34基本不等式(人教A版必修5)精品PPT课件

合集下载

基本不等式人教A版高中数学必修五PPT课件

基本不等式人教A版高中数学必修五PPT课件

函数的最小值为 4.
用均值不等式求最值,必须注意 “相等” 的条件. 如果取等的条件不成立,则不能取到该最值.
基本不等式人教A版高中数学必修五PP T课件
基本不等式人教A版高中数学必修五PP T课件
练习
1、若x 0,求f ( x) 12 3x的最小值 x
2、已知x 0,y 0,求证 x y 2 yx
基本不等式人教A版高中数学必修五PP T课件
2.基本不等式 基本不等式人教A版高中数学必修五PPT课件 (均值定理)
如果a 0, b 0,那么 a b ab 2
(当且仅当a b时,取""号)
我们把 a b 叫做正数a, b的算术平均数, 2
把 ab叫做正数a, b的几何平均数。
此定理又可叙述为:
解:∵ x 0
x
x 1 2 x 1 2
x
x
当且仅当x 1 ,即x 1时,原式有最小值 2 x
变式、已知x 0,求x 1 的最值 x
解:∵ x 0, x 0
x 1 [( x) 1 ] 2 ( x) 1 2
x
( x)
( x)
运用均当且值仅不当等式x 的1过,程即x中,1时a、,b原必式须有最为大“正值 数 2”.
(1)a、b均为正数;
(2)a+b与ab有一个为定值;
(3)等号必须取到。பைடு நூலகம்
以上三个条件缺一不可. “一正”、“二定”、“三相等”。
构造积为定值,利用基本不等式求最值
例1、求函数y 1 x( x 3)的最小值
x3
练习:
已知x 1,求x 1 的最小值以及取得最小 值时x的值 x1
答:最小值是3,取得最小值时x的值为2

高中数学人教A版必修5《基本不等式》PPT

高中数学人教A版必修5《基本不等式》PPT

,此时 x 6 。
2
下面几道题的解答可能有错,如果错了, 那么错在哪里?
1.已知函数 f (x) x 1 ,求函数的 最小值和此时x的取值. x
运用均值不等式的过程中,忽略了“正数” 这个条件.
2.已知函数 f (x) x 3 (x 2) , x2
求函数的最小值.
用均值不等式求最值,必须满足“定值”这 个条件.
3.4.1《基本不等式 -均值不等式》
教学目标
• 推导并掌握两个正数的算术平均数不小于它们
的几何平均数这个重要定理;利用均值定理求极 值。了解均值不等式在证明不等式中的简单应用。 • 教学重点: • 推导并掌握两个正数的算术平均数不小于它们的 几何平均数这个重要定理;利用均值定理求极值。 了解均值不等式在证明不等式中的简单应用。
定理:如果a,b∈R,那么a2+b2≥2ab
(当且仅当a=b 时取“=”)
证明: a2 b2 2ab (a b)2
当a b时,(a b)2 0
当a
b时,(a
b)2
0
a2 b2 2ab
1.指出定理适用范围: a,b R
2.强调取“=”的条件: a b
均值定理: 如果a, b∈R+,那么 a b ab
3 求函数y sin 4 其中 (0, ]
sin
2
的最小值。
解:y sin 4 2 sin • 4
sin
sin
4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件.
如果取等的条件不成立,则不能取到该最值.
练习题: 1.已知x>0, y>0, xy=24, 求4x+6y的最小值,
3.我们把不等式 a b ab (a≥0,b≥0)

3.4.2基本不等式课件(人教A版必修5)

3.4.2基本不等式课件(人教A版必修5)

