全国2013年7月自学考试离散数学试题

合集下载

《离散数学》考试题库及答案

《离散数学》考试题库及答案

《离散数学》考试题库及答案一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案

《离散数学》考试试卷(试卷库20卷)及答案第 1 页/共 4 页《离散数学》考试试卷(试卷库20卷)试题总分: 100 分考试时限:120 分钟、选择题(每题2分,共20分)1. 设论域为全总个体域,M(x):x 是人,Mortal(x):x 是要死的,则“人总是要死的”谓词公式表示为( )(A ))()(x Mortal x M → (B ))()(x Mortal x M ∧(C )))()((x Mortal x M x →?(D )))()((x Mortal x M x ∧?2. 判断下列命题哪个正确?( )(A )若A∪B=A∪C,则B =C (B ){a,b}={b,a}(C )P(A∩B)≠P(A)∩P (B)(P(S)表示S 的幂集)(D )若A 为非空集,则A ≠A∪A 成立3. 集合},2{N n x x A n∈==对( )运算封闭(A )乘法(B )减法(C )加法(D )y x -4. 设≤><,N 是偏序格,其中N 是自然数集合,“≤”是普通的数间“小于等于”关系,则N b a ∈?,有=∨b a ( )(A )a(B )b(C )min(a ,b)(D ) max(a ,b)5. 有向图D=,则41v v 到长度为2的通路有( )条(A )0 (B )1 (C )2 (D )36. 设无向图G 有18条边且每个顶点的度数都是3,则图G 有( )个顶点(A )10 (B )4 (C )8 (D )127. 下面哪一种图不一定是树?()(A )无回路的连通图(B )有n 个结点n-1条边的连通图(C )每对结点间都有通路的图(D )连通但删去一条边则不连通的图 8. 设P :我将去镇上,Q :我有时间。

命题“我将去镇上,仅当我有时间”符号化为()(A )P →Q (B )Q →P (C )P Q (D )Q P ?∨? 9. 下列代数系统中,其中*是加法运算,()不是群。

离散数学试题与答案

离散数学试题与答案

离散数学试题及答案一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=_____{3}______________; ρ(A) - ρ(B)=____{{3},{1,3},{2,3},{1,2,3}}__________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = ___2^(n^2)________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是____A1 = {(a,1), (b,1)}, A2 = {(a,2), (b,2)}, A3 = {(a,1), (b,2)}, A4 = {(a,2), (b,1)},_________ _____________, 其中双射的是______A3, A4__________.4. 已知命题公式G=⌝(P→Q)∧R,则G的主析取式是____P∧⌝Q∧R (m5)____.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为___12______,分枝点数为_______3_________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=______{4}______; A⋃B=____{1,2,3,4}_________;A-B=______{1,2}_______ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______自反性____________, _________对称性_________, _________传递性_____________.8. 设命题公式G=⌝(P→(Q∧R)),则使公式G为真的解释有_____(1,0,0)__________,______(1,0,1)________, ________(1,1,0)________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1•R2= ___{(1,3),(2,2),(3,1)}____,R2•R1 =_____{(2,4), (3,3), (4,2)}_____, R12=_______{(2,2), (3,3)}_________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = ______2^(m*n)___________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = _____{x | -1 ≤x < 0, x ∈R}_______ , B-A = ______{x | 1 < x < 2, x ∈R}_____ ,A∩B = ______{x | 0 ≤x ≤1, x ∈R}__________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________________{(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4),(5, 5),(6, 6)}_________.14. 设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G的前束式是_____∃y∃x(P(y)→Q(x))________ _____.15.设G是具有8个顶点的树,则G中增加__21___条边才能把G变成完全图。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

