钢结构的构件连接方式
钢结构构件的连接设计3篇
钢结构构件的连接设计3篇钢结构构件的连接设计1钢结构构件的连接设计在现代建筑中,钢结构被广泛应用,因为它具有高强度、轻质、耐久、灵活性好等优点,可以用于各种建筑形式中。
钢结构构件的连接设计是非常重要的,它直接关系到钢结构的安全性和稳定性。
1、连接形式钢结构构件的连接形式有很多种,例如焊接、钻孔、膨胀螺栓连接等。
其中膨胀螺栓连接是最常用的连接方式,因为它具有安装、拆卸方便,连接牢固、稳定等优点。
此外,应选择质量可靠的膨胀螺栓,以保证连接的强度和稳定性。
2、连接设计连接设计包括连接位置、连接方式、连接荷载等方面。
连接位置的设计应遵循构件受力原理,使连接位置能够承受受力。
连接方式的设计应根据不同构件的特点和受力方式来选择,以保证连接的可靠性和稳定性。
连接荷载的设计应考虑受力情况和荷载作用,以保证连接能够承受荷载,并且不发生松动或者开裂等问题。
3、连接结构连接结构是连接的核心,也是最容易出现问题的地方。
连接结构要保证质量可靠,并且能够承受各种不同的荷载。
连接结构的设计应该考虑结构的可制造性,材料的可靠性,以及受力性能的稳定性等因素。
4、连接的施工钢结构连接是在施工现场进行的,因此注意施工的安全性和质量。
在施工前应检查连接件的材料、规格、密封性等,以保证施工的质量。
施工时也应严格按照设计要求进行操作,遵守安全规范,保证施工质量和安全。
总之,钢结构构件连接是钢结构的重要组成部分,连接设计的安全和可靠性直接关系到整个结构的安全性和稳定性。
我们应该认真考虑设计、施工过程中的各种因素,以保证钢结构顺利建成,发挥其最大的作用在钢结构建筑中,连接是至关重要的。
合理的连接设计、选择高质量的连接件以及保证连接结构的可靠性和施工质量,都是保证钢结构安全性和稳定性的必要条件。
在实际应用中,要根据受力特点和荷载作用等因素,精心设计连接位置、连接方式和连接荷载,强化连接结构和施工管理,以确保钢结构的高质量建设和持久使用钢结构构件的连接设计2钢结构构件的连接设计钢结构是现代建筑中广泛采用的一种建筑结构形式,由一系列钢结构构件组成。
10.钢结构的连接
钢结构的常用连接方法钢结构的连接通常有焊接、铆接和螺栓连接三种方式。
铆接很少采用,常用焊接和螺栓连接。
1 、焊接连接是当前钢结构最主要的连接方式,它的优点是构造简单,用钢省,加工方便,连接的密闭性好,易于采用自动化作业。
焊接连接的缺点是焊件会产生残余应力和残余变形,焊缝附近材质变脆,焊缝质量易受材料、操作的影响,对钢材材性要求较高,高强度钢更要有严格的焊接程序。
2 、螺栓连接其分为普通螺栓连接和高强度螺栓连接两种。
1.普通螺栓连接普通螺栓的优点是装卸便利,不需特殊设备。
普通螺栓又分为C级螺栓(又称粗制螺栓)和A、B级螺栓(又称精制螺栓)两种。
C级螺栓制作精度较差,宜用于承受拉力的连接,或用于次要结构和可拆卸结构的受剪连接以及安装时的临时固定。
A、B级螺栓受力性能较好,但其加工费用较高且安装费时费工,目前建筑结构中很少使用。
2.高强度螺栓连接高强度螺栓传递剪力的机理与普通螺栓不同,它是靠被连接板间的强大摩擦阻力传递剪力,变形较小。
其优点是施工简单、受力好、耐疲劳且可以撤换以及在动力荷载作用下不致松动。
从受力特征的不同,高强度螺栓连接可分为摩擦型和承压型两种。
摩擦型连接:外力仅依靠部件接触面间的摩擦力来传递。
其特点是连接紧密,变形小,传力可靠,疲劳性能好,主要用于直接承受动力荷载的结构、构件的连接。