4 3 求函数y sin 其中 0, ] ( sin 2 的最小值。 4 4 解:y sin 2 sin sin sin 4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件. 如果取等的条件不成立,则不能取到该最值.
4800 z 150 120( 2 3 x 2 3 y ) =240000+720(x+y) 3
由容积为4800m3 ,可得3xy=4800,
因此xy=1600,
由基本不等式与不等式性质,可得 240000+720(x+y)≥ 240000+720×2 xy 即:z≥240000+720×2 xy =297600
2 ( x 1) x 1 1 3
(1)x=2 (2)x=1/2
思考:取到最值时x的值呢?
构造法
变式:(1)已知x>-2,求
1 x 的最小值; x2
(2)已知0<x<1/2,求x(1-2x)的最大值.
1 变式:(1)已知x>-2,求 x 的最小值;0 x2 (2)已知0<x<1/2,求x(1-2x)的最大值. 1 8
解:设矩形菜园的长为x m,宽为y m 则 2(x+y)=36,x+y=18 由
xy x y 18 9 2 2
矩形菜园的面积为xy m2 xy≤81
可得
等号当且仅当x=y时成立,这时x=y=9.
因此,这个矩形的长、宽都为9m时,菜园的 面积最大,最大面积为81m2
例6 某工厂要建造一个长方形无盖贮水池,其容 积为4800m3,深为3 m。如果池底每平方米的造价为 所以,将水池的地面设计成边长为40 m的正方形 150元,池壁每平方米的造价为120元,怎样设计水池能 时总造价最低,最低造价为297600元 使总造价最低?最低造价为多少元? 解:设底面的长为x m,宽为y m, 水池总造价为z元,根据题意,有

人教A版高中数学必修5《三章 不等式 3.4 基本不等式:√ab≤(a+b)%2》示范课课件_4

人教A版高中数学必修5《三章 不等式  3.4 基本不等式:√ab≤(a+b)%2》示范课课件_4
2
3. 基本不等式变形公式
a b 2 ab
ab (a b)2 4
作业
1.预习课本第99页例1和例2 2.思考:基本不等式有什么作用?在利用基本 不等式时需要满足什么条件?
3.4基本不等式: ab a b
2
这是2002年在北京召开的第24届国际数学 家大会会标.会标根据中国古代数学家赵爽的 弦图设计的,颜色的明暗使它看上去象一个风 车,代表中国人民热情好客.
D
a2 b2
b
G
F
A
a HE
探究1:
1、正方形ABCD的
面积S=_a_2___b 2
C 2.四个直角三角形的
当 a 0,b 0 时, a b≥ ab , 当且仅当
a = b时,等号成立.
2
基本不等式的几何解释是什么?
如图, AB是圆的直径, O为圆心,
点C是AB上一点, AC=a, BC=b. 过
点C作垂直于AB的弦DE,连接AD、 BD、OD.
A
ab ①如何用a, b表示OD? OD=___2___
x
等号成立的条件.
2.已知 0 x 1,求证:x(1 x) 1 ,并推导出式中等
4
号成立的条件.
小结:
1. 重要不等式
当 a, b R时,a2 b2 2ab,当且仅当 a b 时等号成立.
2. 基本不等式
当 a, b R时,a b ab ,当且仅当 a b 时等号成立.
面积和 S=_2a_b
3、S与 S有什么
样的不等关系?
B
S>S′ 即 a2 b2 2ab
问:那么它们有相等的情况吗?
D

2019版高中数学第一部分34基本不等式课件新人教A版必修5

2019版高中数学第一部分34基本不等式课件新人教A版必修5

(1)当0≤x≤200时,求函数v(x)的表达式; (2)当车流密度x为多大时,车流量(单位时间内通过桥上某 测观点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最 大,并求出最大值.(精确到1辆/小时)
[思路点拨] (1)依题意,当0≤x≤20时,v(x)=60;当 20≤x≤200时,v是x的一次函数,可用待定系数法求得 v(x),从而得分段函数v(x); (2)显然f(x)是分段函数,先求得f(x)的解析式,然后分段 求出最大值,进而得整个值域内的最大值.
[例3] (12分)(2019·湖北高考)提高过江大桥的车辆通行能 力可改善整个城市的交通状况.在一般情况下,大桥上的 车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米) 的函数,当桥上的车流密度达到200辆/千米时,造成堵塞, 此时车流速度为0;当车流密度不超过20辆/千米时,车流速 度为60千米/小时,研究表明:当20≤x≤200时,车流速度v 是车流密度x的一次函数.
f(x)=13x(200-x)≤13[x+2020-x]2=10 3000.
(10 分)
当且仅当 x=200-x,即 x=100 时,等号成立.
所以,当 x=100 时,f(x)在区间[20,200]上取得最大值
10 000 3
(11 分)
综上,当
x=100
时,f(x)在区间[0,200]上取得最大值10
)
A.R<P<Q
B.P<Q<R
C.Q<P<R
D.P<R<Q
解析:∵a>b>1,∴lg a>0,lg b>0.
∴p=
lg
a·lg
lg b<
a+lg 2

新课标高中数学人教A版必修五全册课件3.4基本不等式(3)