【全国自考历年真题10套】02324离散数学2013年4月至2019年10月试题

【全国自考历年真题10套】02324离散数学2013年4月至2019年10月试题
选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或 钢笔填写在答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题(本大题共 15 小题,每小题 1 分,共 15 分)
A. (∃x)( A(x) ∧ B(x)) ⇔ (∃x) A(x) ∧ (∃x)B(x)
B. A →(∃x)B(x) ⇔ (∃x)( A → B(x))
C.(∃x)A(x) → B ⇔ (∀x)( A(x) → B)
D. ¬(∃x)A(x) ⇔ (∀x)¬A(x)
4.设 A(x): x 是鸟, B(x): x 会飞,命题“没有不会飞的鸟”符号化为
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”
的相应代码涂黑。错涂、多涂或未涂均不得分。
1.设 p:天下雨;q:我走路上学。命题“只要不下雨,我就走路上学”可符号化为
A.p → q
B.q →p
C.┐p → q D.q → ┐p
2.设简单无向图 G 有 16 条边,有 3 个 4 度结点,有 4 个 3 度结点,其余结点的度数均小 3,则 G 中的结点个数至.少.为
02324# 离散数学试题 第 3 页 (共 4 页)
02324# 离散数学试题 第 4 页 (共 4 页)
绝密★考试结束前
全国 2014 年 4 月高等教育自学考试
离散数学试题
课程代码:02324
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分
注意事项: 1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或

7月自考离散数学试题及答案

7月自考离散数学试题及答案

一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列句子不是..命题的是( D ) A .中华人民共和国的首都是北京B .张三是学生C .雪是黑色的D .太好了!2.下列式子不是..谓词合式公式的是( B ) A .(∀x )P (x )→R (y )B .(∀x ) ┐P (x )⇒(∀x )(P (x )→Q (x ))C .(∀x )(∃y )(P (x )∧Q (y ))→(∃x )R (x )D .(∀x )(P (x ,y )→Q (x ,z ))∨(∃z )R (x ,z )3.下列式子为重言式的是( )A .(┐P ∧R )→QB .P ∨Q ∧R →┐RC .P ∨(P ∧Q )D .(┐P ∨Q )⇔(P →Q )4.在指定的解释下,下列公式为真的是( )A .(∀x )(P (x )∨Q (x )),P (x ):x =1,Q (x ):x =2,论域:{1,2}B .(∃x )(P (x )∧Q (x )),P (x ):x =1,Q (x ):x =2,论域: {1,2}C .(∃x )(P (x ) →Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}D .(∀x )(P (x )→Q (x )),P (x ):x >2,Q (x ):x =0,论域:{3,4}5.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( )A .y 是自由变元B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )6.设论域为{1,2},与公式(∀x )A (x )等价的是( )A .A (1)∨A (2)B .A (1)→A (2)C .A (1)∧A (2)D .A (2)→A (1)7.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是入射B .仅是满射C .是双射D .不是函数8.下列关系矩阵所对应的关系具有反对称性的是( )A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101110001C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010101 9.设R 1和R 2是集合A 上的相容关系,下列关于复合关系R 1︒R 2的说法正确的是( )A .一定是等价关系B .一定是相容关系C.一定不是相容关系D.可能是也可能不是相容关系10.下列运算不满足...交换律的是()A.a*b=a+2b B.a*b=min(a,b)C.a*b=|a-b| D.a*b=2ab11.设A是偶数集合,下列说法正确的是()A.<A,+>是群B.<A,×>是群C.<A,÷>是群D.<A,+>, <A,×>,<A,÷>都不是群12.设*是集合A上的二元运算,下列说法正确的是()A.在A中有关于运算*的左幺元一定有右幺元B.在A中有关于运算*的左右幺元一定有幺元C.在A中有关于运算*的左右幺元,它们不一定相同D.在A中有关于运算*的幺元不一定有左右幺元13.题13图的最大出度是()A.0 B.1C.2 D.314.下列图是欧拉图的是()15.一棵树的3个4度点,4个2度点,其它的都是1度,那么这棵树的边数是()A.13 B.14C.15 D.16二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、填空题1 设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=; ρ(A) - ρ(B) =.2. 设有限集合A, |A| = n, 则|ρ(A×A)| = .3.设集合A = {a, b}, B = {1, 2}, 则从A 到B 的所有映射是, 其中双射的是.4.已知命题公式G=⌝(P→Q)∧R,则G 的主析取范式是.5.设G 是完全二叉树,G 有7 个点,其中4 个叶点,则G 的总度数为,分枝点数为.6 设A、B 为两个集合, A= {1,2,4}, B = {3,4}, 则从A⋂B=; A⋃B=;A-B=.7.设R 是集合A 上的等价关系,则R 所具有的关系的三个特性是,, .8.设命题公式G=⌝(P→(Q∧R)),则使公式G 为真的解释有,, .9. 设集合 A={1,2,3,4}, A 上的关系 R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1•R2 =,R2•R1 = , R12= .10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A⨯B)| = .11 设A,B,R 是三个集合,其中R 是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = , B-A = ,A∩B = , .13.设集合A={2, 3, 4, 5, 6},R 是A 上的整除,则R 以集合形式(列举法)记为.14.设一阶逻辑公式G = ∀xP(x)→∃xQ(x),则G 的前束范式是.15.设G 是具有8 个顶点的树,则G 中增加条边才能把G 变成完全图。

