉出,与籽晶有一样晶向旳单晶就生长 出来。
• 雪花就是因为水蒸气冷却直接结晶而成旳晶体 • 气体凝华:物质从气态直接变成固体 (气体升华?固态气态) • 化学气相沉积(CVD)
2.晶体形成旳热力学条件(掌握)
1.气固相转变
定义=p1/p0 为饱和比, 即初态压强/末态压 强 = -1 过饱和比, 相变条件: p1p0,或者 1 (即有一定旳过饱和度)
半导体材料
第三章 晶体生长
3-1 晶体生长旳理论基础
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
φ1 2 =
1 ∑ niφi 2 i
吸附
以立方结构,近邻数6为例,当原子进入扭折处,由 于增加了3个原子间作用势,晶体能量也随之增大 Φ1/2。扭折处原子结合能为体内的一半,因此扭折 处也被称作半晶处。 由于新的K点不断出现,K处生长也是可持续的。 扭折处符合气相原子结合进入晶体表面的要求,因此晶体优先在该处生长。
§3.1 晶体生长理论基础
Kossel模型(TLK模型:Terrace, Ledge, Kink)
气相中的原子释放动能给晶体表面从而成为吸附原子,当晶体 获得的能量达到或超过晶体中单个原子与其他原子间结合的平均势 能时,该原子可以进入并稳定在晶体表面。
§3.1 晶体生长理论基础
气相原子 晶体中单个原子与其他原子间结合的平均势能可以 表示为: 解吸附
§3.1 晶体生长理论基础
Kossel模型的缺陷
二维成核过程需要较高的饱和度(>25%),无法解释某些实验中观察到 的某些在低饱和度下(2%)晶体顺利生长的现象.
§3.1 晶体生长理论基础
Frank模型:实质上代表了在生长过程中 存在自然台阶不需要二维成核的晶体生长 情况。
在生长晶面上,螺旋位错露头点可以作为晶 体生长的台阶源,当生长基元扩散到台阶 处,台阶便向前推进,使得晶体生长。
§3.1 晶体生长理论基础
成核率:在相变体系中,单位时间单位体积内形成的晶核数叫做成核率。 1926,Volmer & Weber: 对临界晶核增加一个原子,将越过热力学势垒而成为稳态晶核。 在热平衡状态下,设单个原子的密度为ns,气体压强为p,临界晶核表面积为S,则达到 临界尺寸的晶胚数为
− ∆G * N = ns exp( ) k BT
~ H m = U + pV = L0 + k (T − TE )
~ Hm N ∆S 0 = − N A = − A [L0 + k (T − TE )] TE TE
NA个晶体原子任意分布在N个位置上造成混乱度增加,使得熵变
Stirling近似 N N - NA N! ∆S 2 = k ln → + k ln kN ln A N !(N - N )! N-N N A A A A
§3.1 晶体生长理论基础
二维成核率 设流体相原子在生长界面上的碰撞频率为υ,形核功为ΔG*2D,二维成核率
* − ∆G2 D I = ν exp k T B
整个晶面S上的成核周期为
t= 1 IS
设成核后台阶扫过整个晶面所需时间为ts. 若t>>ts,单二维生长; 若t<<ts,多二维生长。
晶胚是亚稳态的,可能消失,也可能生长形成稳定的晶核。
§3.1 晶体生长理论基础
临界晶核 晶胚生长成为稳定晶核的依据: ΔG 从左图可以看出,在自由能随成核半径改变过程中, 存在两个特殊的位置: r* 和r0。 若r < r*,r增大时系统自由能上升, 晶胚消失的几率大 于生长几率; 若r*<r<r0,晶胚长大几率大于消失几率,但ΔG>0 , 因此晶胚不稳定,形成亚稳晶核; 若r>r0,晶胚能稳定长大成核-稳定晶核。 r*称为临界半径,r0称为稳定半径。
§3.1 晶体生长理论基础
(2)气相生长 饱和蒸汽压Pe,当P>Pe时晶体生长,过饱和水平σ=(Pe-P)/P是晶体生长的驱 动力。 ∆µ = kTlog(P/Pe)=kTlog(1+σ) ~ kTσ (3)液相生长 饱和溶解度Ce,当C>Ce时晶体生长,过饱和水平σ =(C-Ce)/Ce是晶体生长的 驱动力。 ∆µ = kTlog(C/Ce) = kTlog(1+σ) ~ kTσ 在典型生长过程中,常通过降低温度以减小Ce的方法来增大σ 。
2
θ
静力学平衡:
σ αs = σ βs + σ αβ cos θ
§3.1 晶体生长理论基础
非均匀成核的体系自由能
4 ∆Gheter = 4πr 2σ αβ + πr 3 ∆gv f (θ ) 3 1 f (θ ) = (2 + cos θ )(1 − cos θ ) 2 4
*
在单位时间内与单位面积发生碰撞的原子数为
Z= p 2πmk BT
成核率,即单个原子与临界晶核碰撞的次数为
pSns − ∆G * I = ZSN = exp( ) k BT 2πmk BT
§3.1 晶体生长理论基础源自非均匀成核 设三个界面上的表面张力(比表面能)分别为σαβ, σαs, σβs. x 晶冠体积 σ
L0 NA v N L ∆U1 = − y1 A 0 N A N v ∆U 0 = −2 y0
