Eviews 线性回归教程
试验二 一元线性回归模型Eviews操作
试验二一元线性回归模型Eviews操作案例:建立我国最终消费支出与国内生产总值(单位:亿元)之间的回归模型,并进行变量和方程整体的显著性检验。
当显著性水平为0.05, 2004年国内生产总值为38000亿元时,对2004年我国最终消费支出和平均最终消费支出进行点预测和区间预测。
一、创建工作文件建立工作文件的方法有以下几种。
1.菜单方式在主菜单上依次单击File→New→Workfile(见图2-1),选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本例中在Start Data里输入1978,在End data 里输入2003,见图2-3。
单击OK后屏幕出现Workfile工作框,如图2-4所示。
2.命令方式在命令窗口直接输入建立工作文件的命令CREATE,命令格式:CREATE 数据频率起始期终止期其中,数据频率类型分别为A(年)、Q(季)、M(月)、U(非时间序列数据)。
输入Eviews 命令时,命令字与命令参数之间只能用空格分隔。
如本例可输入命令:CREATE A 1978 2003工作文件创立后,需将工作文件保存到磁盘,单击工具条中Save→输入文件名、路径→保存,或单击菜单兰中File→Save或Save as→输入文件名、路径→保存。
图2-1这时屏幕上出现Workfile Range对话框,如图2-2所示。
图2-2图2-3图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。
输入数据有两种基本方法:命令方式和菜单方式。
1.命令方式命令格式:data 〈序列名1〉〈序列名2〉…〈序列名n〉功能:输入新变量的数据,或编辑工作文件中现有变量的数据。
在本例中,在命令窗口直接输入:Data Y X2.菜单方式在主菜单上单击Objects→New object,在New object对话框里,选Group并在Name for Object上定义变量名(如变量X、Y),单击OK,屏幕出现数据编辑框。
用eviews进行一元线性回归分析
用eviews进行一元线性回归分析LT目录一、引言 (1)(一)研究背景 (1)(二)研究意义 (1)二、研究综述 (2)(一)模型设定 (2)1.定义变量 (2)2.数据来源 (2)(二)作散点图 (3)三、估计参数 (4)(一)操作步骤 (4)(二)回归结果 (4)四、模型检验 (5)(一)经济意义检验 (5)(二)拟合优度和统计检验 (5)(三)回归预测 (5)五、结论 (5)参考文献: (6)一元回归分析居民收入与支出的关系一、引言(一)研究背景随着近年来我国成为世界第二大经济体,居民的高生活水平也日益显著。
我国人口正在高速城镇化,2011年中国大陆城镇人口为69079万人,城镇人口占总人口比重达到51.27%。
因此城镇居民作为消费主体,研究城镇居民人均可支配收入以及人均可支配消费性支出之间的关系,可以有效的了解到我国各地区的人民生活水平以及经济状况,因此能更好的的带动我国GDP的飙升,改善居民的生活水平。
(二)研究意义居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这要是人民生活水平的具体体现。
改革开饭以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2007年的城市居民家庭平均每人每年消费支出,最高的是上海市达人均20667.91元,最低的则是新疆,人均只有8871.27元,上海是新疆的2.33倍。
为了研究全国居民消费水平及其变动的原因,需要做具体的分析。
影响各地区居民消费指出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售业物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
回归分析实验1 Eviews基本操作及一元线性回归
第一部分EViews基本操作第一章预备知识一、什么是EViewsEViews (Econometric Views)软件是QMS(Quantitative Micro Software)公司开发的、基于Windows平台下的应用软件,其前身是DOS操作系统下的TSP软件。
EViews具有现代Windows软件可视化操作的优良性。
可以使用鼠标对标准的Windows菜单和对话框进行操作。
操作结果出现在窗口中并能采用标准的Windows技术对操作结果进行处理。