新课标高中数学人教A版必修五全册课件3.4基本不等式(3)
2 变式3. a,b是正数且2a+3b=4,求ab的最值和 此时a、b的值.
讲授新课
例2. (1)a,b都是正数且2a+b=2,求a(1+b)
的最值和此时a、b的值.
(2) a, b是正数, a2 2b2 2, a (1 2b2 )
的最值是
.
讲授新课
例3. 已知a、b R , a b 1, y 1 1 , ab
求y的最小值.
讲授新课
练习. (1)已知a、b R ,且a 2b 1, y 1 1 ,
ab 求y的最小值.
(2)已知a、b、c R ,且a b c 1, 求证 : 1 1 1 9.
abc (3)已知a、b、c R ,且a b c 1, 求证 : ( 1 1)( 1 1)( 1 1) 8.
3.4基本不等式:
ab a b 2
复习引入
基本不等式: a2 b2 2ab ; a b ab(a 0, b 0) .
2
讲授新课
例1. a,b 是正数且a b 4,求ab的最值.
Hale Waihona Puke 讲授新课例1. a,b 是正数且a b 4,求ab的最值. 变式1. a,b 是正数且2a b 4,求ab的最值.
讲授新课
例1. a,b 是正数且a b 4,求ab的最值. 变式1. a,b 是正数且2a b 4,求ab的最值. 变式2. a,b 是正数且a b 4,求ab的最值.
2
讲授新课
例1. a,b 是正数且a b 4,求ab的最值.
变式1. a,b 是正数且2a b 4,求ab的最值. 变式2. a,b 是正数且a b 4,求ab的最值.
abc
课堂小结
课后作业
1. 阅读教材P.97-P.100; 2.《习案》作业三十三.

高中数学人教A版必修5第三章3.4.1基本不等式 课件

高中数学人教A版必修5第三章3.4.1基本不等式 课件

三相等
当且仅当 x=4x,即 x2=4,x=2 时取等号.
∴函数 y=x+4x(x>0)在 x=2 时取得最小值 4.
反思与感悟
在利用基本不等式求最值时要注意三点:一是各项均为正: 二是寻求定值,求和式最小值时应使积为定值,求积式最大 值时应使和为定值(恰当变形,合理拆分项或配凑因式是常 用的解题技巧);三是考虑等号成立的条件.
思考:能给出不等式 a2+b2≥2ab 的证明吗?
证明: a b2 0
a2 b2 2ab 0 a2 b2 2ab (当且仅当a b 0即a b时等号成立)
思考:
替换后得到: ( a )2 ( b )2≥2 a b 即: a b≥2 ab 即: a b≥ ab 2
基本不等式 ab a b (a 0,b 0) 2
2
42
例2、已知0<x<1,求函数y=x1-x的最大值。
最值定理:
1.当两个正数的和为定值时,它们的积有最大值。
即a 0,b 0且a b M , M 为定值 ax
M2 4
“和定积最大”
2.当两个正数的积为定值时,它们的和有最小值。
即a 0,b 0且ab P, P为定值 a b 2 P 当且仅当a b时,等号成立。( a b)min 2 P
ICM2002会标
如图,这是在北京召 开的第22届国际数学家 大会会标.
会标根据中国古代数 学家赵爽的弦图设计的, 颜色的明暗使它看上去象 一个风车,代表中国人民 热情好客。
看一看:这会标中含有 怎样的几何图形
直角三角形和正方形
想一想:你能否在这个 图案中找出一些相等关 系或不等关系?
四个直角三角形的面积相等 直角三角形的直角边不相等 大正方形的面积大于四个直角三角形的面积

高中数学必修五课件:3.4-1《基本不等式》(人教A版必修5)

高中数学必修五课件:3.4-1《基本不等式》(人教A版必修5)

D
y
x
C
当且仅当 x=2y 时,等号成立 即x=12,y=6
因花此园解,面x这积x个最2y矩大2y2形,4,的最可长大得为面积1xy2是m162、72宽m为2 6m时,
18
变式:如图,用一段长为24m 的篱笆围一个一边 靠墙的矩形花园,问这个矩形的长、宽各为多少时, 花园的面积最大,最大面积是多少?
-1
=1,
当且仅当 x+1= x1+1, 即 x=0 时, 取“=”号.
∴当 x=0 时, 函数 f(x) 的最小值是 1.
26
2.