承压型连接:起初由摩擦传力,后期同普通螺栓连接一样,依靠杆和螺孔之间的抗剪和承压来传力。
连接承载力一般比摩擦型连接高,可节约钢材。
但在摩擦力被克服后变形较大,故仅适用于承受静力荷载或间接承受动力荷载的结构、构件的连接。
3 、铆钉连接铆钉连接费工费料、劳动条件差、成本高,现在很少采用,多被焊接及高强度螺栓连接所代替。
焊接连接1 、焊接方法、焊接接头、焊缝形式等1.焊接方法钢结构常用电渣焊、气体保护焊和电阻焊等的是电弧焊,分为手工电弧焊、自动焊和半自动焊。
以手工电弧焊为最常用,设备简单,操作方便,但质量波动较大。
钢结构中刚接与铰接的区别
钢结构中刚接与铰接的区别钢结构是一种常用的建筑结构形式,其具有高承载能力和良好的抗震性能。
在钢结构设计中,刚接和铰接是两种常见的连接方式。
本文将介绍钢结构中刚接与铰接的区别,并探讨它们的特点及适用场景。
一、刚接的定义和特点刚接是指通过焊接、螺栓连接等方式将构件刚性地固定在一起,形成一个整体。
刚接的主要特点如下:1. 刚性连接:刚接连接的构件之间不允许发生相对位移或旋转,连接点处的刚度较高。
2. 理论上无内力:在刚接连接中,假设连接处无内力存在,即可视为整体结构。
3. 承载能力高:由于刚接连接形成了一个整体,其承载能力通常较高。
二、铰接的定义和特点铰接是指通过铰链或销钉等连接构件,在连接点处允许相对位移或旋转。
铰接连接的主要特点如下:1. 允许相对位移:铰接连接的构件之间允许有一定的位移,连接点处不限制刚度,具有良好的变形能力。
2. 内力集中:铰接连接处的内力主要集中在连接件上,连接件可能会受到较大的力和弯矩。
3. 承载能力相对较低:由于铰接连接处内力集中,其承载能力相对较低。
三、刚接与铰接的适用场景刚接和铰接在钢结构设计中都有各自的适用场景。
1. 刚接的适用场景:刚接常用于要求整体稳定性和刚度的结构,如框架结构、梁柱节点等。
刚接可以有效地将各构件连接成一个整体,提高结构的整体刚度和抗震性能。
刚接的特点使得结构在荷载作用下整体变形,对于需要抵抗水平荷载的结构尤为适用。
2. 铰接的适用场景:铰接常用于要求结构产生位移和变形的场合,如悬挂梁、拱式结构等。
铰接连接可以使结构在荷载作用下产生位移和变形,承受较大的变形能量。
铰接连接还可以减小结构受力产生的内力,降低结构的应力水平,提高结构的韧性和抗震性能。
四、综合应用举例在实际工程中,刚接和铰接可以进行综合应用,根据实际需要选择合适的连接方式。
1. 刚接与铰接相结合的悬挂梁设计:悬挂梁常用于悬索桥、吊车等需要大跨度的结构中。
为了满足结构对于变形和承载能力的要求,通常会在悬挂梁的连接处采用刚接和铰接相结合的设计。
钢结构的连接方式
§3-1钢结构的连接钢结构的构件是由型钢、钢板等通过连接(connections)构成的,各构件再通过安装连接架构成整个结构。
因此,连接在钢结构中处于重要的枢纽地位。
在进行连接的设计时,必须遵循安全可靠、传力明确、构造简单、制造方便和节约钢材的原则。
钢结构的连接方法可分为焊接连接、铆钉连接、螺栓连接和轻型钢结构用的紧固件连接等(图3.1.1)。
3.1.1 焊缝连接一、焊缝连接的特点焊接连接(welded connection)是现代钢结构最主要的连接方法。
其优点是:构造简单,任何形式的构件都可直接相连;用料经济,不削弱截面;制作加工方便,可实现自动化操作;连接的密闭性好,结构刚度大。
