人教版八年级数学分式单元测试题
人教版初中数学八年级上册第十五章《分式》测试题(含答案)
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()
人教版八年级上册第十五章分式单元测试卷
人教版八年级分式单元测试卷一、选择题1、代数式中,分式的个数是( )A .1B .2C .3D .4 2、若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.23、π8,11,5,21,7,322xx y x b a a -++中,分式有 ( ) A 、1个 B 、2个 C 、3个 D 、4个4、若分式112+-x x 的值为0,则x 的取值为( )A 、1=xB 、1-=xC 、1±=xD 、无法确定5、化简ba aa b a -⋅-)(2的结果是( ) A .b a -B .b a +C .ba -1 D .ba +16、使分式的值为正的条件是x312--( )A. x <B. x >C. x <0D. x >07.一列火车长x 米,以每秒a 米的速度通过一个长为b 米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为( ) A .秒B .秒C .秒D .秒8.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min {}=的解为( ) A .0B .0或2C .无解D .不确定9.一枚五角的硬币直径约为0.018m ,用科学记数法表示为( )A .31.810-⨯mB .21.810-⨯mC .31810-⨯mD .11.810-⨯m10.现有单价为x 元的糖果a 千克,单价为y 元的糖果b 千克,单价为z 元的糖果c 千克,若将这三种糖果混合在一起,则混合后的糖果单价为( ) 元.A .x y z ++B .cb a zy x ++++B .C .cb a czby ax ++++ D .z y x cz by ax ++++3131二、填空题 11、若分式3621x x -+的值为0,则x =__________ 12、若分式2x +12x -1无意义,则x =__________13、若220x x --=2的值=_____________________ 14.已知:a +a ﹣1=3,则(a ﹣a ﹣1)3=____________________ . 15.已知关于x 的分式方程﹣3=的的解为正数,则k 的取值范围为____________________ . 16.若关于x 的分式方程有增根,则实数m 的值为 .三、解答题 17.计算与化简:(1)222)2222(x x x x x x x --+-+- (2)2144122++÷++-a a a a a(1)y x axy26512÷ (2)x y x y 2211-+-。
人教版八年级上册数学《分式》单元综合检测附答案
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
25.我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
9.化简 的结果是
A.- B. C. D.
10.使分式 的值为整数,则整数x可取的个数为( )
A.2个B.3个C.4个D.5个
11.王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x千米,则可列方程 ( ).
A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b
【答案】B
【解析】
a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣ , , ,
∵﹣ ,
∴b<a<d<c.
故选B.
点睛:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
故选A
【点睛】本题考核知识点:分式的定义.解题关键点:理解分式的定义.
2.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为( )
A.当x=2时, 的值为零
B.无论x为何值, 的值总为正数
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
人教版八年级数学分式单元测试题
八年级分式单元测试题一、填空题(每小题3分,共36分)1、计算:()=⎪⎭⎫ ⎝⎛+--10311 .2、当x 时,分式313+-x x 有意义;3、1纳米=0.000000001米,则2纳米用科学记数法表示为 米.4、分式422-x x ,23-x x 的最简公分母是 。
5、计算32232)()2(b a c ab ---÷的结果是________.6、填入适当的整式:()2a b ab a b +=7、化简:96922++-x x x =________.8、计算:x x 1-÷⎪⎭⎫ ⎝⎛-x 11= 。
9、如果分式121+-x x 的值为-1,则x 的值是 ; 10、在下列三个不为零的式子 44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .11、已知31=b a ,分式b a b a 52-+的值为 ; 12、当x 时,分式21x x +的值为0; 二、选择题(每小题3分,共24分)13. 在式子a 1,1-x ,m 3,3b ,b a c -,()y x +43,5122++x x ,n m n m +-中,分式的个数是( ) A 、6 B 、5 C 、4 D 、314、若把分式x yxy +中的,x y 都扩大3倍,那么分式的值( ) A. 缩小3倍 B. 扩大3倍 C.不变 D .缩小9倍15、下列计算错误的是( )A 、253--=⋅a a aB 、326a a a =÷C 、33323a a a -=- D 、()1210=+- 16、化简xy x x 1⋅÷的结果是( ) A 1 B xy Cx y D y x 17、下列公式中是最简分式的是( )A .21227b aB .22()a b b a --C .22x y x y ++D .22x y x y--18、化简xy y x y x ---22的结果是( ) A .y x -- B. x y - C. y x - D. y x +19、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。
人教版数学八年级上册《分式》单元检测附答案
人教版数学八年级上学期《分式》单元测试考试时间:90分钟满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A.x=2 B.x=﹣2 C.x≠2 D.x≠﹣22.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.53.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A.不变B.扩大4倍C.缩小2倍D.扩大2倍4.(2018春•利津县期末)若a=﹣22,b=2﹣2,c=()﹣2,d=()0.则()A.a<b<d<c B.a<b<c<d C.b<a<d<c D.a<c<b<d5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A.5个B.6个C.8个D.7个6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为a.关于x的方程1的解是正数,那么这6个数中所有满足条件的a的值有()个.A.3 B.2 C.1 D.47.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A.km/h B.km/hC.km/h D.km/h8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程b的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A.B.C.D.9.(2019春•包河区期末)计算的结果是()A.﹣3x B.3x C.﹣12x D.12x10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A.小明的做法正确B.小亮的做法正确C.小芳的做法正确D.三名同学的做法都不正确第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为.12.(2018春•惠山区期末)在分式,,,中,最简分式有个.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则a的取值范围是.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D字头的动车组.