EViews还拥有强大的命令功能和批处理语言功能。
在EViews的命令行中输入、编辑和执行命令。
在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程序。
EViews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包,是专门从事数据分析、回归分析和预测的工具,在科学数据分析与评价、金融分析、经济预测、销售预测和成本分析等领域应用非常广泛。
应用领域■ 应用经济计量学■ 总体经济的研究和预测■ 销售预测■ 财务分析■ 成本分析和预测■ 蒙特卡罗模拟■ 经济模型的估计和仿真■ 利率与外汇预测EViews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。
其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行T 检验、方差分析、协整检验、Granger 因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、ARCH 模型估计法等;(6)对选择模型进行Probit、Logit 和Gompit 估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换EViews可用于回归分析与预测(regression and forecasting)、时间序列(Time Series)以及横截面数据(cross-sectional data )分析。
经典线性回归模型的Eviews操作
经典线性回归模型经典回归模型在涉及到时间序列时,通常存在以下三个问题:1)非平稳性→ ADF单位根检验→ n阶单整→取原数据序列的n阶差分(化为平稳序列)2)序列相关性→D.W.检验/相关图/Q检验/LM检验→n阶自相关→自回归ar(p)模型修正3)多重共线性→相关系数矩阵→逐步回归修正注:以上三个问题中,前两个比较重要。
整体回归模型的思路:1)确定解释变量和被解释变量,找到相关数据。
数据选择的时候样本量最好多一点,做出来的模型结果也精确一些。
2)把EXCEL里的数据组导入到Eviews里。
3)对每个数据序列做ADF单位根检验。
4)对回归的数据组做序列相关性检验。
5)对所有解释变量做多重共线性检验。
6)根据上述结果,修正原先的回归模型。
7)进行模型回归,得到结论。
Eviews具体步骤和操作如下。
一、数据导入1)在EXCEL中输入数据,如下:除去第一行,一共2394个样本。
2)Eviews中创建数据库:File\new\workfile, 接下来就是这个界面(2394就是根据EXCEL里的样本数据来),OK3)建立子数据序列程序:Data x1再enter键就出来一个序列,空的,把EXCEL里对应的序列复制过来,一个子集就建立好了。
X1是回归方程中的一个解释变量,也可以取原来的名字,比如lnFDI,把方程中所有的解释变量、被解释变量都建立起子序列。
二、ADF单位根检验1)趋势。
打开一个子数据序列,先判断趋势:view\graph,出现一个界面,OK。
得到类似的图,下图就是有趋势的时间序列。
X1.4.2.0-.2-.4-.6-.8100020003000400050002)ADF检验。
直接在图形的界面上进行操作,view\unit root test,出现如下界面。
在第二个方框内根据时序的趋势选择,Intercept指截距,Trend为趋势,有趋势的时序选择第二个,OK,得到结果。
上述结果中,ADF值为-3.657113,t统计值小于5%,即拒绝原假设,故不存在单位根。
Eviews数据统计与分析教程5章 基本回归模型的OLS估计-普通最小二乘法
EViews统计分析基础教程
五、 线性回归模型的检验
3.异方差性检验
(2)怀特(White)检验法
在EViews5.1软件中选择方程对象工具栏中的“View‖ | ―Residual Tests‖ | ―White Heteroskedasticity‖选项即 可完成操作。
EViews统计分析基础教程
EViews统计分析基础教程
五、 线性回归模型的检验
1.拟合优度检验
总体平方和( TSS )反映了样本观测值总体离差的 大小,也被称为离差平方和;残差平方( RSS )说 明的是样本观测值与估计值偏离的程度,反映了因 变量总的波动中未被回归模型所解释的部分;回归 平方和( ESS )反映了拟合值总体离差大小,这个 拟合值是根据模型解释变量算出来的。
EViews统计分析基础教程
五、 线性回归模型的检验