16.设谓词的定义域为{a, b},将表达式∀xR(x)→∃xS(x)中量词消除,写成与之对应的命题公式是.17. 设集合 A={1, 2, 3, 4},A 上的二元关系 R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案

离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 下列哪一项是图论中的基本概念?A. 集合B. 函数C. 映射D. 顶点答案:D2. 在逻辑中,下列哪一项表示合取?A. ∨B. ∧C. →D. ¬答案:B3. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬p → p答案:B4. 在集合论中,下列哪个符号表示集合的交集?A. ∪B. ∩C. ⊆D. ⊂答案:B二、填空题(每题5分,共20分)1. 如果一个图是无环的,则称该图为________。

答案:树2. 在布尔代数中,逻辑或运算的符号是________。

答案:∨3. 如果一个函数f: A → B,则称A为函数f的________。

答案:定义域4. 一个集合的子集个数是2的该集合元素个数次方,这个结论被称为________。

答案:幂集定理三、简答题(每题10分,共30分)1. 请简述图的邻接矩阵和邻接表的定义。

答案:邻接矩阵是一个二维数组,其元素表示图中两个顶点之间是否存在边。

邻接表是图的一种表示方法,其中每个顶点对应一个链表,链表中存储的是与该顶点相邻的顶点。

2. 什么是哥德尔不完备性定理?答案:哥德尔不完备性定理表明,在任何包含基本算术的一致形式系统内,都存在这样的命题:这个命题既不能被证明为真,也不能被证明为假。

3. 请解释什么是二元关系,并给出一个例子。

答案:二元关系是定义在两个集合上的一个子集,它包含所有满足特定条件的有序对。

例如,整数集合上的大于关系就是一个二元关系。

四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4},请计算集合A的幂集。

答案:集合A的幂集是{∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4},{2,3,4}, {1,2,3,4}}。

2008年4月到2013年7月自考离散数学试题附答案

2008年4月到2013年7月自考离散数学试题附答案

全国2008年4月自考离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不.在室内运动”可符合化为()A.⎤P∧QB.⎤P→QC.⎤P→⎤QD.P→⎤Q2.下列命题联结词集合中,是最小联结词组的是()A.{⎤,}B.{⎤,∨,∧}C.{⎤,∧}D.{∧,→}3.下列命题为假.命题的是()A.如果2是偶数,那么一个公式的析取范式惟一B.如果2是偶数,那么一个公式的析取范式不惟一C.如果2是奇数,那么一个公式的析取范式惟一D.如果2是奇数,那么一个公式的析取范式不惟一4.谓词公式∀x(P(x)∨∃yR(y))→Q(x))中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元5.若个体域为整数减,下列公式中值为真的是()A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⎤∃x∃y(x+y=0)6.下列命题中不.正确的是()A.x∈{x}-{{x}}B.{x}⊆{x}-{{x}}C.A={x}∪x,则x∈A且x⊆AD.A-B=∅⇔A=B7.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A.P⊃QB.P⊇QC.Q⊃PD.Q=P8.下列表达式中不.成立的是()A.A∪(B⊕C)=(A∪B) ⊕ (A∪C)B.A∩(B⊕C)=(A∩B) ⊕ (A∩C)C.(A⊕B)×C=(A×C) ⊕ (B×C)D.(A-B) ×C=(A×C)-(B×C)9.半群、群及独异点的关系是()A.{群}⊂{独异点}⊂{半群}B.{独异点}⊂{半群}⊂{群}C.{独异点}⊂{群}⊂{半群}D.{半群}⊂{群}⊂{独异点}10.下列集合对所给的二元运算封闭的是()A.正整数集上的减法运算B.在正实数的集R+上规定*为a*b=ab-a-b ∀a,b∈R+C.正整数集Z+上的二元运算*为x*y=min(x,y) ∀x,y∈Z+D.全体n×n实可逆矩阵集合R n×n上的矩阵加法11.设集合A={1,2,3},下列关系R中不.是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}12.下列函数中为双射的是( )A.f :Z →Z,f(j)=j(mod)B.f :N →N,f(j)=⎩⎨⎧是偶数是奇数j ,0j ,1 C.f :Z →N,f(j)=|2j|+1 D.f :R →R,f(r)=2r-1513.设集合A={a,b, c}上的关系如下,具有传递性的是( )A.R={<a,c>,<c,a>,<a,b>,<b,a>}B.R={<a,c>,<c,a>}C.R={<a,b>,<c,c>,<b,a>,<b,c>}D.R={<a,a>}14.含有5个结点,3条边的不.同构的简单图有( ) A.2个 B.3个C.4个D.5个15.设D 的结点数大于1,D=<V ,E>是强连通图,当且仅当( )A.D 中至少有一条通路B.D 中至少有一条回路C.D 中有通过每个结点至少一次的通路D.D 中有通过每个结点至少一次的回路二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