由大连到北京的G377的平均速度是D31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D31的性价比,你如何建议,为什么?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•松桃县期末)若分式有意义,则实数x的取值范围是()A.x=2 B.x=﹣2 C.x≠2 D.x≠﹣2【解析】解:由题意得,x﹣2≠0,解得:x≠﹣2;故选:D.【点睛】此题考查了分式有意义的条件,属于基础题,掌握分式有意义分母不为零是关键.2.(2018秋•鸡东县期末)在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.5【解析】解:分式有:,,共2个.故选:A.【点睛】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.3.(2018秋•永川区期末)如果把分式中的x和y都同时扩大2倍,那么分式的值()A.不变B.扩大4倍C.缩小2倍D.扩大2倍【解析】解:分式中的x和y都同时扩大2倍,可得2,所以分式的值扩大为原来的2倍,故选:D.【点睛】本题主要考查了分式的基本性质,在解题时要根据分式的基本性质进行解答是本题的关键.4.(2018春•利津县期末)若a=﹣22,b=2﹣2,c=()﹣2,d=()0.则()A.a<b<d<c B.a<b<c<d C.b<a<d<c D.a<c<b<d【解析】解:∵a=﹣22=﹣4,b=2﹣2,c=()﹣2=4,d=()0=1,∴﹣41<4,∴a<b<d<c.故选:A.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.5.(2018春•开江县期末)若x为整数,使分式值为整数,则满足条件的整数有()A.5个B.6个C.8个D.7个【解析】解:∵2,∴x+3=±1、±2、±3、±6,则x=﹣4、﹣2、﹣1、﹣5、0、﹣6、3、﹣9时分式的值为整数,故选:C.【点睛】此题考查了分式的值,将原式计算适当的变形是解本题的关键.6.(2018秋•江北区期末)从﹣3,﹣2,﹣1,,1,3这六个数中,随机抽取一个数,记为a.关于x的方程1的解是正数,那么这6个数中所有满足条件的a的值有()个.A.3 B.2 C.1 D.4【解析】解:由1得:2x+a=x﹣1∴x=﹣1﹣a∵解是正数,且x﹣1为原方程的分母,∴﹣1﹣a>0,且﹣1﹣a≠1∴a<﹣1,且a≠﹣2故在﹣3,﹣2,﹣1,,1,3这六个数中,符合题意得数有:﹣3,,故选:B.【点睛】本题考查了分式方程的解及一元一次不等式的应用,本题难度不大,属于基础题.7.(2018秋•香坊区期末)某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,提速前列车的平均速度是()A.km/h B.km/hC.km/h D.km/h【解析】解:设提速前这次列车的平均速度xkm/h.由题意得,,方程两边乘x(x+v),得s(x+v)=x(s+50)解得:x,经检验:由v,s都是正数,得x是原方程的解.∴提速前这次列车的平均速度km/h,故选:D.【点睛】本题考查了列代数式(分式),解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.8.(2018秋•怀柔区期末)定义:如果一个关于x的分式方程b的解等于,我们就说这个方程叫和解方程.比如:4就是个和解方程.如果关于x的分式方程3﹣n是一个和解方程,那么n的值是()A.B.C.D.【解析】解:关于x的分式方程3﹣n是一个和解方程,根据题中的新定义得:x,把x代入得:3n=3﹣n,解得:n,故选:D.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.9.(2019春•包河区期末)计算的结果是()A.﹣3x B.3x C.﹣12x D.12x【解析】解:原式12x;故选:D.【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.10.(2018秋•海淀区期末)学完分式运算后,老师出了一道题:化简.小明的做法是:原式;小亮的做法是:原式=(x+3)(x﹣2)+(2﹣x)=x2+x﹣6+2﹣x=x2﹣4;小芳的做法是:原式1.对于这三名同学的做法,你的判断是()A.小明的做法正确B.小亮的做法正确C.小芳的做法正确D.三名同学的做法都不正确【解析】解:小明的作法是错误的,错误在于第二个等号后面的分子书写错误,忘记加括号了,分子部分正确书写是(x+3)(x﹣2)﹣(x﹣2);小亮的作法是错误的,错误在于第一个等号后面的部分,此处应该是通分,而小亮直接把分母漏掉了;小芳的作法是正确的;故选:C.【点睛】本题考查分式的混合运算、合并同类项,解答本题的关键是明确分式加减的计算方法,同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再根据同分母分式相加减的方法计算.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•吕梁期末)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=0.000000001m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm,将28nm用科学记数法可表示为 2.8×10﹣8.【解析】解:将28nm用科学记数法可表示为28×10﹣9=2.8×10﹣8.故答案为:2.8×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2018春•惠山区期末)在分式,,,中,最简分式有3个.【解析】解:是最简分式,是最简分式,,不是最简分式,是最简分式,故答案为:3.【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.13.(2019春•泰州期末)已知关于x的方程1的解是负值,则a的取值范围是a<﹣2且a≠﹣4.【解析】解:方程1,去分母得:2x﹣a=x+2,解得:x=a+2,由分式方程的解为负值,得到a+2<0,且a+2≠﹣2,解得:a<﹣2且a≠﹣4,故答案为:a<﹣2且a≠﹣4【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.(2018秋•芝罘区期末)若分式的值为0,则x的值为﹣1.【解析】解:∵分式的值为0,∴1﹣|x|=0且(x﹣1)(x﹣2)≠0,解得:x=﹣1.故答案为:﹣1.【点睛】此题主要考查了分式的值为零的条件,正确把握分式有意义的条件是解题关键.15.(2019春•丹东期末)如果解关于x的分式方程时,出现增根,那么m的值为﹣4.【解析】解:去分母得:m+2x=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+4=0,解得:m=﹣4,故答案为:﹣4【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.(2018秋•阳东区期末)小明家离学校2000米,小明平时从家到学校需要用x分钟,今天起床晚,怕迟到,走路速度比平时快5米/分钟,结果比平时少用了2分钟到达学校,则根据题意可列方程.【解析】解:设小明平时从家到学校需要用x分钟,则实际从家到学校用(x﹣2)分钟,根据题意,得.故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.三.解答题(共6小题,满分46分)17.(6分)(2019春•顺义区期末)计算:(﹣1)﹣2018+()2﹣(π﹣4)0﹣3﹣2;【解析】解:原式=11.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)(2018秋•孝义市期末)先化简,再从,﹣1,0,1中选一个合适的数作为m的值代入求值.【解析】解:原式•,当m时(m≠﹣1,0,1),原式=﹣2.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2019秋•娄底期中)解分式方程:(1)(2)【解析】解:(1)去分母得:x2+x﹣x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:2x2﹣2x﹣4﹣x2﹣2x=x2﹣2,解得:x,经检验x是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)(2018秋•宜都市期末)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m﹣n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?