其缺点是:在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部裂纹一旦发生,就容易扩展到整体,低温冷脆问题较为突出。
二、钢结构常用的焊接方法1、手工电弧焊这是最常用的一种焊接方法(3.1.2)。
通电后,在涂有药皮的焊条和焊件间产生电弧。
电弧提供热源,使焊条中的焊丝熔化,滴落在焊件上被电弧所吹成的小凹槽熔池中。
由电焊条药皮形成的熔渣和气体覆盖着熔池,防止空气中的氧、氮等气体与熔化的液体金属接触,避免形成脆性易裂的化合物。
焊缝金属冷却后把被连接件连成一体。
手工电弧焊设备简单,操作灵活方便,适于任意空间位置的焊接,特别适于焊接短焊缝。
但生产效率低,劳动强度大,焊接质量与焊工的技术水平和精神状态有很大的关系。
手工电弧焊所用焊条应与焊件钢材(或称主体金属)相适应,例如:对Q235钢采用E43型焊条(E4300~E4328);对Q345钢采用E50型焊条(E5000~E5048);对390钢和Q420钢采用E55型焊条(E5500~E5518)。
焊条型号中字母E表示焊条类型等。
不同钢种的钢材相焊接时,宜采用低组配方案,即宜采用与低强度钢相适应的焊条。
钢结构的连接方法
钢结构的连接方法一、钢结构的连接方法1、焊接连接2、螺栓连接3、铆钉连接二、以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
判定没有一个统一的标准,很多有经验的设计师或项目经理也常常不能完全说明白,可以以一些数据综合考虑并加以判断。
三、钢结构以钢材制作为主的结构,是主要的建筑结构类型之一。
钢材的特点是强度高、自重轻、刚度大,故用于建造大跨度和超高、超重型的建筑物特别适宜;材料匀质性和各向同性好,属理想弹性体,最符合一般工程力学的基本假定;材料塑性、韧性好,可有较大变形,能很好地承受动力荷载;建筑工期短;其工业化程度高,可进行机械化程度高的专业化生产;加工精度高、效率高、密闭性好,故可用于建造气罐、油罐和变压器等。
其缺点是耐火性和耐腐性较差。
主要用于重型车间的承重骨架、受动力荷载作用的厂房结构、板壳结构、高耸电视塔和桅杆结构、桥梁和库等大跨结构、高层和超高层建筑等。
钢结构今后应研究高强度钢材,大大提高其屈服点强度;此外要轧制新品种的型钢,例如H型钢(又称宽翼缘型钢)和T形钢以及压型钢板等以适应大跨度结构和超高层建筑的需要。
钢结构又分轻钢和重钢。
常用的几种钢结构构件的拼接
常用的几种钢结构构件的拼接构件的拼接一、等截面拉、压杆拼接1、工厂拼接①拉杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
直接对焊时焊缝质量必须达到一、二级质量标准,否则要采用拼接板加角焊缝。
②压杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。
采用拼接板加角焊缝时,构件的翼缘和腹板都应有各自的拼接板和焊缝,使传力尽量直接、均匀,避免应力过分集中。
确定腹板拼接板宽度时,要留够施焊纵焊缝时操作焊条所需的空间。
2、工地拼接①拉杆:可以用拼接板加高强螺栓(图c)或端板加高强螺栓(图d)。
②压杆:可以采用焊接(图e、f)或上、下段接触面刨平顶紧直接承压传力(图g、h)。
用焊接时,上段构件要事先在工厂做好坡口,下段(或上、下两段)带有定位零件(槽钢或角钢),保证施焊时位置正确。
上、下段接触面刨平顶紧直接承压传力时应辅以少量焊缝和螺栓,使不能错动。