2012-2013离散数学试题答案

2012-2013离散数学试题答案

2012-2013离散数学试题答案2012-2013离散数学试题A 卷答案一填空题(每空3分)1.{}{}{}{}{}3,2,2,1,3,1;2. 6;3.42314321;4. 两个或零个奇数度结点;5. ()()x xB x xA ?→?;6. 偶数个;7.100111001;8.N 或阿列夫零 9. ()()y f x f ?二(本题10分)证明整数集合是可数的证:因为自然数集N 是可数的,所以只要证明N Z =即可,建立下面的一一对应关系:Λβββββββ-36352423-121100 -ZN (5分)即(),1,120,2≥-≤-=x x x x x f 其中Z x ∈. (3分)则有N Z =故整数集合是可数的(2分)三、(本题8分)求公式()P Q Q R →∧?→?)( 的主合取范式,并判断公式的类型.解()()P Q Q R P Q Q R ∨?∧?∨?→∧?→?)()( (2分)()()()()Q R P Q R P R Q P R Q P ?∨?∨∧?∨∨∧∨?∨?∧∨?∨?(4分)该公式是可满足式(2分)四、(每小题8分,共计16分)1.设图()m n G ,=是每个区域(面)至少由k 条边围成的连通平面图,证明 ()22--≤k n k m ,其中3≥k 证:1)因为 2=+-r m n ,m n r +-=2 (2分)2)又因为()r m r ri 32deg 1≥=∑= (2分)将1)代人2)整理得:()22--≤k n k m (4分) 2. 一个树T 有2个次数为2的结点,1个次数为3的结点, 3个次数为4的结点,问该树有几片叶?解设树T=()m n ,有x 片叶,因为 1=-m n (1)(1分)x x n +=+++=6312 (2)(1分) ()()122deg 1-==∑=n m v n i i(3)(2分) ()()x x n m v n i i+=+?++?=-==∑=1943322122deg 1(2分)即()x x +=+1952 (1分) x =9 (1分)五. (本题12分)设{}1-=Q S ,其中Q 为有理数集合,在S 上定义了二元运算“ο”,对于()y y x y x S y x +-=∈?1,,ο有. 证明: ()ο,S 是交换群. 证明:(1)结合律成立(略)(2分)(2)单位元素 =e 0 (3分)x e xe x e x S x =+-=∈?ο,,()01=-x e ,0=e(3),S x ∈?有11-=-x x x (3分)因为 0111==+-=---e x xx x x x ο11-=-x x x 综上所述()ο,S 是群(1分)又()x y x yx y y x y x y y x y x S y x οο=+-=+-=+-=∈?1,,(2分)故()ο,S 是交换群. (1分)六、(本题8分)设()()*G ,, ,οS 是两个群,对于S a ∈?有e a f →:成立,其中e 是()*G ,的单位元素.1. 证明:()()*G , ,与οS 同态2. 求同态核 erf K1、证()()()b f a f e e e b a f S b a *=*==∈?ο,,,(4分)所以()()*G , ,与οS 同态(1分)2、因为e a f →:,即()e a f S a =∈?有,由同态核的定义知erf K =S (3分)七.(本题12分)设{}182,≤≤∈=x N x x A ,(){}y x A y x y x R 整除,,,∈=,{},6,4,2=B1、证明R 是A 上的次序关系(偏序关系)2、求集合B 的极大元素3、求 B sup 、B inf1、证 1)x ,能整除x A x ∈?,所以()R x x ∈,故R 是自反的(2分) 2)x ,y x y,,,不能整除时当能整除y x A y x ≠∈?,即如果(),,R y x ∈那么()R x y ?,,故R 是反对称的(3分)3)z x z,,y ,,,也能整除则能整除能整除如果y x A z y x ∈?即若(),,R y x ∈(),,y R z ∈则(),,R z x ∈故R 是传递的(3分)综上所述:R 是A 上的次序关系(偏序关系)2、集合B 的极大元素:4和6 (2分)3、 B sup =12B inf =2(2分)八.(本题7分)请用谓词推理理论证明()()()()()x xG x F x x G x F x ?→∨?证:1)()x F x ?? 附加前提(1分)2) ()c F ? T 1)ES (1分)3) ()()()x G x F x ∨? P (1分)(1分)4) ()()c G c F ∨ T 3)US (1分)5) ()c G T 2),4) 析取三段论(1分)6) ()x xG ? T 5)EG (1分)所以()()()()()x xG x F x x G x F x ?