最新皖南八校2019届高三第二次联考数学(文)试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“皖南八校”2019届高三第二次联考

数 学(文科)

2018.12

考生注意:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。 2.考生作答时,请将答案答在答题卡上。第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对

应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题

区域内作答,超出答题区域书写的答案无效,在试题卷..................、.草稿纸...上作答无效.....

第Ⅰ卷(选择题,共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

目要求的。 1. 已知集合}44|{<<-∈=x Z x A ,}6,4,1,0,25{--=,B ,则=B A ( )

A .}4,1,0,2{-

B .}1,0,2{-

C .}4,1,0{

D .}1,0,25{--=,B

2. i 虚数单位,若i

1i 213++=z ,则在复平面中, 复数z 对应的点在( )

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限 3.“赵爽弦图“是由四个全等的直角三角形与中间的一个小正方形拼成

的一个大正方形(图1),图2是由弦图变化得到,它由八个全等的直 角三角形和中间的一个小正方形拼接而成, 现随机的向图2中大正 方形的内部去投擦一枚飞镖,若直角三角形的直角边长分别为5和 12,则飞锥投中小正方形(阴影)区城的概率为( ) A.

16949 B. 16930 C. 28949 D. 289

60 4. 已知4

.03

=a ,3

4.0=b ,4.0log 3=c ,则( )

A. c b a >>

B. b c a >>

C. a b c >>

D. b a c >>

5. 已知ABC ∆中,c b a ,,分别为C B A ,,所对的边长,且5=a ,5

cos =C ,ABC ∆的面积为3, 则c = ( )

A. 11

B. 32

C. 13

D. 14

(图1)

A. 11

B. 32

C. 13

D. 14

7. 直线3+=kx y 与圆:

C 4)3()32

2=-+-y x (相交于A ,B 两点 , 若2||≥AB , 则k 的取值范围是( )

A. ]22,22[-

B. ]3

3

,33[- C. ]1,1[- D. ]2

1,21[-

8. 某几何体的三视图如断示, 该几例体表面上的点P 与点Q 在三视图 上的对应点分别为A ,B , 则在该几何体表面上,从点P 到点Q 的路 径中, 最短路长度为( )

A.14

B. 32

C. 10

D. 22 9. 已知曲线x

x f 1

)(=

, 则过点),(31-,且与曲线)(x f y =相切的直

线方程为( )

A. 52+=x y 或69--=x y

B. 2+-=x y 或69--=x y

C. 2+-=x y 或58--=x y

D. 52+=x y 或47--=x y 10. 已知函数)(x f 的图象与函数)3

2cos(π

-

=x y 的图象关于y 轴对称, 将函数)(x f 的图象向左平移

6

π 个单位长度后, 得到函数)(x g 的图象, 则)(x g =( ) A. )62sin(π

-

x B. )62sin(π--x C.)62sin(π+x D. )6

2sin(π

+-x 11. 已知一个三棱锥的六条棱的长分别为1, 1, 1, 1,2, a ,且长为a 的棱与长为2的棱所在直线

是异面直线, 则三校的体积的最大值为( ) A.

122 B. 123 C. 62 D. 6

3 12. 已知函数)22ln(

)(x

x

x f -+=, 24()(+--=)

x x m x g ,对于)4,0(1∈∀x , ]1,0[2∈∃x ,使得)()(21x f x f <, 则实数m 的取值范围是( )

A. ]3ln 211,213ln 41[--

B. )(3ln 211,213ln 41--

C. )1,21-(

D. ]1,2

1[-

第6题图

第8题图

第Ⅱ卷(共90分)

二、填空题(每题5分,满分20分,将答案填在答题纸上)

13. 已知实数x ,y 满足条件⎪⎩

⎨⎧≤≥+≤1222x y x x y ,则y x z -=的最大值为 .

14. 若53sin =

α,α是第二象限角, 则=+)(4

2sin πα . 15. 已知过P (1, 1)的直线l 与双曲线C :12

2

=-y x 只有一个公共点, 则直线l 的条数为 . 16. 若函数x

x

a x f -⋅-=2

2)(为奇函数, 则不等式063)1

(8<-a x

f 的解集为 .

三、 解答题:共70分, 解答应写出文字说明、证明过程或演算步骤, 第17~21题为必考题, 每个试题考生

都必须作答. 第22,23题为选考题,考 生根据要求作答. 17. (本小题满分12分)

已知等差数列{}n a 的前n 项和为n S ,且2

12

n

a n S n +

=. (1). 求数列{}n a 的通项公式 (2).若121a , 331a k -,k S 52

1

3-成等比数列, 求实数k 的值

18.(本小题满分12分)

如图,是2011年至2018年天猫双十一当天销售额y (单位:百亿元)的折线图, 为了预测2019年双十一当天销售额, 建立了y 与时间变量t 的线性回归模型.

(1). 根据2011年至2018年的数据(时间变量t 的值依次为1,2.3,4,5,6,7,8), 用最小二乘法,得到了y 关

于t 的线性回归方程a x y

+=97.2ˆ, 求a 的值, 并预测2019年(此时9=t )双十一当天销售额; (2). 假设你作为天猫商城董事会成员, 针对双十一当天销售额增长情况,给天猫商城管理层制定一个股权

相关文档
最新文档