0<x<
1 2
,
求函数
y=x(1-2x)
的最大值.
分析:2 x+(1-2x) 不=1是为 常数.
配凑系数
解:
∵0<x<
1 2
,
∴1-2x>0.
∴y=x(1-2x)=
a2 b2≥2ab
当且仅当a=b时,等号成立 适用范围: a,b∈R 文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
8
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
替换后得到: ( a )2 ( b )2≥2 a b 即: a b≥2 ab 即: a b≥ ab (a 0,b 0) 2
适用范围: a>0,b>0
在数学中,我们把
a
b 2
叫做正数a,b的算术平均数,
ab 叫做正数a,b的几何平均数;
文字叙述为: 两个正数的算术平均数不小于它们的几何平均数.

人教A版高中数学必修五课件3.4.1基本不等式(一).pptx

人教A版高中数学必修五课件3.4.1基本不等式(一).pptx

1

3x(13x)
2


1

3 2 12
当且仅当 3x=1-3x,即 x=16时,等号成立.
∴当 x=16时,函数取最大值112.
跟踪
训练
(2)y=x-x21=x2-x-1+1 1=x+1+x-1 1
栏目链接
=x-1+x-1 1+2≥2+2=4,
当且仅当x-1 1=x-1, 即(x-1)2=1 时,等式成立, ∵x>1,∴当 x=2 时,ymin=4.
基础 梳理
“半4径.不基 本小不于等半式 弦ab ≤”a+2 b 的 几 何 意 义 是 :
________________________________________________. 5.已知 x,y 都是正数, (1)如果积 xy 是定值 P,那么当 x=y 时,和______
有最小值__________;
栏目链接
栏目链接
基础
梳理
3.基本不等式: 设 a,b 是任意两个正数,那么 ab≤a+2 b. 当且仅当_a_=__b__时,等号成立.基本不等式可叙述为: 两个正数的_算__术_平__均__数__不__小__于__它__们_的__几__何__平__均__数_. 如果把a+2 b看做是正数 a,b 的等差中项, ab看做是 正数 a,b 的等比中项,那么基本不等式也可以叙述为:两 个正数的____等_差__中__项__不__小__于__它_们__的__等__比__中__项____.
例3 某公司租地建仓库,每月土地占用费 y1 与仓库到车 站的距离成反比,而每月库存货物的运费 y2 与到车站的 距离成正比,如果在距车站 10 公里处建仓库,这两项费 用 y1 和 y2 分别为 2 万元和 8 万元,那么要使这两项费用 之和最小,仓库应建在离车站多少公里处?

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

高中数学第三章不等式3.4.1基本不等式课件新人教A版必修5

一二三
二、基本不等式
【问题思考】 1.填空: (1)基本不等式
①当 a>0,b>0 时,有������+2������ ≥ ������������,当且仅当 a=b 时,等号成立;
②对于正数 a,b,常把������+2������叫做 a,b 的算术平均数,把 ������������叫做 a,b 的几
解(1)由题意知 x>0,由基本不等式得 f(x)=3x+1������2≥2 3������·1������2=2 36=12. 当且仅当 3x=1������2,即 x=2 时,f(x)取得最小值 12.故 f(x)的最小值是 12. (2)由 lg a+lg b=2,得 lg ab=2,即 ab=100,且 a>0,b>0, 因此由基本不等式可得 a+b≥2 ������������=2 100=20, 当且仅当 a=b=10 时,a+b 取到最小值 20.故 a+b 的最小值是 20. (3)由于 x,y 是实数,所以 2x>0,2y>0,于是
提示填表略,(1)当 x+y 是定值时,xy 有最大值,且最大值等于
������+������ 2
2
;(2)当 xy 是定值时,x+y 有最小值,且最小值等于 2
������������.
2.填空: 基本不等式与最值 已知x,y都是正数. (1)若x+y=s(和为定值),则当x=y时,积xy取得最大值. (2)若xy=p(积为定值),则当x=y时,和x+y取得最小值.
变式训练 2(1)已知 a,b,c,d 都是正数,求证:(ab+cd)(ac+bd)≥4abcd.