拉压杆的拼接宜按等强度原则来计算,亦即拼接材料和连接件都能传递断开截面的最大内力。
二、变截面柱的拼接(略)三、梁的拼接梁的拼接施工条件的不同分为车间(工厂)拼接和工地拼接两种。
1、工厂拼接1)翼缘和腹板的工厂拼接位置最好错开,以避免焊缝集中。
2)翼缘和腹板的拼接焊缝一般采用对接焊缝。
3)对于满足1、2级焊缝质量检验级别的焊缝不需要进行验算。
4) 对于满足3级焊缝质量检验级别的焊缝需要进行验算.当焊缝强度不足时可采用斜焊缝。
当θ满足tgθ≤1.5时,可以不必验算。
2、工地拼接的构造1)工地拼接一般应使翼缘和腹板在同一截面处断开,以便于分段运输(图a)。
为了使翼缘板在焊接过程中有一定地伸缩余地,以减少焊接残余应力,可在工厂预留约500mm长度不焊。
2)图b将翼缘和腹板的拼接位置适当错开的方式,可以避免焊缝集中在同一截面,但运输有一定困难。
3)对于铆接梁和较重要的或受动力荷载作用的焊接大型梁,其工地拼接常采用高强螺栓连接。
主次梁的连接一.次梁为简支梁1、叠接构造:在主梁上的相应位置应设置支承加劲肋,以免主梁腹板承受过大的局部压力。
钢筋混凝土和钢结构连接方式
钢筋混凝土和钢结构连接方式在建筑工程中,钢筋混凝土和钢结构的连接方式对于建筑的整体强度和稳定性具有至关重要的作用。
本文将介绍以下十种连接方式:焊接连接、螺栓连接、铆钉连接、刚节点连接、柔性节点连接、混合连接、预制构件连接、现浇连接、装配式连接和支座连接。
1.焊接连接焊接连接是一种常用的钢筋混凝土和钢结构连接方式。
通过在钢材上焊接钢筋,使钢筋与钢板融为一体。
焊接连接具有以下优点:强度高、构造简单、施工方便。
然而,焊接连接也存在一些缺点,如对焊接工人技能要求高,易产生焊接变形等。
2.螺栓连接螺栓连接是通过高强度螺栓将钢筋混凝土和钢结构紧固在一起。
这种连接方式具有以下优点:施工方便、可拆可装、抗疲劳性能好。
然而,螺栓连接对于钢材的加工精度要求较高,且需要严格控制拧紧力矩。
3.铆钉连接铆钉连接是将钢筋混凝土和钢结构通过铆钉连接在一起。
这种连接方式具有以下优点:抗疲劳性能好、构造简单、施工方便。
但是,铆钉连接的缺点是容易受到腐蚀,影响建筑的使用寿命。
4.刚节点连接刚节点连接是在钢结构上设置刚性节点,然后将钢筋与钢节点焊接在一起。
这种连接方式具有较高的强度和刚度,适用于大跨度建筑和高层建筑。
5.柔性节点连接柔性节点连接是在钢结构上设置柔性节点,利用节点的变形能力来吸收地震能量。
这种连接方式具有较好的抗震性能,但需要合理设计节点的构造和加强措施。
6.混合连接混合连接是同时采用两种或多种连接方式进行钢筋混凝土和钢结构的连接。
这种连接方式可以根据实际情况选择不同的连接方式,以达到最优的连接效果。
但是,混合连接需要注意不同连接方式的协调性和兼容性。
7.预制构件连接预制构件连接是将钢筋混凝土和钢结构预制构件进行连接。
这种连接方式具有较高的施工效率和质量稳定性。
但是,预制构件连接需要严格控制构件的加工精度和安装位置的准确性。
8.现浇连接现浇连接是在施工现场将钢筋混凝土和钢结构进行浇筑连接。
这种连接方式具有较好的整体性和耐久性,但需要严格控制施工质量和安全。
钢结构构件常用的连接方式