3.异方差性检验
(2)怀特(White)检验法 检验步骤: 用OLS(最小二乘法)估计回归方程,得到残差e。 作辅助回归模型: 求辅助回归模型的拟合优度R2的值。 White检验的统计量服从χ2分布,即 N·R 2 ~χ2 (k) 其中,N为样本容量,k为自由度,k等于辅助回归模型() 中解释变量的个数。如果χ2值大于给点显著性水平下对应 的临界值,则可以拒绝原假设,即存在异方差;反之,接 受原假设,即不存在异方差。
EViews统计分析基础教程
四、 线性回归模型的基本假定
假定2:不同样本点下的随机误差项u之间是不相关的, 即 Cov(ui,uj)=0,i≠j,i,j=1,2,…,n 其中,cov表示协方差。当此假定条件不成立时,则 称该回归模型存在序列相关问题,也称为自相关问题。
EViews统计分析基础教程
Eviews数据统计与分析教程5章 基本回归模型的OLS估计-普通最小二乘法
EViews统计分析基础教程
五、 线性回归模型的检验
3.异方差性检验
(2)怀特(White)检验法 检验步骤: 用OLS(最小二乘法)估计回归方程,得到残差e。 作辅助回归模型: 求辅助回归模型的拟合优度R2的值。 White检验的统计量服从χ2分布,即 N·R 2 ~χ2 (k) 其中,N为样本容量,k为自由度,k等于辅助回归模型() 中解释变量的个数。如果χ2值大于给点显著性水平下对应 的临界值,则可以拒绝原假设,即存在异方差;反之,接 受原假设,即不存在异方差。
EViews统计分析基础教程
二、一元线性回归模型
2.实际值、拟合值和残差
估计方程为
表示的是yt的拟合值, 和 分别是 0 和1的估计量。 实际值指的是回归模型中被解释变量(因变量)y的原始观 测数据。拟合值就是通过回归模型计算出来的yt的预测值。
EViews统计分析基础教程
二、一元线性回归模型
EViews统计分析基础教程
五、 线性回归模型的检验
1.拟合优度检验
总体平方和( TSS )反映了样本观测值总体离差的 大小,也被称为离差平方和;残差平方( RSS )说 明的是样本观测值与估计值偏离的程度,反映了因 变量总的波动中未被回归模型所解释的部分;回归 平方和( ESS )反映了拟合值总体离差大小,这个 拟合值是根据模型解释变量算出来的。
EViews统计分析基础教程
三、 多元线性回归模型
在多元线性回归模型中,要求解释变量x1,x2,…,xk之 间互不相关,即该模型不存在多重共线性问题。如果有 两个变量完全相关,就出现了完全多重共线性,这时参 数是不可识别的,模型无法估计。
EViews统计分析基础教程
三、 多元线性回归模型
线性回归分析(Eviews6)
STEP 01
研究目的
STEP 02
数据来源
探讨自变量X对因变量Y 的影响程度。
STEP 03
分析工具
使用EViews 6软件进行线 性回归分析。
收集到的样本数据,包含 自变量X和因变量Y的观 测值。
数据准备与处理
01
02
03
数据导入
将收集到的数据导入 EViews 6软件中。
数据清洗
检查数据是否存在异常值、 缺失值等问题,并进行必 要的处理。
变量筛选
采用逐步回归等方法筛选变量,去除引起多重共 线性的冗余变量。
主成分分析
通过主成分分析提取主要信息,以消除多重共线 性的影响。
异方差性问题及其解决方法
1 2
异方差性检验
通过残差图、等级相关系数检验等方法检验异方 差性。
加权最小二乘法
对异方差数据进行加权处理,使得变换后的数据 满足同方差性假设。
回归方程的检验与诊断
回归方程的显著性检验
通过F检验或t检验判断回归方程 是否显著,即自变量对因变量是 否有显著影响。
残差分析
检查残差是否满足模型的假设条 件,如独立性、同方差性等,以 及是否存在异常值或影响点。
回归系数的显著性检验
通过t检验判断各个回归系数是否 显著,即自变量对因变量的影响 程度是否显著。
线性回归模型的建立
模型设定
根据研究目的和理论假设,设定 合适的线性回归模型。
参数估计
采用最小二乘法(OLS)进行参 数估计,得到回归系数的估计值。
模型检验
进行模型的拟合优度检验、方程 的显著性检验以及变量的显著性 检验,以评估模型的解释力和预
测力。
回归结果的分析与解读
eviews做回归分析报告
eviews做回归分析报告回归分析是一种常用的统计分析方法,通过建立一个数学模型来描述自变量和因变量之间的关系。
EViews是一种专业的统计软件,可以使用它来进行回归分析并生成相应的分析报告。
下面是使用EViews进行回归分析报告的详细步骤:1. 导入数据:使用EViews打开数据文件,确保数据文件包含自变量和因变量的数据。