高中数学新人教A版必修5课件:第三章不等式3.4基本不等式第一课时基本不等式

高中数学新人教A版必修5课件:第三章不等式3.4基本不等式第一课时基本不等式

ab+ 1 ≥2 ab 1 =2,故(3)正确;由基本不等式可知,当 y >0, x >0 时,有
ab
ab
xy
y + x ≥2 y x =2 成立,这时只需 x 与 y 同号即可,故(4)错误.
xy
xy
答案:(3)
方法技能 应用基本不等式时,第一根据题目的特征,确定“a”和“b”. 它们可以是数字也可以是复杂的代数式.其次,注意“a”和“b”的符号,必 须都是正数,最后看“=”号能否成立.
(D) b + a ≥2 ab
解析:因为 a2+b2≥2ab,当且仅当 a=b 时,等号成立,所以 A 错误;对于 D,因为
ab>0,所以 b + a ≥2 b a =2.
ab
ab
对于 B,C,当 a<0,b<0 时,明显错误.
故选 D.
2.不等式 a2+ 4 ≥4 中,等号成立的条件是( D ) a2
2
2
课堂探究
题型一 对基本不等式的理解
【例 1】 给出下列命题:(1)若 x∈R,则 x+ 1 ≥2;(2)若 a>0,b>0,则 lg a+lg b≥ x
2 lg a lgb ;(3)若 a<0,b<0,则 ab+ 1 ≥2;(4)不等式 y + x ≥2 成立的条件是
ab
xy
x>0 且 y>0.其中正确命题的序号是
ab > ab > 2
ab .而 y= log1 x 为减函数,故 Q>P>M.故选 B.
2
题型三 利用基本不等式证明不等式 【例 3】 已知 a,b,c>0,求证: a2 + b2 + c2 ≥a+b+c.

人教A版高中数学必修五课件基本不等式.pptx

人教A版高中数学必修五课件基本不等式.pptx

练y习:求x2函x 2数x2的1最 x大值2;
例2、已知a、b R ,且a 2b 1, 求 1 1 的最小值.
ab 用代换法构造基本不等式
练习:已知x、y R,且lgx+lgy 1, 求 2 5 的最小值.
xy
例3、已知a、b R,且a b+3 ab,
求ab的最小值. ab 9
问题:是否积或和为定值时, 就一定可以求最值?
小结:在使用“和为常数,积有最大值”和“积
为常数,和有最小值”这两个结论时,应把握三 点:“一正、二定、三相等、四最值”.当条件 不完全具备时,应创造条件.
正:两项必须都是正数; 定:求两项和的最小值,它们的积应为定值; 求两项积的最大值,它们的和应为定值。
积xy有最大值.1 s2
4
和定积大
想一想:错在哪里?
1.已知函数,求f 函(x)数的x最 1小值和此时x的
取值.
x
运用均值不等式的过程中,忽略了“正数”这个 条件.
2.已知函数 f (x) x 3 (x 2) , x2
求函数的最小值.
大家把x 2 3代入看一看,会有 什么发现?用什么方法求该函数的 最小值?
例5、已知a、b (0,+),且a b 1,
求证:(1)a2 b2 1 ; 综合法 2
(2)(a+ 1)2 (b 1)2 25 . 分析法
a
b2
应用均值不等式时要注意 “一正、二定、三相等”
下面运算是否正确?
若xy 2, x 0, y 0, 求z 2x y x2 y2的最小值. 解:Q z 2 2xy x2 y2 4 x2 y2 4 2xy 8 z 2x y x2 y2的最小值为8.
2
以上各式当且仅当a=b时取等号,并注意各式

最新-广东省揭阳市第三中学人教A版高中数学必修五34 基本不等式 课件 共35张 精品

最新-广东省揭阳市第三中学人教A版高中数学必修五34 基本不等式 课件 共35张 精品

f(
ab),
P = f(a2abb),则M,N,P的大小关系是
(B)
A、 M P N
B、M N P
C、 N P M
D、P N M
3、设 a 和 b 是不相等的正数,则( B )
A、 a b ab a2 b2
2
2
B、 ab a b a2 b2
2
2
C、
ab
a2 b2 a b
n
n a1a2 an 叫做这n个正数的几何平均数
基本不等式: a1 a2 an ≥ n
n a1a2 an
n N*,ai R,1 i n.
语言表述:n个正数的算术平均数不小于它们的
几何平均数。
例、已知 x,y,z R,求证
(x y z)3 27xyz.
证明:因为 x y z 3 xyz 0, 3
B 的取值范围是( B )
A、0 B
3
C、
3
B
B、
0
B
3
D、 0 B
4
4、若正数 a、b 满足 ab a b 3 ,则 ab
的取值范围是: [ 9, )
5、若 x 2y 2a(a 1),则 loga x loga(2y)
的最大值是: 2 。
6、已知
a b 1 ,a、b R
b
AI
D
HK
G
a
F b
BJ a
C b
S正方形ABCD S正方形CEFG a2 b2
S正方形BCGH S正方形JCDI 2ab
E
a2 b2 2ab
一、定理:如果a,b R ,那么 a 2 b2 2ab (当且仅当 a b 时取“=”号)
证明:a2 b2 2ab (a b)2