钢结构构件常用的连接方式1.焊接连接焊接连接有气焊、接触焊和电弧焊等方法..在电弧焊中又分手工焊、自动焊和半自动焊三种..目前;钢结构中常用的是手工电弧焊..利用手工操作的方法;以焊接电弧产生的热量使焊条和焊件熔化;从而凝固成牢固接头的工艺过程;就是手工电弧焊..1焊缝的形式与构造①对接焊缝对接焊缝的形式有直边缝、单边V形缝、双边V形缝、U形缝、K形缝、X形缝等..当焊件厚度很小;可采用直边缝..对于一般厚度的焊件;因为直边缝不易焊透;可采用有斜坡口的单边V 形缝或双边V形缝;斜坡口和焊缝根部共同形成一个焊条能够运转的施焊空间;使焊件易于焊透..对于较厚的焊件;则应采用U形缝、K形缝和X形缝..其中V形缝和U 形缝为单面施焊;但在焊缝根部还需要补焊;当焊件可随意翻转施焊时;使用K形缝和X形缝较好..焊缝的起点和终点处常因不能熔透而出现凹形的焊口;为避免受力后出现裂纹及应力集中;施焊时应将两端焊至引弧板上;然后再将多余部分切除;这样便不致减小焊缝处的截面..对接焊缝的优点是用料经济;传力均匀、平顺;没有显着的应力集中;承受动力荷载的构件最适于采用对接焊缝..缺点是施焊的焊件应保持一定的间隙;板边需要加工;施工不便..②角焊缝在相互搭接或丁字连接构件的边缘;所焊截面为三角形的焊缝;叫做角焊缝..角焊缝按外力作用方向可分为平行于外力作用方向的侧面角焊缝和垂直于外力作用方向的正面角焊缝..钢结构中;最常用的是普通直角焊缝;其他形式主要是为了改变受力状态;避免应力集中;一般多用于直接受动力荷载的结构..杆件与节点板的连接焊缝一般宜采用两面侧焊;也可用三面围焊;对角钢焊件还可采用L形围焊;但为不引起偏心;角钢背焊缝长度常受到限制;所以一般只适用于受力较小的焊件..所有围焊的转角处必须连续施焊..角焊缝的优点是焊件板边不必预先加工;也不需要校正缝距;施工方便..其缺点是应力集中现象比较严重;由于必须有一定的搭接长度;角焊缝连接在材料使用上不够经济..2对接焊缝的形式及受力特点对接焊缝有对接接头和T形接头两种..如按焊缝是否被焊透;又分焊透的对接焊缝和未焊透的对接焊缝两种..焊透的对接焊缝;其焊条金属充满整个连接截面并和母材熔成一体;焊缝的强度与被焊构件的强度基本相同..当连接焊缝受力很小甚至不受力;但又要求焊接结构外观平齐时;或连接焊缝受力虽较大;但采用焊透的对接焊缝其强度并不能充分利用时;则应采用未焊透的对接焊缝..钢结构中采用较多的是焊透的对接焊缝..2.普通螺栓连接1粗制螺栓与精制螺栓粗制螺栓是用圆钢热压而成;表面粗糙..由于螺杆与螺孔之间有空隙;所以承受剪力较差;一般用于安装连接中..精制螺栓的螺杆是在车床上加工而成;螺杆直径与孔径基本相同;抗剪能力较好;但制造费工;成本较高;一般很少用..粗制螺栓与精制螺栓不仅螺杆不同;孔壁也不同;螺栓孔壁按质量可分为一类孔与二类孔、粗制螺栓用二类孔、精制螺栓用一类孔..2螺栓的排列螺栓的排列有并列与错列两种形式;并列简单、整齐;比较常用..螺栓在构件上的排列应当满足如下要求:①受力要求:从受力要求出发;螺栓的距离不宜过大或过小..例如:受压构件顺作用力方向的螺栓间距过大时;构件易压屈鼓出;端距过小时;前部钢材可能被挤压破坏等..②构造要求:螺栓间距过大时;构件接触不严密..当空气湿度大时;易造成钢材锈蚀;所以从构造出发;螺栓间距不能过大..③施工要求:布置螺栓时;还要考虑到用扳手拧螺栓的可能性;按扳手尺寸的要求进行..3.高强度螺栓连接高强度螺栓是一种新的连接形式;它具有施工简单、受力性能好、可拆换、耐疲劳以及在动力荷载作用下不致松动等优点;是很有发展前途的连接方法..高强度螺栓是用特制的扳手上紧螺帽;使螺栓产生巨大而又受控制的预拉力;通过螺帽和垫板;对被连接件也产生了同样大小的预压力..