2. 创建回归方程:选择菜单栏中的“Quick/Estimate Equation”或者在工具栏中点击“Estimate Equation”按钮来创建一个回归方程。
在弹出的对话框中选择自变量和因变量,可以选择更多的选项来调整回归模型的设定。
3. 进行回归分析:点击对话框中的“OK”按钮,EViews将会进行回归分析并显示回归模型的估计结果。
在结果窗口中,你可以查看模型的拟合统计量、系数估计值、标准误差等信息。
4. 诊断检验:在结果窗口中,EViews会给出一些诊断检验的结果,如残差的正态性检验、异方差性检验等。
你可以根据这些检验结果来进一步判断回归模型的合理性。
5. 绘制图表:EViews提供了丰富的绘图功能,你可以在结果窗口中选择需要的图表类型,如散点图、回归方程图等。
6. 生成报告:最后,你可以将回归分析的结果和图表导出为报告文件。
在EViews中,你可以选择“File/Export/Report…”选项来将分析结果导出为报告文件。
你可以选择不同的格式,如Word、Excel等。
以上是使用EViews进行回归分析报告的基本步骤。
当然,在具体的应用中,你可能需要根据具体的研究问题进行更加详细和复杂的分析。
EViews提供了丰富的功能和命令,可以帮助你进行更深入的回归分析。
第三讲eviews多元线性回归模型ppt课件
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.2 多元线性回归模型的检验
3.2.1 拟合优度检验
拟合优度是指样本回归直线与观测值之间的拟合程度。 1.多重决定系数
总离差平方和=残差平方和+ 回归平方和 自由度: (n-1)= (n-k-1)+ k ESS:由回归直线(即解释变量)所解释的部分,表示x对y的线性影响。 RSS:是未被回归直线解释的部分,由解释变量x对y影响以外的因素而造成的。
507.7
613.9
563.4
501.5
781.5
541.8
611.1
1222.1
793.2
660.8
792.7580.8Fra bibliotek612.7
890.8
1121.0
1094.2
1253.0
家庭收入 x 1027.2 1045.2 1225.8 1312.2 1316.4 1442.4 1641.0 1768.8 1981.2 1998.6 2196.0 2105.4 2147.4 2154.0 2231.4 2611.8 3143.4 3624.6
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
多重决定系数或决定系数是指解释变差占总变差的比重,用来表述解 释变量对被解释变量的解释程度:
Eviews实验课讲义_3一元多元线性回归-上机课
第三课一元及多元线性回归模型3.1一元线性回归模型一、做两个变量的散点图,从而看两个变量是否具有线性关系。
案例数据:1985-2002年我国人均钢产量与人均GDP的时间序列数据(数据3_1_1)。
操作方法:通过序列组的形式右键单击打开后,在group窗口下view——graph---scatter,通过对散点图结同样的操作可以检验其它案例数据(3_1_2和3_1_3)的特征:案例数据2、3、4、5:10个家庭人均收入与消费支出的横截面数据;1978-2000年中国人均消费模型;1978年-2008年北京市城镇居民年家庭收入和年消费性支出数据(case1_1的数据); 1970年-1980年美国的咖啡平均真实零售价格(每磅美元)与消费量(每人每日杯数)(其中,零售价格是已经经过物价调整的)二、通过建立方程对象的方式来估计一个方程,并保存我们建立的方程对象。
Workfile窗口下建立新的对象---equation对象并命名,在equation estimation 窗口下的specification 选项卡下的equation specification对话框中设置因变量、自变量及常数项,在estimation settings对话框中注意:建模途径:command: quick\estimation equation回车,或object\equation object,设置。