【解析】解:(1)根据题意知,“复兴一号“水稻的实验田的单位面积为(千克/米2),“复兴二号“水稻的实验田的单位面积为(千克/米2),则,∵m、n均为正数且m>n,∴0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2018秋•凉州区期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是②(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:小强:显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,请你接着小强的方法完成化简.【解析】解:(1)②分式,不可约分,∴分式是和谐分式,故答案为:②;(2)∵分式为和谐分式,且a为正整数,∴a=4,a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式故答案为:小强通分时,利用和谐分式找到了最简公分母.【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22.(10分)(2018秋•鞍山期末)近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,一般的高铁包括G字头的高速动车组以及D字头的动车组.由大连到北京的G377的平均速度是D31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时.(1)求D31的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D31票价为266元/张,G377票价为400元/张,如果你有机会给有关部门提一个合理化建议,使G377的性价比达到D31的性价比,你如何建议,为什么?【解析】解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:1,解得x=250.经检验:x=250,是分式方程的解.答:D31的平均速度250千米/时.(2)G377的性价比0.75D31的性价比0.94,∵0.94>0.75∴为了G377的性价比达到D31的性价比,建议降低G377票价.【点睛】本题考查分式方程的应用,解题的关键是正确寻找等量关系,构建方程解决问题,属于中考常考题型.。
人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)
第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。
新人教版八年级数学下册第章分式单元测试试卷及答案附答案
10.下列计算结果正确的是 )、选择题1.下列各式中,不是分式方程的是(A.1x1 C. ----- ------ 1 10 x2 x3.把分式2x 2y 中的x,y 都扩大2倍,则分式的值(.扩大2倍 C .扩大4倍 D .缩小2倍.无解.无法确定第十五章 分式单元复习姓名:2 .如果分式| x | 5的值为x 5x0,那么x 的值是( 4.下列分式中, 最简分式有(3 a xc 2 , ~ 3x x 22m n~22,m n2ab b 22ab b 25.分式方程4 x 29的解是(6.若 2x+y=0,则2xy y 22xy x 的值为( 7.关于x 的方程 8.使分式 k— 化为整式方程后,x 3会产生一个解使得原分式方程的最简公分母为 0,则k 的值为()无法确定0的x 值为(9.下列各式中正确的是( A.—— a C.-aaB.—— a D. -----a b1B.-(x 1) x x 1 1D.-[-(x 1)3 21]B.、填空题1计算:—1 x. 1 一 2 17 .已知 x+ -=3,贝U x 2+-!2=.x x,“,2x 18 .已知分式 ---- :当x= 时,分式没有意义;当x=时,分式的值为0;当x= —2时,分式的值为 x 29 .当a=时,关于x 的方程2ax 3 =5的解是x=1 .a x 410 . 一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm 返回时每小时行三、解答题1 .计算题:2.化简求值.12abm n C.-x xa b / 2 小1 B. --- (a ab) -2a a 3xy 2 xy D1) 9xy -45a 5a2.3.4.若分式以5. ,一5的值等于 0, 则y=在比例式9:5=4:3x b 1 a 1 计算: ---- g ---a b当x> 中, x= b 1 a 1 工- ------------,…,2一时,分式 ----- 的值为正数.1 3x5.6.当分式上上与分式x 1x23x 2的值相等时, x 21x 须满足nkm,则往返一次所用的时间是2⑴三a 2a 8(a 224)g —4a 4x 2 1 4x 4(x21)f3x 2(1) (1+ —) + ( 1-—),其中 x=—1;x 1 x 1 2-1 x3 i 1(2) -2 ------ (x 2 ------ ),其中 x=一.x 2 2 x x 2 23.解方程:x 2x 1 2x 2 ,, ——2 的值.小明x 1 x 1看,说:“太复杂了,怎么算呢? "你能帮小明解决这个问题吗? ?请你写出具体的解题过程.… , , ,, x 31 ...................... .5.对于试题:“先化简,再求值: 三产其中x=2.”小亮写出了如下解答过程:10 2x 11 2x=2;⑵肃x 3x 21x=3, 5—2 72, 7+73时,求代数式4.课堂上,李老师给大家出了这样一道题:当x 1 1 x.一二________ x_^ _____ L ①x2 1 1 x (x 1)(x 1) x 11.下列各式中,不是分式方程的是( D)_x_2_ _x_J_ ②(x 1)(x 1) (x 1)(x 1)=x —3— (x+1) =2x—2, ③・・・当x=2 时,原式=2X 2-2=2. ④(1)小亮的解答在哪一步开始出现错误:①(直接填序号);(2)从②到③是否正确:不正确;若不正确,错误的原因是把分母去掉了(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多-,?5 问他第一次在购物中心买了几盒饼干?第十六章分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D)(a 2 ab)_ m n n C.- x x m、填空题1 A.— x1 .. .. C. ----- ------ 1 10 x2 x1B.-(x 1) x 1 x 1 1D.-[-(x 1) 1] 1 3 22 .如果分式| x | 5的值为x 5x0, 那么x 的值是(B )3.把分式2x 2y 中的x,y 都扩大2倍,则分式的值(A ).扩大2倍 C .扩大4倍 D .缩小2倍4 .下列分式中, 最简分式有(C )3a x2~~2 , ~3x x22m n~22,2a ~2 a2ab b 2 2ab b 25 .分式方程 的解是( B).无解6 .若 2x+y=0,xy 2xy 2y2x 的值为(B ) 7 .关于x 的方程8 .使分式x 2 x 24B..无法确定k—化为整式方程后,会产生一个解使得原分式方程的最简公分母为等于0的x 值为(D )9 .下列各式中正确的是(A.—— a aB.—— aC.—D..无法确定10 .下列计算结果正确的是 B)0,则k 的值为(A )2abD.2xy9xy571 x 21(x 2)(x 1)解:原式(x 1)(x (x 2)2 1) 1 (x 1)(x 2) gxng2 .化简求值.(1) (1+1 .一 (1 ------ ),其中 x=- x 1「x 1 1解:原式二x 1 1x 1 1 -;2 x,1 , (1)当x=- 1时,原式=1 2 ⑵-21 x (x 解:原式=(X(x 2)(x 2)x 21.若分式1y1 5的值等于0,则y= — 5 .5 y202 .在比例式9: 5=4: 3x 中,x= ——.27c b 1 a 1 b 1 a 1 ",士 02(a b)3 .——g ————g ——的值是 — -----------a b a bab12 4 .当x> 1时,分式 一二的值为正数.31 3x _ 1 121 x 1 x 1 x 26 .当分式 2_2与分式x 23x 2的值相等时,x 须满足x w±1x 1x 1一, 1 2 17 .已知 x+ -=3,贝U x + —= 7x x,… , 2x 11 8 .已知分式 ----- ,当x=2 时,分式没有意义;当x=-- 时,分式的值为0;当x=— 2时,分式的值为x 2 217 2ax 359 .当a= - 17 时,关于x 的方程2ax 3 = 5的解是x=1 .三、解答题1 .计算题.10. 一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm ?返回时每小时行 nkm,则往返一次所用的时间是(3)请你写出正确的解答过程.2, 1 , (4)当x=1时,原式=—3.解方程.(1)10 解: (2)2x 1 7 x=—.4 2x 13=2;1 2xx 3 x 2 1解:用(x+1) (x —1)同时乘以方程的两边得,2 (x+1) —3 (x — 1) =x+3.解得x=1经检验,x=1是增根. 所以原方程无解.4 .课堂上,李老师给大家出了这样一道题:当2x=3, 5-272 , 7+J 3时,求代数式 土刀 x2x 1 2x 2 ..a ■匕的值.小明x 1看,说:“太复杂了,怎么算呢? "你能帮小明解决这个问题吗? ?请你写出具体的解题过程.解:原式=^L^g(x 1)(x 1) 2(x 1) 2由于化简后的代数中不含字母 x,故不论x 取任何值,所求的代数式的值始终不变. 所以当x=3, 5 —2夜,7+s/3时,代数式的值都是5 .对于试题:“先化简,再求值: 。