在预压力作用下;沿被连接件表面就会产生较大的摩擦力;只要轴力小于此摩擦力;构件便不会滑移;连接就不会受到破坏;这就是高强度螺栓连接的原理..高强度螺栓连接是靠连接件接触面间的摩擦力来阻止其相互滑移的;为使接触面有足够的摩擦力;就必须提高构件的夹紧力和增大构件接触面的摩擦系数..构件间的夹紧力是靠对螺栓施加预拉力来实现的;但由低碳钢制成的普通螺栓;因受材料强度的限制;所能施加的预拉力是有限的;它所产生的摩擦力比普通螺栓的抗剪能力还小;所以如要靠螺栓预拉力所引起的摩擦力来传力;则螺栓材料的强度必须比构件材料的强度大得多才行;即螺栓必须采用高强度钢制造;这也就是称为高强度螺栓连接的原因..高强度螺栓连接中;摩擦系数的大小对承载力的影响很大..试验表明;摩擦系数与构件的材质、接触面的粗糙程度、法向力的大小等都有直接的关系;其中主要是接触面的形式和构件的材质..为了增大接触面的摩擦系数;施工时应将连接范围内构件接触面进行处理;处理的方法有喷砂、用钢丝刷清理等..设计时;应根据工程情况;尽量采用摩擦系数较大的处理方法;并在施工图上清楚注明..应当指出;高强度螺栓实际上有摩擦型和承压型之分..摩擦型高强度螺栓承受剪力的准则是设计荷载引起的剪力不超过摩擦力..而承压型高强度螺栓则是以杆身不被剪坏或板件不被压坏为设计准则;其受力特点及计算方法等与普通螺栓基本相同;但由于螺栓采用了高强度钢材制造;所以具有较高的承载能力..完。
钢梁和钢柱连接方式
钢梁和钢柱连接方式钢梁和钢柱是建筑结构中常用的构件,其连接方式直接影响整个结构的安全和稳定性。
本文将介绍钢梁和钢柱的常见连接方式,包括焊接、螺栓连接和铆接。
一、焊接连接焊接是一种常见的连接方式,广泛应用于钢结构工程中。
焊接连接具有高强度、实用性和经济性等优点,其中常用的焊接方式有手工电弧焊、埋弧焊和气体保护焊。
1. 手工电弧焊手工电弧焊是一种常见的焊接方式,适用于小型构件的连接。
手工电弧焊连接的优点是可靠性高,容易掌握和实现,缺点是生产效率低,需要专业人员进行施焊。
2. 埋弧焊埋弧焊是一种自动化焊接方式,适用于大型钢结构构件的生产和安装。
焊接效率高,连接强度也较高,但设备成本较高,对操作人员要求高。
3. 气体保护焊气体保护焊是一种常用的金属材料焊接方式,适用于大型或复杂钢结构构件的连接。
气体保护焊连接的优点是焊接质量高且精度高,缺点是设备成本高,操作难度较大。
二、螺栓连接螺栓连接是一种常用且经济的连接方式,适用于多种类型的钢构件连接。
螺栓连接的优点是便于拆卸和维修,适用范围广泛,缺点是连接强度相对较低,需要进行调整和预紧力的控制,否则在受力状态下容易松动。
螺栓连接分为唧板式和高强度螺栓连接两种方式。
1. 唧板式连接唧板式连接是一种常见的连接方式,常用于简单结构的钢梁和钢柱连接。
唧板式连接的优点是易于装配,具有一定的刚性,缺点是结构强度较低,需要经常进行预紧力调整。
2. 高强度螺栓连接高强度螺栓连接是一种常用的连接方式,用于吊装大型结构件和需要高强度连接的地方。
由于其连接强度较高,可靠性好,适用于承受较大荷载和振动的情况。
铆接连接是一种不易被剪断和拉断的连接方式,尤其适用于连接受到横向和剪切力作用的情况。
铆接连接的优点是连接强度高,不易松动和疲劳,缺点是需要工具特别设计,操作比较复杂。
总的来说,钢梁和钢柱连接方式的选择应根据结构的受力要求、结构的尺寸和采用的钢板厚度等因素进行分析和选择。
只有选择适当的连接方式,才能够确保整个结构的安全和稳定。
常见钢结构构件连接方法详解!