熵变: (1) 无序的流体相原子转变为有序的晶体相原子引起的熵变; (2) 晶体相原子引入造成界面混乱度加大造成的熵变。
∆S = ∆S 0 + ∆S1
§3.1 晶体生长理论基础
一个流体相原子转变为晶体相原子所释放的相变潜热为
§3.1 晶体生长理论基础
晶核的形成
均匀成核:在一定过饱和度、过冷度条件下,由体系中直接形成晶核。 非均匀成核:在体系中的外来质点(固体颗粒、籽晶等)上形成晶核。
§3.1 晶体生长理论基础
均匀成核 在一个气-固相变过程中,当体系处于过饱和状态,无规则运动的分子可 能互相连接形成晶胚,此时: (1)气相转变成晶胚,体积自由能减小; (2)由于新相生成,形成固-气界面,表面自由能增加。
§3.1 晶体生长理论基础
Jackson界面平衡结构理论 Jackson界面平衡结构理论
流体
流体相→晶体相 晶体相原子:只在晶格点附近振动; 流体相原子:位置随时间变化。 界面
流体相单元
晶体相单元
设有N个生长位置的密排晶面,每个生长位置 上填充一个生长单元,其中NA个晶体相,N- NA个流体相,均随机分布,则属于晶体相的单 元为x=NA/N,属于流体相的单元为1-x。 通常,称x~50%的界面为粗糙界面,x~0或 1的界面为光滑界面。
§3.1 晶体生长理论基础
速率决定机制 晶体生长一般分为三个过程: (1)体扩散过程:在生长媒介中的原子和分子输运到生长界面; (2)表面动力学过程:原子和分子由生长媒介和晶核的界面进入晶相; (3)晶化过程中在生长界面处的相变潜热被移除。 晶体生长速率由上述三个过程中较慢的过程决定。 对于熔体生长,生长界面不规则导致晶向化过程短,熔体-固体密度接近导致体 扩散时间短,因此生长速率由(3)步骤决定; 对于气相生长,体扩散和相变潜热去除都非常快,而表面动力学过程很慢,步骤 (2)决定生长速率。 对于液相生长,一般步骤(2)决定生长速率,但如果溶质浓度很低,步骤(1) 的影响也不能忽略。
第三章 晶体生长
§3.1 晶体生长理论基础 §3.2 熔体的晶体生长
§3.1 晶体生长理论基础
晶体生长是一个动态过程,是从非平衡态向平衡态过渡的过程。
成核 晶体生长首先需要产生一个在生长媒介中可维持稳定状态的籽晶,该籽晶生 成的过程称为成核。
依据生长媒介的不同,可以分为固相、液相和气相生长。
§3.1 晶体生长理论基础
§3.1 晶体生长理论基础
r=r*时,称为临界晶核,此时
d∆G * dr = 0
得到
r* =
*
− 2σ ∆gv
16πσ 3 32πσ 3 16πσ 3 4 *2 ∆G = ∆Gs + ∆Gv = − = = πr σ ∆gv 2 3∆gv 2 3∆gv 2 3
(1)临界状态下体系自由能是表面能的1/3。在临界状态下成核必须由外界提供 该能量,称为形核功。 (2)r*和 ΔG*随Δgv的增大而减小,而Δgv随体系的过饱和度和过冷度的增大 而上升。因此生长单晶时若希望r*大,则需降低过饱和度和过冷度;若需要生长 微晶(如AgCl感光晶体、敏感元件材料微粉等),则要求过饱和度和过冷度大。
特点: (1)不需要二维成核过程; (2)台阶永不消失; (3)生长连续,过饱和度低。 曲率、 曲率、生长速率: 生长速率:角速度大致相同。 角速度大致相同。
§3.1 晶体生长理论基础
Screw dislocation growth
AFM of InP growth spiral screw dislocation
L0 y1 kTE v
∴
∆G = αx(1 − x ) + x ln x + (1 − x) ln(1 − x ) NkTE
§3.1 晶体生长理论基础
α=
L0 y1 kTE v
L0 kTE L L0近似为相变潜热(忽略体积变化), 0 近似为单个原子的相变熵; TE y1 v y1取决于界面的取向,因此 y1 叫做取向因子,反映了晶体的各向异性。 v
非均匀成核临界曲率半径可由下式计算得到
d∆Gheter dr = 0
* rheter =
− 2σ αβ ∆gv
非均匀成核临界状态下体系自由能即形核功
∆G
* heter
=
3 16πσ αβ
3∆gv 2
f (θ )
一般地,非均匀成核比均匀成核更容易进行。
§3.1 晶体生长理论基础
晶核长大动力学模型: 晶核长大动力学模型: (1)Kossel模型 (2)Frank模型 (3)Jackson模型
§3.1 晶体生长理论基础
∴
T N T N − NA ∆G L N N y 2 y T N A L0 T =− 0 A A 1 + 0+ + − 1 − ln − T ln N NkTE kTE N N v v TE N kTE TE TE N − N A E A
生长驱动力 化学反应是依据热力学定律进行的,即系统的总的自由能减小。 对于晶体生长,生长过程中系统自由能的减小是晶体生长的驱动力。 ∆µ = µm-µc (1)熔体生长 熔点Tm,当T<Tm时晶体生长,过冷水平∆T=Tm-T是晶体生长的驱动力。 ∆µ = L∆T/Tm 其中,L=0.5ncNAεb为相变潜热(熔化热),nc为配位数, εb 为原子间互作用势 的极小值。