2024版人教版必修五数学《基本不等式》PPT课件

2024版人教版必修五数学《基本不等式》PPT课件

人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。

过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。

情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。

本节课共分为引入、新课、巩固练习、小结四个部分。

课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。

本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。

030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。

不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。

对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。

若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。

同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。

若a>b>0且c>d>0,则ac>bd 。

特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。

柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。

高中数学第三章不等式3.4基本不等式课件新人教A版必修5

高中数学第三章不等式3.4基本不等式课件新人教A版必修5

• 1.设x,y满足x+y=40,且x,y都是正数,则xy的 最大值为( )
• A.400 B.100
• C.40 D.20
解析: xy≤x+2 y2=400,当且仅当 x=y=20 时,等号成
立,故选
• 答案:
A.
A
2.若 a,b∈R,且 ab>0,则下列不等式中,恒成立的是( )
∵x-50≥0,∴x-50+x-10500≥20, ∴y≤201+0520=2 500, 当且仅当 x-50=x-10500,即 x=60 或 x=40(舍去)时,等号 成立,ymax=2 500.
方法二:由题意知,y=(x-50)·x-104502, 令 x-50=t,x=t+50(t≥0), 则 y=t+10150t 2=t2+2100t+5t 100=t+110t005+20 ≤201+0520=2 500,
【错因】 f(x)= xx2+2+32=x2+x22++21= x2+2+ x21+2≥2,
此处的等号取不到.
只有当
x2+2=
1 x2+2
时,




,而


x2+2=
x21+2是无解的.
形如 y=at+bt (t>0)无法使用基本不等式求解时,可用函数
的单调性求解,而函数 y=at+bt (t>0)在0,
(4)∵x>1,y>2, ∴x-1>0,y-2>0. 又由 x+y=15,得(x-1)+(y-2)=12 ∴z=(x-1)(y-2)≤x-1+2 y-22=36. 当且仅当 x-1=y-2 时,z 有最大值 36.

在利用基本不等式求最值时要注意三
点:一是各项为正;二是寻求定值,求和式最小值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积S=_a_2___b 2
C 2、四个直角三角形的
面积和S’ =_2_ab
3、S与S’有什么
样的不等关系?
B
S>S′即
问:那么它们有相等的情况吗? a2 b2 > 2ab (a≠b)
D
D
a2 b2
b
G Fa
C
a
A
E
A E(FGH)
b
C
H
a2
b
2B
>
2ab
(a≠b)
B
a2 b2= 2ab (a=b)
重要不等式:一般地,对于任意实数a、b,总有
a2 b2≥2ab
当且仅当a=b时,等号成立 适用范围: a,b∈R 文字叙述为: 两数的平方和不小于它们积的2倍.
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
如果a 0,b 0,我们用 a, b分别代替a,b, 可得到什么结论?
猜想: 一般地,对于任意实数a、b,我们有
a2 b2 2ab
当且仅当a=b时,等号成立。
思考:你能给出不等式 a2 b2≥2ab 的证明吗?
证明:(作差法) a2 b2 2ab (a b)2 当a b时 (a b)2 0 当a b时 (a b)2 0 所以(a b)2≥0 所以a2 b2≥2ab.
③OD与CD的大小关系怎样? OD__≥>___CD
a b≥ ab 2
几何意义:半径不小于弦长的一半
填表比较:
适用范围
a2 b2≥2ab
a,b∈R
a b≥ ab 2
a>0,b>0
文字叙述
两数的平方和不 两个正数的算术平均数不 小于它们积的2倍 小于它们的几何平均数
“=”成立条件
a=b
a=b
注意从不同角度认识基本不等式
例2. 若 0<x12< , 求函数 y=x(1-2x) 的最大值.
分析:2 x+(1-2x) 不=1是为 常数.
配凑系数
解:
∵0<x<
1 2
,
∴1-2x>0.
∴y=x(1-2x)=
1 2
∙2x∙(1-2x)