第15章 分式 人教版八年级数学上册单元测试卷(含详解)
第15章《分式》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.分式中,当时,下列结论正确的是()A.分式的值为零B.分式无意义C.若时,分式的值为零D.若时,分式的值为零2.能使等式成立的x的取值范围是( )A .B.C.D.3.分式的值为整数,则整数a的值为()A.1,2,4B.C.0,1,3D.4.若运算的结果为整式,则“□”中的式子可能是()A .B.C.D.5.解分式方程时,下列去分母变形正确的是()A .B.C.D.6.已知关于的分式方程的解是非负数,则的取值范围是()A .B.C.且D.且7.已知正整数,的最大公约数是3,最小公倍数是60,若,则().A.B.C.D.或8.在平面直角坐标系中,过点的直线交x轴、y轴于点,,则的最小值为()A.B.C.D.以上均不正确9.若关于x的不等式组恰有3个整数解,且关于y的分式方程的解是非负数,则符合条件的所有整数a的和是( )A.6B.10C.8D.210.如图,分别表示某一品牌燃油汽车和电动汽车所需费用y(单位:元)与行驶路程S (单位:千米)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需的费用的2倍少0.1元,设电动汽车每千米所需的费用为x元,则可列方程为( )A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分)11.要使分式有意义,则x的取值范围是.12.若是方程的根,则代数式的值是.13.若,则.14.若关于x的方程无解,则a的值是15.定义:若两个分式A与B满足:,则称A与B这两个分式互为“美妙分式”.若分式与互为“美妙分式”,且a,b均为不等于0的实数,则分式.16.如图,在中,平分,于,若,,,则的面积为.17.人们把这个数叫做黄金分割数,著名数学家华罗庚的优选法中的0.618就应用了黄金分割数.设,,记,,……,,则的值为.18.元代的《四元玉鉴》是一部成就辉煌的数学名著.该著有一道“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽、每株椽钱三文足,无钱准与一株椽”.大意是:用6210文钱买一批椽.如果每株椽的运费是3文,那么少拿一株椽后,剩下椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210元能够买珠椽,则列出分式方程为.三、解答题(本大题共6小题,共58分)19.(8分)计算∶(1);(2)20.(8分)化简求值:先化简,再从,中选择一个合适的数代入并求值.21.(10分)解下列分式方程:(1);(2)22.(10分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?23.(10分)关于的方程:的解为;的解为或;的解为;的解为;…根据材料解决下列问题:(1)方程的解是___________;(2)猜想方程的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于的方程:.24.(12分)阅读材料:已知,为非负实数,,当且仅当“”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知,求代数式最小值.解:令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为6.根据以上材料解答下列问题:【灵活运用】(1)已知,则当______时,代数式到最小值,最小值为________.(2)已知,求代数式的最小值.【拓展运用】(3)某校要对操场的一个区域进行改造,利用一面足够长的墙体将该区域用围栏围成中间隔有两道围栏的矩形花圃,如图1所示,为了围成面积为的花圃,所用的围栏至少为多少米?(4)如图2,四边形的对角线,相交于点,和的面积分别是4和12,求四边形面积的最小值.参考答案:一、单选题1.D【分析】本题主要考查分式的有意义的条件、分数值为零的条件,解答本题的关键是熟练掌握分式的分子为0,分母不为0时,分式的值为零.根据分式有意义的条件和分式值为零的条件即可求得结果.【详解】当时,,即,解得:,当,时,分式的值为零故选:D.2.C【分析】本题考查了二根式有意义的条件,分式有意义的条件.熟练掌握二根式有意义的条件,分式有意义的条件是解题的关键.由题意知,,,求解作答即可.【详解】解:由题意知,,,解得,,故选:C.3.D【分析】根据分式的值为整数可知,a+1的值为-4,-2,-1,1,2,4,计算可得答案.【详解】解:∵分式的值为整数,∴a+1是4的因数,故a+1的值为-4,-2,-1,1,2,4,∴a的值为-5,-3,-2,0,1,3,故选:D.4.D【分析】本题考查分式的乘除法和整式,根据分式的乘除法的运算法则进行解题即可得到答案.【详解】解:,∵运算的结果为整式,∴中式子一定有的单项式,∴只有D项符合,故选:D.5.A【分析】本题考查了分式方程的解法,方程两边同乘以,化成整式方程,问题得解.【详解】解:,方程两边同乘以得.故选:A6.D【分析】本题考查分式方程的解,解一元一次不等式,根据解分式方程的方法可以求得的取值范围,即可求解.解答本题的关键是明确解分式方程的方法.【详解】解:,方程两边同乘以,得,移项及合并同类项,得,∵分式方程的解是非负数,,∴,解得,且,故选:D.7.D【分析】先由、是正整数,、的最大公约数是3,最小公倍数是60,得到、的值,然后代入求出代数式的值.【详解】解:、都是正整数,它们的最大公约数是3,所以设,、都是正整数,且由于、的最小公倍数是60,所以即由于、互质,、都是正整数,,或,.即:或当时,原式;当时原式故选:D8.B【分析】首先求出,所在直线的解析式为,然后将代入得到,然后代入变形为,利用换元法和完全平方公式得到,然后利用平方的非负性求解即可.【详解】设,所在直线的解析式为∴,解得∴∴将代入得整理得,即∴设∴原式∵∴∴的最小值为∴的最小值为.∴的最小值为.故选:B.9.A【分析】本题考查了不等式组的取值范围,分式方程的解,分式方程的非负整数与a的整数解容易混淆,仔细辩解是解决本题的关键.分别解不等式组的两个不等式,根据“该不等式组有且仅有3个整数解”,得到关于a的不等式组,解之,解分式方程,结合“该分式方程解是非负数”,得到a的值,即可得到答案.【详解】解:解不等式得:,解不等式得:,∵该不等式组有且仅有3个整数解,∴该不等式组的整数解为:2,3,4,则,解得:,解分式方程得:且,∵该分式方程有非负数解,且,则,1,2,3,符合条件的所有整数a的和是.故选:A.10.A【分析】本题考查了列分式方程、函数图象,读懂函数图象,正确获取信息是解题关键.先求出燃油汽车每千米所需的费用为元,再根据函数图象可得燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,据此列出方程即可得.【详解】解:由题意得:燃油汽车每千米所需的费用为元,由函数图象可知,燃油汽车所需费用为25元时与燃气汽车所需费用为10元时,所行驶的路程相等,则可列方程为,故选:A.二、填空题11.x≠-3且【分析】根据,且计算即可,本题考查了分式有意义条件,熟练掌握是解题的关键.【详解】分式有意义.故,且,解得x≠-3,且故答案为:x≠-3且.12.【分析】本题考查代数式求值,涉及方程根的定义、整体代入法求代数式值、分式的混合运算等知识,根据题中所给代数式的结构特征,结合已知条件,恒等变形代值求解即可得到答案,熟练掌握分式混合运算法则化简求值是解决问题的关键.【详解】解:是方程的根,,即,,故答案为:.13.2【分析】本题主要考查了求代数式的值、分式的加减及解二元一次方程组,熟练掌握分式的加减法法则是解题的关键.由,从而有,进而构造二元一次方程组求得m,n的值代入原式即可得解.【详解】解:∵,,∴,∴,解得,∴,故答案为:2.14.1和2【分析】本题主要考查了分式方程无解的情况,分式方程无解有两种情况,第一分式方程本身无解,第二分式方程有增根,据此求解即可.【详解】解:去分母得:,移项,合并同类项得:,当,即时,此时方程无解;当,即时,,∵此时方程无解,方程有增根,∴,解得,经检验,是原方程的解;综上所述,或.故答案为:1和2.15.或【分析】本题考查了分式的加减法和实数的性质,绝对值的意义,熟练掌握分式加减法的法则,对新定义的理解是解题关键.