常见钢结构构件连接方法详解!钢结构构件的连接钢结构的连接方法有焊接、普通螺栓连接、高强度螺栓连接和铆接,具体如下:(一)焊接1、建筑工程中钢结构常用的焊接方法:按焊接的自动化程度一般分为手工焊接、半自动焊接和自动化焊接三种。
2、根据焊接接头的连接部位,可以将熔化焊接头分为:对接接头、角接接头、T形及十字接头、搭接接头和塞焊接头等。
3、在焊接时应合理选择焊接方法、条件、顺序和预热等工艺措施,尽可能把焊接应力和焊接变形控制到最小。
必要时,应取合理措施消除焊接残余应力和变形。
4、焊缝缺陷通常分为:裂纹、孔穴、固体夹杂、未熔合、未焊透、形状缺陷和上述以外的其他缺陷。
其主要产生原因和处理方法为:(1)裂纹:通常有热裂纹和冷裂纹之分。
产生热裂纹的主要原因是母材抗裂性能差、焊接材料质量不好、焊接工艺参数选择不当、焊接内应力过大等;产生冷裂纹的主要原因是焊接结构设计不合理、焊缝布置不当、焊接工艺措施不合理,如焊前未预热、焊后冷却快等。
处理办法是在裂纹两端钻止裂孔或铲除裂纹处的焊缝金属,进行补焊。
(2)孔穴:通常分为气孔和弧坑缩孔两种。
产生气孔的主要原因是焊条药皮损坏严重、焊条和焊剂未烘烤、母材有油污或锈和氧化物、焊接电流过小、弧长过长、焊接速度太快等,其处理方法是铲去气孔处的焊缝金属,然后补焊。
产生弧坑缩孔的主要原因是焊接电流太大且焊接速度太快、熄弧太快,未反复向熄弧处补充填充金属等,其处理方法是在弧坑处补焊。
(3)固体夹杂:有夹渣和夹钨两种缺陷。
产生夹渣的主要原因是焊接材料质量不好、焊接电流太小、焊接速度太快、熔渣密度太大、阻碍熔渣上浮、多层焊时熔渣未清除干净等,其处理方法是铲除夹渣处的焊缝金属,然后焊补。
产生夹钨的主要原因是氩弧缝金属,重新焊补。
(4)未熔合、未焊透:产生的主要原因是焊接电流太小、焊接速度太快、坡口角度间隙太小、操作技术不佳等。
对于未熔合的处理方法是铲除未熔合处的焊缝金属后补焊。
对于未焊透的处理方法是对开敞性好的结构的单面未焊透,可在焊缝背面直接补焊。
钢结构的连接方式
(1)按构件连接的相对位置分类 对接连接、搭接连接、T形连接和角部连接等 (2)按构造分类 对接焊缝(正对接焊缝、斜对接焊缝); 角焊缝(正面角焊缝、侧面角焊缝和斜焊缝) (3)按施焊位置分类 平焊、立焊、横焊和仰焊
(1)指引线 (2)图形符号 (3)辅助符号
(1)对接焊缝的构造要求 (2)角焊缝的构造要求 (3)焊缝的强度设计值
(1)轴心力作用下的对接焊缝连接强度计算 (2) 直螺栓连接
略
(1)螺栓布列间距不宜过大或过小 (2)螺栓连接的强度设计值
(1)抗剪承载力计算 (2)抗拉承载力计算 (3)同时承受剪力和杆轴方向拉力的普通螺栓
的剪拉承载力计算 (4)螺栓群在弯矩作用下的计算
钢结构钢结构的连接课件.ppt
f
w f
f
he
N lw
f
w f
(
f
f
)2
2 f
f
w f
钢结构钢结构的连接课件
钢结构钢结构的连接课件
请 回 答
1、对接焊缝与角焊缝在计算方法上有何区别? 2、侧面焊、三面围焊哪种做法较为经济?
(在同样荷载下) 3、焊接残余应力与变形对结构的性能有何影
响?采取哪些措施?