命令行形式:(1)列表法:consp c gdpp 或(2)公式法:consp=c(1)+c(2)*gdpp三、方程估计结果的解释、评价及模型检验(拟合优度评价,估计参数和方程的显著性检验)消费方程中,C为自发性消费,x(gdpp)的系数为经济参数,关注其意义;通过拟合优度、调整后的拟合优度、t统计量后的精确显著性水平p(相伴概率);f统计量的p来判断对原假设接受与否四、在回归估计结果中显示方程的三种形式(即估计命令,回归方程的一般表达式,带有系数估计值的表达式)Estimation Command:LS GDPP STEELP CEstimation Equation:GDPP = C(1)*STEELP + C(2)Substituted Coefficients:GDPP = 93.6876362857*STEELP - 3394.97191614五、如何查看因变量的实际值、拟合值和回归方程的残差(包括表的形式和图的形式)通过方程窗口下的view去实现实际值、拟合值和回归方程的残差;单独显示残差及标准化后的对于案例数据1978年-2008年北京市城镇居民年家庭收入和年消费性支出数据,进行样本内与外的预测。
实验课eviews基本操作与一元线性回归.ppt
1. 变量的转换
做一个对数模型
ln(chukou) ln(gdp)
需要对chukou和gdp的数据进行对数化处理 Quick/Generate Series… 在弹出的对话框中输入命令: chukoul = log(chukou) gdpl = log(gdp)
Upper-left data cell指明数据的范围
手动输入数据
Quick/Empty Group
将数据绘图
View/Graph/Line Quick/Graph 利用数组绘图
在数据组窗口中,
View/Multiple Graphs
描述性统计
打开数据组 View/Descriptive Stats
当工作文件中包含大量对象时,很难查找到指定的对 象。可以使用工作文件中的显示限制来解决这一问题。在 工作文件窗口中选择View/Display Filter,或者双击工作文 件窗口中的Filter。将显示一个对话框,这个对话框有两部 分组成。在编辑区域内,可以放置一个或几个名字的描述, 可以包括通配符“*”(与任何字符相匹配)和“?”(与 任何单个字符相匹配)。在编辑区域的下面是一系列复选 框,对应于不同类型的EViews对象。EViews将仅仅显示与 编辑区域中名字相匹配的指定类型的对象。
在标题栏的正下方是菜单和工具条,利用菜单和工具条 可以方便地实现很多操作。工具条中的按扭仅仅是一种快捷 方式,可以方便地处理EViews的主菜单中的一些操作。如 菜单“View/Name Display”可以实现大小写转换。默认是小 写。
工作文件的范围、样本和显示限制
在工具条的下面是两行信息栏,在这里EViews显示工作文 件的范围(结构)、工作文件的当前样本(被用于计算和统计 操作的观测值的范围)和显示限制(在工作文件窗口中显示对 象子集的规则)。双击这些标签并在对话框中输入相关的信息, 可以改变工作文件的范围、样本和显示限制。
Eviews操作
Eviews操作——一元线性回归模型建立与异方差性的检验及处理
金融1103 1103010328 颜翌佳
一、一元线性回归操作
(一)数据录入
(二)变量间关系分析——绘制散点图
(三)建立回归模型,最小二乘法估计参数
从图中得到模型为
Yi = 149.206 + 0.705Xi
Se = (10.859 ) (0.008)
t = (13.741) (91.053)
R^2=0.998 F=8290.549 DW=2.017n=19
(四)预测
二、异方差的检验与处理
(一)残差图分析
(二)Goldfeld—Quandt检验(样本分段检验)
1、子样本1(1985 1992)建立回归模型,RSS1=2043.591;
2、子样本2(1996 2003)建立回归模型,RSS2=903.1627;
3、F=RSS2/RSS1=0.4415>F0.05 ,所以存在异方差。
(三)怀特(White)检验
相伴概率p值较小,故存在异方差
(四)异方差性的处理——加权最小二乘法
权数采用1/e ,再进行怀特检验(如下图),发现异方差已消除。
Eviews数据统计与分析教程5章 基本回归模型OLS估计-普通最小二乘法
选择工作文件窗口工具栏中的“Object”| “New Object”| “Equation”选项,在下图所示的对话框中输入方程变量。
EViews统计分析基础教程
一、普通最小二乘法(OLS)
2.方程对象
EViews5.1提供了8种估计方法: “LS”为最小二乘法; “TSLS”为两阶段最小二乘法; “GMM”为广义矩法; “ARCH”为自回归条件异方差; “BINARY”为二元选择模型,其中包括Logit模型、Probit 模型和极端值模型; “ORDERED”为有序选择模型; “CENSORED”截取回归模型; “COUNT”为计数模型。
五、 线性回归模型的检验