根据分式与互为“美妙分式”,得到,求出①,②,分别把①②代入分式中求出结果即可.【详解】与互为“美妙分式”,,,或,或,、均为不等于的实数,①,②,把①代入,把②代入,综上:分式的值为或.故答案为:或.16.【分析】过点作于点,利用角平分线性质则有,然后根据面积公式即可求解.【详解】如图,过点作于点,∵是的角平分线,,∴,∴.故答案为:.17.【分析】本题考查分式的加减法和二次根式的运算.找出规律是解题的关键.利用分式的加减法则分别可求,,•••,,利用规律求解即可.【详解】解:∵,∴,,……,……∴.故答案为:.18.【分析】本题考查了从实际问题中抽象出分式方程,正确理解题意找出等量关系是解题关键.设6210元购买椽的数量为株,根据单价总价数量,求出一株椽的价钱为,再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可列出分式方程,得到答案.【详解】解:设6210元购买椽的数量为株,则一株椽的价钱为,由题意得:,故答案为:.三、解答题19.(1)解:原式;(2)原式.20.解:原式,,,,∵,∴,当时,原式;当时,原式.21.(1)解:去分母得:,去括号得:,移项得:,合并同类项得:,检验,当时,,∴是原方程的解;(2)解:去分母得:,去括号得:,移项得:,合并同类项得:,系数化为1得:检验,当时,,∴不是原方程的解;∴原方程无解.22.(1)设种原料每千克的价格为元,则种原料每千克的价格为元,根据题意得:,解得:.答:购入种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为元,则零售价为元,根据题意得:,解得:,经检验,是原方程的根,且符合实际.答:这种产品的批发价为50元.23.(1)解:由可得,∴该方程的解为:或;(2)方程的解为:或,检验:当时,左边右边,故是方程的解,当时,左边右边,故也是方程的解;(3)原方程可化为:,所以或,解得:或,经检验,或是原方程的解,故答案为:或.24.解:(1)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故答案为:,;(2)令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴代数式的最小值为(3)设花圃的宽为米,则长为米,所用的围栏令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.故:所用的围栏至少为米(4)作,如图所示:由题意得:∵∴四边形面积令,,则由,得.当且仅当,即时,代数式取到最小值,最小值为.∴四边形面积的最小值为。
人教版八年级上册数学《分式》单元测试卷(含答案)
人教版八年级上册数学《分式》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.化简:211()(3)31x x x x +-⋅---的结果是( ) A .2 B .21x - C .23x - D .41x x --3.计算22()ab ab的结果为( ) A .b B .a C .1 D .1b4.化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.下面的说法正确的是( )A .35是分式B . 22513x x -+是分式C .2125x x -+是分式 D . 2132x +是分式 6.代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A .6个 B .4个 C .3个 D .2个7.下面的说法中正确的是( )A .有除法运算的式子就是分式B .有分母的式子就是分式C .若A 、B 为整式,式子A B叫分式 D .若A 、B 为整式且B 中含有字母,式子A B叫分式 8.计算()ab a b b a a +-÷的结果为( ) A .a b b -B .a b b +C .a b a -D .a b a+ 9.使分式11)(1)x x +-(有意义的x 值是( ) .0A x ≠ .1B x ≠ .1C x ≠- .1D x ≠±10.已知x y z ,,满足235x y z z x ==-+,则52x y y z -+的值为( ) A.1 B.13 C.13- D.12二 、填空题(本大题共5小题,每小题3分,共15分)11.约分:(1)32324______30x y x y -=;(2)262______31x x x +=+ 12.分式方程1313x x =-+的解是 . 13.填空:(1)()2ab b a = (2)()32x x xy x y =++ (3)()2x y x xy xy ++= (4)()222x y x y x xy y +=--+14.⑴若分式216(3)(4)x x x --+有意义,则x ; ⑵若分式216(3)(4)x x x --+无意义,则x ;15.方程3(4)(1)(4)(1)x a x x x x -=----会产生增根,则a 的值为 .三 、解答题(本大题共7小题,共55分)16.若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?(1)x y x y +-(2)xy x y -(3)22x y x y-+ 17.解方程:2216124x x x --=+- 18.当x 为何值时,下列分式的值为0?(1)211x x -+ (2)2231x x x +-- (3)2242x x x -+19.解方程232152x x x-+= 20.已知:(),求的值.21.某铁路有一隧道,由A 队单独施工,预计200天贯通.为了公路早日通车,由A ,B 两队同时施工,结果120天就贯通了.试问:如果由B 队单独施工,需要多少天才能贯通?22.小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.2244a b ab +=0ab ≠22225369a b a b b a b a ab b a b --÷-++++人教版八年级上册数学《分式》单元测试卷答案解析一 、选择题1.B2.B3.B4.B ;222()()=()m n m n m n m n m mn m m n m-+--=++5.C6.C7.D8.A9.D10.B ;235x y z z x ==-+得332y x z x ==,,∴55312333x y x x y z x x --==++二 、填空题 11.245x y-;2x 12.33(1),333,26,3x x x x x x +=-+=-==,经检验,3x =是原方程的解.13.a ;2x ;2x y ;22x y -.14.⑴若分式216(3)(4)x x x --+有意义,则3x ≠且3x ≠-且4x ≠-; ⑵若分式216(3)(4)x x x --+无意义,则3x =或3x =-或4x =-; ∴⑴3x ≠且3x ≠-且4x ≠-;⑵3x =或3x =-或4x =-15.化为整式方程得:3x a -=,再将14x x ==、分别代入3x a -=中,得2a =-或1a =.三 、解答题16.(1)333()333()x y x y x y x y x y x y+++==---,不发生变化(2)3393333()x y xy xy x y x y x y ⋅==⋅---,是原来的3倍 (3)222222333()1(3)(3)9()3x y x y x y x y x y x y ---==⋅+++,是原来的13倍 17.2222(2)164,44164,48,2x x x x x x x --=--+-=--==-,经检验,2x =-是原方程的增根.18.1x =-;3x =-;2x =19.等式两边同时乘以22x 得:()232210x x x -+=整理得:27220x x +-=解得:x =经检验:x =∴原方程的解为x =x =20.将分式化简得:2(3)53523()()a b a b b a b b a b a b a b a b a b a b a b-++--⋅-==+-++++,由已知条件可得:2(2)0a b -=,即2a b =.将2a b =代入2a b a b -+中得:412a a a a-=-+ 21.解:设B 队单独施工需要x 天才能贯通,1201201200x += 解方程得300x =,经检验300x =是原方程的根,且符合题意.答:B 队单独施工需要300天才能贯通.22.设小明乘坐动车组到上海需要x 小时. 依题意,得21602160 1.66x x =⨯+. 解得10x =.经检验:10x =是方程的解,且满足实际意义.答:小明乘坐动车组到上海需要10小时.。
人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)
人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。
人教版数学八年级上册《分式》单元测试题(附答案)
点睛:分式有意义: ,分式无意义: ,分式值为0: ,是分式部分易混的3类题型.