1 2
∙[ 2x+(21-2x)
Hale Waihona Puke ]2=1 8.当且仅当
2x=(1-2x),

x=
1 4
时,
你能用这个图得出基本不等式的几何解释吗?
如图, AB是圆的直径, O为圆心,
点C是AB上一点, AC=a, BC=b.
过点C作垂直于AB的弦DE,连接 AD、BD、OD.
A
ab ①如何用a, b表示OD? OD=___2___
②如何用a, b表示CD? CD=____a_b_
D a OC b B
E
例1. 求函数 f(x)=xx+1+1 (x> -1) 的最小值.
解: ∵ x>-1, ∴x+1>0.

f(x)=x
+
1 x+1
=(x +1)+
1 x+1
-1
≥2
(x+1)∙
1 x+1
-1
=1,
当且仅当 x+1= x1+1, 即 x=0 时, 取“=”号.
∴当 x=0 时, 函数 f(x) 的最小值是 1.
xy≤
x
2
y
S 2
xy≤
1 4
S2
1.已知函数 f (x) x 1 ,求函数的 最小值和此时x的取值. x
解 : f (x) x 1 2 x • 1 2
x
x
当且仅当x 1 即x 1时函数 x
取到最小值2.
运用均值不等式的过程中,忽略了“正数” 这个条件.
2.已知函数 f (x) x 3 (x 2) , x2
4,函数的最小值为4。
用均值不等式求最值,必须注意 “相等” 的条 件.
如果取等的条件不成立,则不能取到该最值.
小结:
1. 两个重要的不等式
(1)a, b R,那么a2 b2≥2ab ,当且仅当a b时,等号成立
(2) ab≤ a b (a>0,b>0),当且仅当a b时,等号成立。 2
取“=”号.
∴当 x
=
1 4
时,
函数 y=x(1-2x) 的最大值是
1 8
.
若x、y皆为正数, 则当xy的值是常数P时, 当且仅当x=y时, x+y有最小值___2__P__.
x y≥2 xy 2 P
• 若x、y皆为正数,
• 则当x+y的值是常数S时 ,
• 当且仅当x=y时, • xy有最大值___14_S_2__
替换后得到: ( a )2 ( b )2≥2 a b
即: a b≥2 ab
即:
a b≥ 2
ab
(a 0,b 0)
你能用不等式的性质直接推导这个不等式吗?
证明不等式:a b ≥ ab (a 0,b 0) 2
分析法
证明:要证 a b≥ ab
只要证 2 a b≥_2___a_b__
当且仅当a=b时取等号,这个不等式就叫做基本不等式.
适用范围: a>0,b>0
在数学中,我们把
ab 2
叫做正数a,b的算术平均数,
ab 叫做正数a,b的几何平均数;
文字叙述为: 两个正数的算术平均数不小于它们的几何平均数.
你能用这个图得出基本不等式的几何解释吗?
如图, AB是圆的直径, O为圆心,
这是2002年在北京召开的第24届国际数 学家大会会标.会标根据中国古代数学家赵爽 的弦图设计的,颜色的明暗使它看上去象一个 风车,代表中国人民热情好客。
思考:这会标中含有 怎样的几何图形?
思考:你能否在这个图 案中找出一些相等关系 或不等关系?
D
a2 b2
b
G
F
A
aH E
探究1:
1、正方形ABCD的
点C是AB上一点, AC=a, BC=b.
过点C作垂直于AB的弦DE,连接 AD、BD、OD.
A
ab ①如何用a, b表示OD? OD=___2___
D a OC b B
E
②如何用a, b表示CD? CD=____a_b_
Rt△ACD∽Rt△DCB, 所以 BC DC DC AC
所以DC2 BC AC ab
求函数的最小值.
解:f ( x) x 3 2 x • 3
x2
x2
当且仅当 xx
2 x
3
即x 2
3时,函数
的最小值是6。
用均值不等式求最值,必须满足“定值”这 个条件.
3 求函数y sin 4 其中 (0, ]
sin
2
的最小值。
解:y sin 4 2 sin • 4
sin
sin

要证①,只要证 a b _2__a_b_≥0

(a 0,b 0, a ( a )2,b ( b)2 )
要证②,只要证 (__a_ __b_)2≥0

显然, ③是成立的.当且仅当a=b时, ③中的等号成立.
基本不等式
特别地,若a>0,b>0,则 a b __≥___ 2 ab
通常我们把上式写作: ab≤ a b (a 0,b 0) 2
相关文档
最新文档