3.异方差性检验
异方差性的后果 :
当模型出现异方差性时,用OLS(最小二乘估计法)得到的 估计参数将不再有效;变量的显著性检验(t检验)失去意 义;模型不再具有良好的统计性质,并且模型失去了预测 功能。
EViews统计分析基础教程
五、 线性回归模型的检验
4.序列相关检验
方法:
EViews统计分析基础教程
四、 线性回归模型的基本假定
线性回归模型必须满足以下几个基本假定:
假定1:随机误差项u具有0均值和同方差,即 E ( ui ) = 0 i=1,2,…,n Var ( ui ) = σ2 i=1,2,…,n 其中,E表示均值,也称为期望,在这里随机误差项u的 均值为0。Var表示随机误差项u的方差,对于每一个样本 点i,即在i=1,2,…,n的每一个数值上,解释变量y对 被解释变量x的条件分布具有相同的方差。当这一假定条 件不成立是,称该回归模型存在异方差问题。
EViews统计分析基础教程
四、 线性回归模型的基本假定
经典线性回归模型的Eviews操作汇总
经典线性回归模型经典回归模型在涉及到时间序列时,通常存在以下三个问题:1)非平稳性→ ADF单位根检验→ n阶单整→取原数据序列的n阶差分(化为平稳序列)2)序列相关性→D.W.检验/相关图/Q检验/LM检验→n阶自相关→自回归ar(p)模型修正3)多重共线性→相关系数矩阵→逐步回归修正注:以上三个问题中,前两个比较重要。
整体回归模型的思路:1)确定解释变量和被解释变量,找到相关数据。
数据选择的时候样本量最好多一点,做出来的模型结果也精确一些。
2)把EXCEL里的数据组导入到Eviews里。
3)对每个数据序列做ADF单位根检验。
4)对回归的数据组做序列相关性检验。
5)对所有解释变量做多重共线性检验。
6)根据上述结果,修正原先的回归模型。
7)进行模型回归,得到结论。
Eviews具体步骤和操作如下。
一、数据导入1)在EXCEL中输入数据,如下:除去第一行,一共2394个样本。
2)Eviews中创建数据库:File\new\workfile, 接下来就是这个界面(2394就是根据EXCEL里的样本数据来),OK3)建立子数据序列程序:Data x1再enter键就出来一个序列,空的,把EXCEL里对应的序列复制过来,一个子集就建立好了。
X1是回归方程中的一个解释变量,也可以取原来的名字,比如lnFDI,把方程中所有的解释变量、被解释变量都建立起子序列。
二、ADF单位根检验1)趋势。
打开一个子数据序列,先判断趋势:view\graph,出现一个界面,OK。
得到类似的图,下图就是有趋势的时间序列。
-.8-.6-.4-.2.0.2.4X12)ADF检验。
直接在图形的界面上进行操作,view\unit root test,出现如下界面。
在第二个方框内根据时序的趋势选择,Intercept指截距,Trend为趋势,有趋势的时序选择第二个,OK,得到结果。
上述结果中,ADF值为-3.657113,t统计值小于5%,即拒绝原假设,故不存在单位根。
Eviews线性回归教程
工资差别
为了解工作妇女是否受到了歧视,可以用美国统计局的“当前人口调查” 中的截面数据研究男女工资有没有差别。这项多元回归分析研究所用到的变 量有:
W — 雇员的工资(美元/小时)
1;若雇员为妇女 SEX =
0;其他
ED — 受教育的年数 AGE — 雇员的年龄
1;若雇员不是西班牙裔也不是白人
NONWH = 0;其他
l T (1 log( 2 π) log( uˆuˆ / T )) 2
第22页/共41页
(6) Durbin-Watson 统计量
D-W 统计量衡量残差的序列相关性,计算方法如下:
T
T
DW (uˆt uˆt1)2
uˆt2
t2
t 1
作为一个规则,如果DW值小于2,证明存在正序列相关。 在例1的结果中,DW值很小,表明残差中存在序列相关。关 于 Durbin-Watson 统 计 量 和 残 差 序 列 相 关 更 详 细 的 内 容 参 见 “序列相关理论”。
第18页/共41页
2 方程统计量
(1) R2 统计量
R2 统计量衡量在样本内预测因变量值的回归是否成功。R2
是自变量所解释的因变量的方差。如果回归完全符合,统计值
会等于1。如果结果不比因变量的均值好,统计值会等于0。R2
可能会由于一些原因成为负值。例如,回归没有截距或常数,
或回归包含系数约束,或估计方法采用二阶段最小二乘法或
第1页/共41页
打开工作文件,双击一个序列名,即进入序列的对话 框。单击“view”可看到菜单分为四个区,第一部分为序列 显示形式,第二和第三部分提供数据统计方法,第四部分是 转换选项和标签。