3.化简: ÷ =_____.
【答案】m
【解析】
解:原式= • =m.故答案为m.
4.若分式 无意义,且 =0,那么 =_____.
【答案】﹣
【解析】
【分析】
首先根据分式有意义的条件,以及分式的值为零的条件,分别求出a、b的值各是多少;然后应用代入法,求出 的值是多少即可.
A.甲比乙便宜B.乙比甲便宜
C.甲与乙相同D.由m的值确定
17.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x千米/小时,则所列方程正确的为( )
A. + = B. ﹣Fra bibliotek==2019.
故答案为2019.
【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.
7.方程 =2﹣ 的增根是_____
【答案】x=3
【解析】
【分析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先让最简公分母x-3=0,得到增根x=3.
一.填空题(共7小题)
1.计算: __.
【答案】
【解析】
【分析】
原式利用同分母分式的减法法则计算即可求出值.
【详解】原式= .
故答案为:x-1.
【点睛】本题考查了分式的加减法,熟练掌握运算法则是解题的关键.
2.若分式 的值为0,则x、y需要满足的条件为_____.
人教版八年级数学上册第十五章《分式》单元测试题(含答案)
人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( )A .1个B .2个C .3个D .4个 2.分式32+x x无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a--的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—ab a-4.计算(2-a a —2+a a)·a a 24-的结果是( )A . 4B . -4C .2aD .-2a 5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解 6.把分式(0)xyx y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变7.若分式34922+--x x x 的值为0,则x 的值为( )A .3B .3或-3C .-3D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x -= D .72072054848x-=+二、填空题(每小题4分,共32分) 9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= . 11.用科学记数法表示0.002 014= .12.分式222439xx x x --与的最简公分母是____ ______. 13.若方程322x mx x -=--无解,则m =__________________. 14.已知a 1-b 1=21,则ba ab-的值为________________.15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程3x x -= 2 + 3ax -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程1y y --2my y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成. (2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.1 14.-2 15.R 1=RR RR -22 16.333.123002300=++x x x三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23.20.解:方程两边乘y (y-1),得y 2-m=(y-1)2. 化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1. 所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意. 答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天.根据题意,得415xx x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第15章分式单元检测一、单选题(共12题;共24分)1.是A. B. 1 C.D. -12.若分式的值为0,则x 的值为( )A. 2或﹣1B. 0C. 2D. -1 3.化简的结果是( )A. x+1B.C. x ﹣1D.4.当a >0时,下列关于幂的运算正确的是( )A. a 0=1B. a ﹣1=﹣a C. (﹣a )2=﹣a 2 D.5.若关于x 的分是方程+=2有增根,则m 的值是( )A. m=﹣1B. m=0C. m=3D. m=0或m=3 6.要使分式有意义,则x 的取值范围是( )A. x>2B. x<2C. x≠﹣2D. x≠27.若x=-1,y=2,则的值等于A. B. C. D.8.对于非零实数a、b,规定,若,则的值为A. B. C. D.9.化简,其结果是()A. B. C. D.10.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是()A. =B. =-35C. -=35D. ﹣=3511.方程=﹣1的解是()A. x=2B. x=1C. x=0D. 无实数解12.火车提速后,从盐城到南京的火车运行速度提高了25%,运行时间缩短了1h.已知盐城到南京的铁路全长约460km.设火车原来的速度为xkm/h,则下面所列方程正确的是()A. ﹣=1B. ﹣=1C. ﹣=1D. ﹣=1二、填空题(共5题;共5分)13.计算:+=________ .14.当x=________时,分式的值为0.15.某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程 ________.16.计算÷(1﹣)的结果是________ .17.若分式有意义,则x应满足________ .三、解答题(共5题;共25分)18.先化简,再求值:(﹣)•,其中x=4.19.先化简,再求值:,其中x=2﹣.20.自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.21.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?22.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?四、综合题(共2题;共16分)23.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路________ 米;(2)求原计划每小时抢修道路多少米?24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?答案一、单选题1.B2.C3.A4.A5.A6.D7.D8.A9.A 10.D 11.D 12.C二、填空题13.214.-115.-=1516.17.x≠5三、解答题18.【解答】解:原式=•=x+2,当x=4时,原式=6.19.解:原式=当x=2﹣时,原式=﹣2++2=.20.【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.21.【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.22.解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.四、综合题23.(1)1200(2)【解答】设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.24.(1)解:设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件(2)解:=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.人教版八年级上册数学第15章分式单元测试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.要使分式242xx--为零,那么x的值是A.2-B.2 C.2±D.02.分式256x y -和24xyz的最简公分母是 A .12xyzB .212x yzC .24xyzD .224x yz3.计算2211(2)x x x x -+⋅+-的结果是 A .12x - B .12-C .yD .x4 A .mB .-mC .1mD .-1m5.某桑蚕丝的直径用科学记数法表示为1.6×10-5米,则这个数的原数是 A .0.0000016B .0.000016C .0.00016D .0.00166.化简1()x y y x x y x y-÷-⋅+-的结果是 A .221x y -B .y x x y-+C .221y x -D .x y x y-+7.分式方程233x x=-的解为 A .x =0B .x =3C .x =5D .x =98.下来运算中正确的是A .a c ac b d bd÷=B .(2a a b -)2=2224a a b- C .x y y xx y y x--=++D .4453·m n m n m n=9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为A .50008000600x x =-B .50008000600x x =+C .50008000600x x=+D .50008000600xx =-10.