→∨? (1分)离散数学试题B 卷答案一、填空(每空3分,共27 分)1. φ ;2.{(1,1),(2,2),(3,3)};3.000000100;4. 15 ; 5 . ??=1 3 4 24 3 2 1σ ; 6. R Q P ?∨∨? , R Q P ?∧∧? 7. 从结点i v 到结点j v 长度为l 的路径的数目8. ()x xB A ?→二、(本题6分)设集合N A =,N N B ?=.N 是自然数集合,证明 B A =.证明:建立A B 到的一一对应关系,即:()()()()()()ΛΛββββββ0,251,142,031,021.010,00 (3分)()()(),21n m,f m n m n m ++++=其中()B ∈n m , (2分)故B A = (1分)三、(本题8分)求命题公式()Q R P R ?→?∧?∨?)( 的主析取范式,并判断公式的类型.解()Q R P R ?→?∧?∨?)(()Q R R P ?∨∧?∨?)(()R Q R P ∨?∧?∨?)(()()()R Q P R Q P R Q P R Q P ∨?∨?∧∨?∨∧?∨?∨?∧?∨∨?)(110010111101M M M M ∧∧∧?()7,6,5,2∏?主合取范式,(3分)主析取范式()Q R P R ?→?∧?∨?)(()∑?4,3,1,04210m m m m ∨∨∨?∨?∧?∧??)(R Q P ∨∧?∧?)(R Q P ∨?∧∧?)(R Q P )(R Q P ?∧?∧(3分)在主析取范式中,仅含有4个最小项,故该公式是可满足式.(2分)四、(17分,其中1题9分)1. 对于图G(1)图G 是欧拉图还是哈密顿图,为什么?(2)图G 是否为平面图,为什么?图G(3)图G 是否为二部图,为什么?解(1)图G 是哈密顿图,不是欧拉图. 因为图G 的每个结点的度数都是奇数,由欧拉图的充要条件知:图G 不是欧拉图;图G 的不相邻结点的度数之和等于6,由哈密顿图的充分条件知:图G 是哈密顿图(3分)(2)不是平面图,由库拉拖夫斯基定理知:图G 不是平面图.(3分)(3)图G 是二部图,它是3,3k 图.(3分)2. 一颗无向树有7片树叶,其余的结点次数均为3,求T 的阶数,并画出两个不同构的树.解设()1,-=n n T ,(2分)()()122deg 1-==∑=n m v ni i(2分)分)()()373712-=-+=-n n n 12=n (1分)1分)五、(本题12分)在有理数集Q 上定义二元运算*, ,,Q y x ∈?有xy y x y x -+=*1. 求()52-*2. 问()* , Q 是独异点还是群?为什么. 解 1、()52-*=2+(-5)-2(-5)=-3+10=7 (2分) 2、()* , Q 是独异点,不是群(1)结合律成立(2分)(2)单位元素0=e (3分)由,1),(2)知:()* , Q 是独异点(3)Q x ∈,0111==-+=*---e xx x x x x (3分)即11-=-x x x ,当1=x 时,11-不存在故()* , Q 不是群(2分)六、(10分)设()ο , G 是9阶循环群,找出()ο , G 的所有的生成元素. 解:设{}8320,,,,,a a a a e a G Λ== (1分)因为()69=φ (2分)所以生成元素是:a ,87542,,,,a a a a a (1分)a 显然是生成元素(1分) ()()()()()()()()716825147231262105284263242221202,,,,,,,)(a a a a a a a a a a a a a a a a a a a a e a =============(1分),)(04e a =,414)(a a =,824)(a a =,3391234)(a a a a a ===ο,71644)(a a a ==,()()()53284746246422054,,,)(a a a a a a a a a a a ======= (1分)同理可得:875,,a a a 都是生成元素,(3分)七、(本题12分)设A={121,≤≤∈i N i i },定义A 上的关系R={()y x A y x y x 整除,,,∈},B={2,3,6}(1)证明 R 是A 上的偏序关系(2)求B 的极大元素和最大元素(3)求B B inf ,sup .解(1)证明 R 是A 上的偏序关系证 1)x ,能整除x A x ∈?,所以()R x x ∈,故R 是自反的(2分)2)x ,y x y,,,不能整除时当能整除y x A y x ≠∈?,即如果(),,R y x ∈那么()R x y ?,,故R 是反对称的(3分) 3)z x z,,y ,,,也能整除则能整除能整除如果y x A z y x ∈?