第2页/共41页
描述统计量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同直方图一起显示的还有一些标准的描述统计量。这些 统计量都是由样本中的观测值计算出来的。
均值 (mean) 即序列的平均值,用序列数据的总和除以数
据的个数。
中位数 (median) 即从小到大排列的序列的中间值。是对 序列分布中心的一个粗略估计。
最大最小值 (max and min) 序列中的最大最小值。
2
这里 u 是残差。而且系数估计值的标准差是这个矩阵对角线元 ˆ 素的平方根。可以通过选择View/Covariance Matrix项来察看整
个协方差矩阵。
(3) t-统计量 t统计量是由系数估计值和标准差之间的比率来计算的,它 是用来检验系数为零的假设的。 (4) 概率(P值) 结果的最后一项是在误差项为正态分布或系数估计值为渐 近正态分布的假设下, 指出 t 统计量与实际观测值一致的概率。 这个概率称为边际显著性水平或 P 值。给定一个 P 值,可 以一眼就看出是拒绝还是接受实际系数为零的双边假设。例如, 如果显著水平为5% ,P 值小于0.05就可以拒绝系数为零的原假 设。
S为偏度,K为峰度,k是序列估计式中参数的个数。
在正态分布的原假设下,J-B统计量是自由度为2的 2 分 布。 J-B统计量下显示的概率值(P值)是J-B统计量超出原 假设下的观测值的概率。如果该值很小,则拒绝原假设。当 然,在不同的显著性水平下的拒绝域是不一样的。
二、基本回归模型
单方程回归是最丰富多彩和广泛使用的统计技术之一。
4
意义同S中 ,正态分布的 K 值为3。如果 K 值大于3,
分布的凸起程度大于 正态分布;如果K值小于3,序列分布相 对于正态分布是平坦的。
Jarque-Bera 检验 检验序列是否服从正态分布。统计
量计算公式如下
N k JB 6
2 1 2 S 4 K 3
回归标准差是在残差的方差的估计值基础之上的一个总结。 计算方法如下:
ˆˆ s uu /(T k )
(4)残差平方和 残差平方和可以用于很多统计计算中,为了方便,现在将
它单独列出:
ˆ u ( yt X t b) 2 uˆ
t 1
T
(5) 对数似然函数值 EViews可以作出根据系数的估计值得到的对数似然函数 值(假设误差为正态分布)。似然比检验可通过观察方程严 格形式和不严格形式的对数似然值之间的差异来进行。
些技术和模型都建立在本章介绍的基本思想的基础之上。
(一) 创建方程对象
EViews中的单方程回归估计是用方程对象来完成 的。为了创建一个方程对象: 从主菜单选择Object/New
Object/Equation 或 Quick/Estimation Equation …,或
者在命令窗口中输入关键词equation。 在随后出现的方程说明对话框中说明要建立的方
第一讲
Hale Waihona Puke Eviews基础与线性回归
主要内容架构
一、数据的导入与基本统计量 二、线性回归(一元和多元)
三、回归检验
一、数据的导入与基本统计量
EViews提供序列的各种统计图、统计方法及过程。
当用前述的方法向工作文件中读入数据后,就可以对 这些数据进行统计分析和图表分析。 EViews可以计算一个序列的各种统计量并可用表、 图等形式将其表现出来。视图包括最简单的曲线图,一直
对数似然计算如下:
T ˆˆ l (1 log( 2 π) log( uu / T )) 2
(6) Durbin-Watson 统计量
D-W 统计量衡量残差的序列相关性,计算方法如下:
T T
ˆt ut 1 ) 2 DW (u ˆ
t 2
ˆt2 u
t 1
作为一个规则,如果DW值小于2,证明存在正序列相关。 在例1的结果中,DW值很小,表明残差中存在序列相关。关 于Durbin-Watson统计量和残差序列相关更详细的内容参见 “序列相关理论”。 对于序列相关还有更好的检验方法。在 “序列相关的检
程,并选择估计方法。
(二) 在EViews中对方程进行说明
当创建一个方程对象时,会出现如下对话框:
在这个对话框中需要说明三件事:方程说明,估计方法,估 计使用的样本。在最上面的编辑框中,可以说明方程:因变量 (左边)和自变量(右边)以及函数形式。 有两种说明方程的基本方法:列表法和公式法。列表法简单 但是只能用于不严格的线性说明;公式法更为一般,可用于说明 非线性模型或带有参数约束的模型。
验”中,我们讨论Q统计量和 LM检验,这些都是比DW统计
量更为一般的序列相关检验方法。
(7). 因变量均值和标准差(S.D) y 的均值和标准差由下面标准公式算出:
y yi T
i 1
T
sy
y
T t 1
i
y
2
T 1
(8). AIC准则(Akaike Information Criterion)
3
s ( N 1) / N 是变量方差的有偏估计。如果序列的分布
是对称的,S值为0;正的S值意味着序列分布有长的右拖尾,负
的S值意味着序列分布有长的左拖尾。
峰度(Kurtosis) 度量序列分布的凸起或平坦程度,
计算公式如下
1 K N
i 1
N
yi y ˆ
计算公式如下:
AIC 2l T 2k T
其中l 是对数似然值
T ˆˆ l (1 log( 2 π) log( uu / T )) 2
我们进行模型选择时,AIC值越小越好。例如,可以通过选 择最小AIC值来确定一个滞后分布的长度。
(9). Schwarz准则 Schwarz准则是AIC准则的替代方法:
自变量,总能得到R2 为1。
2 R2 调整后的记为 R,消除R2 中对模型没有解释力的新增变
量。计算方法如下:
R 2 1 1 R2
T T 1 k
R 2从不会大于R2 ,随着增加变量会减小,而且对于很不
适合的模型还可能是负值。
(3) 回归标准差 (S.E. of regression)
(三)
1 估计方法
在EViews中估计方程
说明方程后,现在需要选择估计方法。单击Method:进入对
话框,会看到下拉菜单中的估计方法列表:
标准的单方程回归用最小二乘估计。其他的方法在以后的 章节中介绍。采用OLS,TSLS,GMM,和ARCH方法估计的 方程可以用一个公式说明。非线性方程不允许使用binary, ordered,censored,count模型,或带有ARMA项的方程。
归变量是完全共线的。在完全共线的情况下,回归变
量矩阵X不是列满秩的,不能计算OLS估计值。
3 估计选项
EViews提供很多估计选项。这些选项允许进行以下操 作:对估计方程加权,计算异方差性,控制估计算法的各 种特征。
(四)
方程输出
在方程说明对话框中单击OK钮后,EViews显示估计结果:
根据矩阵的概念, 标准的回归可以写为:
y Xβ u
其中: y 是因变量观测值的 T 维向量,X 是解释变量观测值的 T k 维矩阵,T 是观测值个数,k 是解释变量个数, 是 k 维 系数向量,u 是 T 维扰动项向量。
2 方程统计量
(1) R2 统计量 R2 统计量衡量在样本内预测因变量值的回归是否成功。R2 是自变量所解释的因变量的方差。如果回归完全符合,统计值 会等于1。如果结果不比因变量的均值好,统计值会等于0。R2 可能会由于一些原因成为负值。例如,回归没有截距或常数,
或回归包含系数约束,或估计方法采用二阶段最小二乘法或
本章介绍EViews中基本回归技术的使用,说明并估计一个
回归模型,进行简单的特征分析并在深入的分析中使用估 计结果。随后的章节讨论了检验和预测,以及更高级,专 业的技术,如加权最小二乘法、二阶段最小二乘法(TSLS)、 非线性最小二乘法、ARIMA/ARIMAX模型、GMM(广
义矩估计)、GARCH模型和定性的有限因变量模型。这
2 估计样本 可以说明估计中要使用的样本。EViews会用当前工作文档样 本来填充对话框。 如果估计中使用的任何一个序列的数据丢失了,EViews会 临时调整观测值的估计样本以排除掉这些观测值。EViews通过 在样本结果中报告实际样本来通知样本已经被调整了。
在方程结果的顶部, EViews报告样本已经得到了调整。从 1978年2002年期间的25个观测值中, EViews使用了24个观测值。
SC 2l T k log T T
(10). F统计量和边际显著性水平 F统计量检验回归中所有的系数是否为零(除了常数或截距)。 对于普通最小二乘模型,F统计量由下式计算:
R 2 k 1 F 1 R 2 T k
在原假设为误差正态分布下,统计量服从 F(k – 1 , T – k) 分布。
F统计量下的P值,即Prob(F-statistic), 是F检验的边际显 著性水平。如果P值小于所检验的边际显著水平,比如说 0.05,则拒绝所有系数都为零的原假设。注意F检验是一个
联合检验,即使所有的t统计量都是不显著的,F统计量也可
能是高度显著的。
(五) 虚拟变量的应用
工资差别
为了解工作妇女是否受到了歧视,可以用美国统计局的“当前人口调查” 中的截面数据研究男女工资有没有差别。这项多元回归分析研究所用到的变 量有: W — 雇员的工资(美元/小时) 1;若雇员为妇女 SEX =
标准差(Standard Deviation) 标准差衡量序列的离散程度。 计算公式如下
ˆ s
1 N N 1 i 1