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为 A .1,2,3 B .1,2 C .1,3D .2,3二、填空题(本大题共10小题,每小题3分,共30分)11.约分:2222444m mn n m n-+-=__________. 12.计算:2389()32x y y x⋅-=__________. 13.计算:22111m m m---的结果是__________. 14.计算:223()23m p mnn n p-÷=__________. 15.若x =3是分式方程210a x x--=的根,则a 的值是__________. 16.关于x 的方程1(1)(1)m x x -+--11x -=0无解,则m 的值是__________. 17.某人在解方程21132x x a-+=-去分母时,方程右边的1-忘记乘以6,算得方程的解为2x =,则a 的值为__________. 18.已知关于x 的分式方程211a x x+--=1的解是非负数,则a 的取值范围是__________. 19.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果用一台插秧机工作,要比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的__________倍.20.,…,猜想第n 个分式是__________. 三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解方程:(1)2101x x -=+;(2)2216124x x x --=+-.22.(1)先化简,再求值:2224(1)442x x x x x -+÷-+-,其中x =1; (2)先化简,再求值:211()(3)31x x x x +-⋅---,从不大于4的正整数中,选择一个合适的值代入x 求值.23.在创建文明城市的进程中,我市为美化城市环境,计划种值树木60万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,求原计划每天植树多少万棵?24.已知关于x 的方程4433x mm x x---=--无解,求m 的值.25.解不等式组36451102x xx x -≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321x x x +-+ ·(3x x +-239x x --),从上述整数解中选择一个合适的数,求此代数式的值.26.已知方程111a x x =-+的解为x =2,先化简22144(1)11a a a a -+-÷--,再求它的值.27.探索发现:111122=-⨯;1112323=-⨯;1113434=-⨯,… 根据你发现的规律,回答下列问题: (1)145=⨯__________,1(1)n n =⨯+__________; (2)利用你发现的规律计算:1111122334(1)n n ++++⨯⨯⨯⨯+;(3)灵活利用规律解方程:1111(2)(2)(4)(98)(100)100x x x x x x x +++=++++++.28.某商品经销店欲购进A 、B 两种纪念品,用320元购进的A 种纪念品与用400元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少?(2)若该商店A 种纪念品每件售价45元,B 种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A 种纪念品最多购进多少件.答案1-10: ABABB CDDBC11.【答案】22m n m n -+ 12.【答案】-212yx13.14. 15.【答案】3 16. 【答案】1或3 17.【答案】1318.【答案】a ≥1且a ≠2 19.【答案】103m m - 2021.【解析】(1)2101x x-=+,2(1)0x x -+=,1x =,经检验:x =1是原方程的解. (2)2216124x x x --=+-, 22(2)164x x --=-,2x =-,经检验:x =-2是增根, 所以原方程无解. 22.【解析】(1)原式=2222222(1)22x x x x x x x x x+--+⋅=⋅=--, 当x =1时,原式=2. (2)原式=(11)31x x ---·(x -3)=13(1)(3)x x x x --+--·(x -3)=21x -,要使原分式有意义,则x ≠±1,3, 故可取x =4,原式=23. 学.科网 23.【解析】设原计划每天植树x 万棵,则实际每天植树1.2x 万棵,24.【解析】原方程可化为(m +3)x =4m +8,由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3; (2)若整式方程的根是原方程的增根,则483m m ++=3,解得m =1, 经检验,m =1是方程483m m ++=3的解. 综上所述,m 的值为-3或1. 25.【解析】解不等式3x -6≤x ,得:x ≤3,解不等式4510x +<12x +,得:x >0,则不等式组的解集为0<x ≤3, 所以不等式组的整数解为1、2、3,原式=23(1)x x +-·[233(3)(3)(3)(3)x x x x x x x ---+-+-] =23(1)x x +-·(1)(3)(3)(3)x x x x --+- =11x -, ∵x ≠±3、1, ∴x =2,则原式=1. 26.【解析】把x =2代入111a x x =-+中,解得:a =3, 原式=22(1)(1)1(2)a a a a a -+-⋅-- =12a a +-, 当a =3时,原式=4. 27.【解析】(1)1114545=-⨯,111(1)1n n n n =-⨯++.(2)原式111111111122334111nn n n n =-+-+-++-=-=+++. (3)11111111()222498100100x x x x x x x -+-++-=++++++,1111()2100100x x x -=++, 112100100x x x -=++, 13100x x =+, 解得50x =,经检验,50x =为原方程的根.28.【解析】(1)设A 种纪念品每件的进价为x 元,则B 种纪念品每件的进价为(10)x +元.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x,38a,2π,1xa-中,属于分式的个数为()A.0个B.1个C.2个D.3个2.下列分式为最简分式的是()A.11aa--B.235xy yxy-C.22m nn m+-D.22a ba b++3.下列各式中,变形不正确的是()A.2233x x=--B.66a ab b-=-C.3344x xy y-=-D.5533n nm m--=-4.计算322b b1·a a b⎛⎫⎛⎫÷⎪ ⎪⎝⎭⎝⎭的值为( )A.222baB.6ab2C.8aD.15.计算:22m-1m-1m m÷的结果是( )A.mm1+B.1mC.m-1 D.1m-16.若111u v f+=,则用u、v表示f的式子应该是()A .u vuv+ B .uvu v+ C .v uD .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13B .13-C .12D .12-8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( ) A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米9.计算20140的结果是( ) A .1B .0C .2014D .﹣110.当m 为何值时,方程会产生增根( )A.2B.-1C.3D.-311.下列各式中,是分式方程的是( ) A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+=B.+=C.=-D.=+二、填空题13.当x =_________时,分式242x x -+的值为0.14.当x =__________时,分式3xx-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算: ①()223·14a aa a a ----; ②211a a a ---;③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b ba b b ab a b ab a++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A 10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18。
人教版数学八年级上册《分式》单元检测题含答案
A x+1B. C.x-1D.
【答案】A
【解析】
【分析】
根据同分母分式相减,分母不变,将分子相减,再将分子利用平方差公式分解因式,然后约分即可化简.
【详解】解:原式= .
故答案为A
【点睛】此题考查分式的加减法,解题关键在于掌握运算法则.
7.下列计算错误的是()
A. B. C. D.
详解:原式= = =1.
故答案为1.
点睛:本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.
15.若3x-1= ,则x=_______.
【答案】-2
【解析】
3x-1= ,
x-1=-3,x=-2.
22.以下是小明同学解方程 的过程.
【解析】方程两边同时乘 ,得 .
第一步解得
第二步检验:当 时, .第三步
所以,原分式方程的解为 .第四步
(1)小明 解法从第________步开始出现错误;
(2)写出解方程 的正确过程.
23.先化简,再求值: ,其中x是不等式组 的整数解.