即若(),,R y x ∈(),,y R z ∈则(),,R z x ∈故R 是传递的(3分)综上所述:R 是A 上的次序关系(偏序关系)(2)集合B 的极大元素: 6 最大元素:6 (2分)(3)B sup =6,B inf =1 (2分)八、(本题8分)在命题逻辑中构造下面的推理证明:S R R Q Q P ?∧?∨?→ , ,P ??证明:1) P 结论的否定引入规则(1分)2) Q P ?→ P3) Q ? T 1),2) 假言推理(2分) 4)R Q ?∨ P5) R ? T 3),4)析取三段论理(2分) 6)S R ?∧ P7) R T 6) 化简(1分)8) R R ∧? T5),7)合取引入(1分)因为0 ?∧?R R 矛盾式,由归谬法知,推理正确(1分)离散数学试题C 卷答案一、填空(每空3分,共27 分)1. {}b a ,2. 13. 剩余类加群4. 725. ()B x xA →?6.100110011 ; =-1R ( ()()(){}2,3,1,2,1,1 ; ()()(){}1,3,1,2,1,1 7是可数集二(本题10分)设Z 为整数集,证明:整数集Z 是可数的.证明:建立N Z 到的一一对应关系,即φ:--ΛΛββββββ352423121100 (3分)()?∈≥-∈≤-=Z x x x Z x x x ,1,12x 0,2且φ (2分)故Z ~N ,即整数集Z 是可数的(1分)三、(本题8分)求命题公式()()P Q Q P P ?∨??∧→∨? 的主合取范式,并判断公式的类型.解:主合取范式:()()P Q Q P P ?∨??∧→∨?()Q P Q P P ∧∧∨?∨??)( ()()()()()()Q P Q P Q P Q P Q P Q P Q P ∨?∧∨∧?∨∧∨∧∨??∧∧∨??)( ()()()Q P Q P Q P ?∨∧∨∧∨??.(6分)该公式的主合取范式含有3个最大项,那么该公式有一个成真赋值,故该公式是可满足式. (2分)四、(每小题8分,共计16分)1. 设G 是n )3(≥n 阶无向简单连通平面图图,证明:63-≤n m 证:因为 2=+-r m n ,n m r -+=2 (2分)r m rr i i 32deg 1≥=∑=,(2分)m r 32≤,(1分) n m m -+≥232 (2分) 231-≤n m 即:63-≤n m (1分)2. 设无向图()12,n G =有12条边,3度与4度结点各2个,其余的结点度数不超过3,问G 至少有几个结点.解242deg 1==∑=m vn i i ,(2分) ;(3+4)×2+3(n-4)24≥(2分); n 322≥,(2分); n 8≥(2分)五. (本题12分)设{}d c b a S ,,,=,S 上的运算“ο”定义如下表ο d c b ad cb abb a d b a dc ad c b d c b a 1. 证明: ()ο,S 是循环群.2. 求()ο,S 的生成元素1、证明:1)显然是可结合的(1分)2)单位元素a e = ( 2分) 3)b d c c d b a a ====----1111,,, (2分)故()ο,S 是群,(1分) 2、a b d b c b b b ====4321,,, (4分) b 是()ο,S 的生成元素,(1分)同理d 也是()ο,S 的生成元素,(1分)六、(本题8分)设Z 为整数集,n Z 2为偶数集,证明群()+,Z 与群()+,2n Z 同态,并求同态核.证明:设n Z Z f 2:→,即()Z z z z f ∈=,2,(2分) ()()()Z z z z f z f z z z z z z f ∈+=+=+=+2121212121,,22)(2 (2分)即f 是Z 到z Z 2得同态变换,则群()+,Z 与群()+,2n Z 同态. (1分)群()+,2n Z 的单位元素02=e ,只有()Z f ∈=?=0,0020 (2分)所以{}0=Kerf (1分)七.(本题12分)设{}5,4,3,2,1=A ,{}4,3=B ,偏序集合()R A ,的哈塞图如下图(1)下列关系哪个是真?12,25,45,33,51R R R R R(2)求集合B 极大元、极小元、B sup 、B inf 解(1),33,51R R (4分)(2)集合B 极大元:3,4 (2分)集合B 极小元:3,4 (2分)B sup ={5}(2分) B inf ={2}(2分)八.(本题7分)证明下面的推理前提:()()()x Q x P x ∨?结论:()()()x xQ x xP ?→?? 证明:1)()()x xP ?? 附加前提(1分)2) ()x P x ?? T 1) 置换(1分) 3) ()c P ? T 2) ES (1分) 4) ()()()x Q x P x ∨? P 5) ()()c Q c P ∨ T 4) US (1分) 6) ()c Q T 3),5) 析取三段论(1分) 7) ()x xQ ? T 6)EG (1分)所以()()()()()x xG x F x x G x F x ?→∨? (1分)。