24.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,
人教版八年级数学上册《分式》单元检测试卷(含答案)
人教版八年级数学上册《分式》单元检测试卷(含答案)一、选择题(每小题3分,共30分)1.下列各式中,是分式的是()A. xπ−2B. 14x2 C. 2x−1x+3D. x22.若分式13−x有有意义,则x的取值范围是()A.x=3B. x<3C. x≠0D. x≠33.下列算式结果是﹣3的是()A. (−3)−1B. ﹣|﹣3|C. -(-3)D. (-3)04.如果把分式x+2yx+y中的x,y都扩大2倍,则分式的值()A. 扩大2倍B. 缩小2倍C. 是原来的23D. 不变5.下列式中是最简分式的是()A. 12b27a2B. 2(a−b)2b−aC. x2+y2x+yD. x2−y2x−y6.使分式x2+11−3x的值为负的条件是()A. x<0B. x>0C. x>13D. x<137.3xy24z2·(−8z3y)等于()A. 6xyzB. −3xy2−8z34yzC. −6xyzD. 6x²yz8.已知xx2−x+1=12,则x2+1x2的值为()A. 12B. 14C. 7D. 49.解分式方程1−xx−2+2=12−x,可知方程的解为()A. x=﹣2B. x=4C. x=3D. 无解10.A,B两地相距45千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. 45x+4+45x−4=9 B.454+x+454−x=9 C. 45x+4=9 D. 90x+4+90x−4=9二、填空题(每小题3分,共18分)11.当x_________时,分式|x|−3x+3的值为0.12.要使分式x−1x+2的值是非负数,则x的取值范围是________________.13.化简(a −b 2a)·aa−b 的结果是________________. 14.若分式3a+2无意义,且b−4b 2+1=0,那么ab =__________. 15.a ,b 为实数,且ab =1,设P =a a+1+bb+1,Q =1a+1+1b+1,则P__________Q (选填“>”“<”或“=”)16.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中, 设计划每天加工x 套,则根据题意可得方程为______________________. 三、解答题(72分) 17. (8分)计算与化简. (1)(4x 2−4+1x+2)÷1x−2 ; (2)a+1a−3−a−3a+2÷a 2−6a+9a 2−4.18. (8分)解下列分式方程.(1)x−2x+2−1=3x 2−4 ; (2)xx−1−2x+1=1 .19.(8分)先化简,再求值:a−32a−4÷(5a−2−a −2) ,其中a =√3−3 .20.(8分)化简aa2−4·a+2a2−3a−12−a,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)已知,点A(1,3)、B(5,3)、C(2,6),平行于x轴的直线l过点(0,m).(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并直接写出A1的坐标;(2)如图,若m=1,请画出△ABC关于直线l的轴对称图形△A2B2C2;(3)若P(a,b)与P′(c,d)关于直线l对称,则a与c的数量关系为____________,b 与d的数量关系为_____________.22.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某公司在武汉市某区甲、乙两个街道社区投放一批“公租自行车”。
人教版八年级上册数学《分式》单元综合检测卷(含答案)
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
【点睛】此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
【答案】m≥﹣9且m≠﹣6
【解析】
【分析】
12.当x_____时,分式 有意义.
【答案】≠﹣4.
【解析】
分析】
直接利用分式有意义的条件,即分母不为零,进而得出答案.
【详解】解:分式 有意义,则4+x≠0,
解得:x≠-4.
故答案为≠-4.
【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
13.若 =3,则 的值为_____.
A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣1
【答案】B
【解析】
分析:
根据使分式值为负数的条件进行分析解答即可.
详解:
∵无论 取何值,代数式 的值都大于0,
∴要使代数式 的值为负数,需满足: ,
解得: .
故选B.
点睛:本题解题需注意两点:(1)代数式 的值恒为正数;(2)要使分式的值为负数,需满足分子和分母的值一个为正数,另一个为负数.
故答案为D
【点睛】本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
【答案】D
【解析】
【分析】
先因式分解,再约分即可得.
【详解】
故选D.
【点睛】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级分式单元测试题
一、填空题(每小题3分,共36分)
1、计算:()=⎪⎭⎫ ⎝⎛+--10311 . 2、当x 时,分式3
13+-x x 有意义;
3、1纳米=0.000000001米,则2纳米用科学记数法表示为 米.
4、分式422-x x ,
2
3-x x 的最简公分母是 。
5、计算32232)()2(b a c ab ---÷的结果是________.
6、填入适当的整式:()2a b ab a b += 7、化简:96922++-x x x =________.
8、计算:x x 1-÷⎪⎭⎫ ⎝⎛-x 11= 。
9、如果分式1
21+-x x 的值为-1,则x 的值是 ; 10、在下列三个不为零的式子 44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式
是 ,把这个分式化简所得的结果是 .
11、已知3
1=b a ,分式b a b a 52-+的值为 ; 12、当x 时,分式2
1x x +的值为0; 二、选择题(每小题3分,共24分)
13. 在式子a 1,1-x ,m 3,3b ,b a c -,()y x +43,5
122++x x ,n m n m +-中,分式的个数是( ) A 、6 B 、5 C 、4 D 、3
14、若把分式x y
xy +中的,x y 都扩大3倍,那么分式的值( )
A. 缩小3倍
B. 扩大3倍
C.不变 D .缩小9倍
15、下列计算错误的是( )
A 、253--=⋅a a a
B 、326a a a =÷
C 、33323a a a -=-
D 、
()1210=+- 16、化简x
y x x 1⋅÷的结果是( ) A 1 B x y C
x y D y x 17、下列公式中是最简分式的是( )
A.21227b a B.22()a b b a -- C .22x y x y ++ D.22
x y x y
-- 18、化简x
y y x y x ---2
2的结果是( ) A .y x -- B. x y - C. y x - D. y x +
19、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。
A 、b a 11+ B、ab 1 C 、b a +1ﻩD 、b
a a
b + 20、分式方程121
2x x =--( ). A 无解 B 有解x=1 C 有解x=2 D 有解x=0
三、解答题(共40分)
21、计算(每小题4分,共16分)
(1)22111a a a a a ++--- (2)
b
a b a b a +-+++13121
⑶ x
x x x x +-⋅-+3223661 ⑷ 423--x x ÷⎪⎭⎫ ⎝⎛--+252x x
22、解方程:(每小题5分,共10分)
(1)x x 527=- (2) x
x x -=+--21221
23、先化简代数式1
121112-÷⎪⎭⎫ ⎝⎛+-+-+a a a a a a ,求:当a =2时代数式值.(7分)
24、已知
4
32z y x ==,求222z y x zx yz xy ++++的值。
(5分)
25、若31=+x x ,则1
242
++x x x 的值为多少?(5分)
26、某校师生去离校10km 的千果园参观,张老师带领服务组与师生队伍同时出发,服务组的行进速度是师生队伍的2倍,以便提前20分钟到达做好准备,求服务组与师生队伍的行进速度。
(7分)。