02324离散数学 全国2013年7月自考 试题

02324离散数学 全国2013年7月自考 试题

全国2013年7月高等教育自学考试
离散数学试题
课程代码:02324
一、单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均不得分。

1.设p :天下雨;q :我走路上学。

命题“只要不下雨,我就走路上学”可符号化为
A .p → q
B .q →p
C .┐p → q
D .q → ┐p 2.设简单无向图G 有16条边,有3个4度结点,有4个3度结点,其余结点的度数均小3,
则G 中的结点个数至少..
为 A .4 B .8 C .9 D .1l 3.设Z (x ):x 是整数;f (x ):x 的绝对值;L (x ,y ):x 大于等于y ;命题“整数的绝对值大于等于O”可符号化为
A.(()((),0))x Z x L f x ∀∧
B .(()((),0))x Z x L f x ∀→ C.()((),0)xZ x L f x ∀∧ D .()((),0)xZ x L f x ∀→
4.设,αβ是集合A 上的等价关系,则下列关系一定是等价关系的是
A .αβ⋂
B .αβ-
C .αβ
D .αβ⊕
5.设论域为实数集,下列公式中真值为假的是。

2002年4月到2013年7月自考离散数学试题有答案合集(精心整理推荐)

2002年4月到2013年7月自考离散数学试题有答案合集(精心整理推荐)

全国2002年4月高等教育自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z, 〉,Z是整数集, 定义为x xy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。

《离散数学》试卷及答案精选全文完整版

《离散数学》试卷及答案精选全文完整版
解 设谓词Q(x):x是勤奋的;
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}

离散数学试题与答案

离散数学试题与答案

离散数学试题与答案【篇一:离散数学试题及答案】一、填空题1 设集合a,b,其中a={1,2,3}, b= {1,2}, 则a - b=____________________;= __________________________ .3. 设集合a = {a, b}, b = {1, 2}, 则从a到b的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式g=?(p?q)∧r,则g的主析取范式是_____________________________________________________________________________________ ____.5.设g是完全二叉树,g有7个点,其中4个叶点,则g的总度数为__________,分枝点数为________________.7. 设r是集合a上的等价关系,则r所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式g=?(p?(q?r)),则使公式g为真的解释有__________________________,_____________________________,__________________________.9. 设集合a={1,2,3,4}, a上的关系r1 = {(1,4),(2,3),(3,2)}, r1 = {(2,1),(3,2),(4,3)}, 则 r1?r2 = ________________________,r2?r1 =____________________________,=________________________.10. 设有限集a, b,|a| = m, |b| = n, 则| |?(a?b)| =_____________________________.11 设a,b,r是三个集合,其中r是实数集,a = {x | -1≤x≤1, x?r}, b = {x | 0≤x 2, x?r},则a-b = __________________________ , b-a = __________________________ , a∩b =__________________________ , .13. 设集合a={2, 3, 4, 5, 6},r是a上的整除,则r以集合形式(列举法)记为_________________________________________________________________ _.14. 设一阶逻辑公式g = ?xp(x)??xq(x),则g的前束范式是__________________________ _____.15.设g是具有8个顶点的树,则g中增加_________条边才能把g 变成完全图。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学是一门涉及离散结构和逻辑推理的数学学科。

它在计算机科学、信息技术和其他领域中具有重要的应用价值。

离散数学考试试题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。

本文将为大家提供一些离散数学考试试题及答案,希望能帮助大家更好地理解和掌握这门学科。

一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。

答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。

2. 设集合A={x|x是正整数,1≤x≤10},B={x|x是偶数,2≤x≤8},求A与B的笛卡尔积。

答案:A与B的笛卡尔积为{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),...,(10,2),(10,4),(10,6),(10,8)}。

二、图论1. 给定图G,其邻接矩阵如下:| 0 1 1 0 || 1 0 0 1 || 1 0 0 1 || 0 1 1 0 |判断图G是否是连通图,并给出其连通分量。

答案:图G是连通图,其连通分量为{1,2,3,4}。

2. 给定图G,其邻接表如下:| 1 | 2 || 3 | 2 4 || 4 | 3 |判断图G是否是树,并给出其生成树。

答案:图G是树,其生成树为{1-2, 2-3, 3-4}。

三、逻辑1. 判断命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值。

答案:命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值为真。

2. 判断命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值。

答案:命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值为假。

四、代数结构1. 设集合S={0,1,2,3,4},定义运算*如下:a*b = (a+b)%5其中%表示取余运算。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R))↔(R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)∀x∃y(x+y=4)b)∃y∀x (x+y=4)3.求∀x(F(x)→G(x))→(∃xF(x)→∃xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A⋃B)-C=(A-B) ⋃(A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→⌝F)→⌝C, B→(A∧⌝S)⇒B→Eb)∀x(P(x)→⌝Q(x)), ∀x(Q(x)∨R(x)),∃x⌝R(x) ⇒∃x⌝P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠∅且B≠∅,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国2013年7月自学考试离散数学试题
课程代码:02324
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均不得分。

1.设p :天下雨;q :我走路上学。

命题“只要不下雨,我就走路上学”可符号化为
A .p → q
B .q →p
C .┐p → q
D .q → ┐p 2.设简单无向图G 有16条边,有3个4度结点,有4个3度结点,其余结点的度数均小3,则G 中的结点个数至.
少.
为 A .4 B .8 C .9 D .1l 3.设Z (x ):x 是整数;f (x ):x 的绝对值;L (x ,y ):x 大于等于y ;命题“整数的绝对值大于等于O”可符号化为
A.(()((),0))x Z x L f x ∀∧
B .(()((),0))x Z x L f x ∀→ C.()((),0)xZ x L f x ∀∧ D .()((),0)xZ x L f x ∀→
4.设,αβ是集合A 上的等价关系,则下列关系一定是等价关系的是
A .αβ⋂
B .αβ-
C .αβ
D .αβ⊕
5.设论域为实数集,下列公式中真值为假的是。

相关文档
最新文档