钢结构钢结构的连接课件
3-6 普通螺栓连接构造和计算
f
N he
lw
f
w f
f
f he钢N结构l钢w结构的f连f接w 课件
四、偏心力作用
1、弯矩M: f
M Ww
6M he lw2Biblioteka ffw f
2、扭矩T:
计算假定:(1)被连接件是绝对刚性的,角焊缝是弹性
(2)被连接件绕角焊缝有效截面形心o旋转,角焊缝上任
一点应力方向垂直该点与形心连线,应力大小与其
(3 23)
(2)承压承载力设计值
N
b C
d
tf
b C
(3 24)
当构件节点处或 拼接缝一側 螺栓较多,沿受力方向连接长
Nb min
minN NV Cbb
度: l1
l115d0 l160d0
1.1 l1
15d00
0.7 d0螺 栓 孔 径
钢结构钢结构的连接课件
图3-59 抗剪螺栓连接 图3-60 螺栓钢承结构压钢结的构的应连力接课分件 布
钢结构钢结构的连接课件
y1
y2
e
e
e'
y '1
y '2
y2
钢结构构件常用的连接方式
钢结构构件常用的连接方式1.焊接连接焊接连接有气焊、接触焊和电弧焊等方法。
在电弧焊中又分手工焊、自动焊和半自动焊三种。
目前,钢结构中常用的是手工电弧焊。
利用手工操作的方法,以焊接电弧产生的热量使焊条和焊件熔化,从而凝固成牢固接头的工艺过程,就是手工电弧焊。
(1)焊缝的形式与构造①对接焊缝对接焊缝的形式有直边缝、单边V形缝、双边V形缝、U形缝、K形缝、X 形缝等。
当焊件厚度很小,可采用直边缝。
对于一般厚度的焊件,因为直边缝不易焊透,可采用有斜坡口的单边V形缝或双边V形缝,斜坡口和焊缝根部共同形成一个焊条能够运转的施焊空间,使焊件易于焊透。
对于较厚的焊件,则应采用U形缝、K形缝和X形缝。
其中V形缝和U形缝为单面施焊,但在焊缝根部还需要补焊,当焊件可随意翻转施焊时,使用K 形缝和X形缝较好。
焊缝的起点和终点处常因不能熔透而出现凹形的焊口,为避免受力后出现裂纹及应力集中,施焊时应将两端焊至引弧板上,然后再将多余部分切除,这样便不致减小焊缝处的截面。
对接焊缝的优点是用料经济,传力均匀、平顺,没有显着的应力集中,承受动力荷载的构件最适于采用对接焊缝。
缺点是施焊的焊件应保持一定的间隙,板边需要加工,施工不便。
②角焊缝在相互搭接或丁字连接构件的边缘,所焊截面为三角形的焊缝,叫做角焊缝。
角焊缝按外力作用方向可分为平行于外力作用方向的侧面角焊缝和垂直于外力作用方向的正面角焊缝。
钢结构中,最常用的是普通直角焊缝,其他形式主要是为了改变受力状态,避免应力集中,一般多用于直接受动力荷载的结构。
杆件与节点板的连接焊缝一般宜采用两面侧焊,也可用三面围焊,对角钢焊件还可采用L形围焊,但为不引起偏心,角钢背焊缝长度常受到限制,所以一般只适用于受力较小的焊件。
所有围焊的转角处必须连续施焊。
角焊缝的优点是焊件板边不必预先加工,也不需要校正缝距,施工方便。
其缺点是应力集中现象比较严重,由于必须有一定的搭接长度,角焊缝连接在材料使用上不够经济。
钢结构连接方式
做法。像螺栓连接就是一种。
▪ 优点 ▪ 铰接节点连接具有受力简明、施工方便、设计简
单。
高韧性接头
▪ 高层建筑抗风抗震设计 ▪ 抗震主要考虑有地震带来的弯矩。所以在钢结构
框架中抗弯结构是主要设计难点,而抗弯结构中 的节点设计更是难点。 1995年1月17 日本神户地 发生阪神大地震,在神户地震钢结构物亦发生大 规模之破坏在那次灾害中大家吸取经验考虑要设 计一种新型柱梁接头,这样在一段时间的研究和 不断的实验,高韧性接头就在这是诞生了。
3.螺栓连接
采用的螺栓有普通螺栓和高强度螺栓两种。
螺
螺
栓
栓
的
的
各
一
种
些
视
数
图
据
3.螺栓连接
采用的螺栓有普通螺栓和高强度螺栓两种。 1.普通螺栓
a:C级螺栓.直径与孔径相差1.0~1.5mm,便于安装,但螺杆与钢板孔壁 不够紧密螺栓不易受剪。
b:A.B级螺栓的栓杆与栓孔的加工都有严格要求,受力性能较C级螺栓好, 但费用高。 优点:装卸便利,不需要特殊设备。 2.高强度螺栓 用强度较高的钢材制作。安装时通过特质扳手以较大的扭矩上紧螺帽,使螺 杆产生很大的预应力。高强度螺栓的预应力把被连接的部件夹紧使部件的接 触面间产生很大的摩擦力,外力通过摩擦力来传递。这种连接称为高强度螺 栓摩擦型连接。
在预先选定之 域内将梁 翼切削至其所提供的弯 矩能力与该段梁的弯矩 需求相同.则根据上述 全杆件吸收能量之观念 ,可大幅增加钢 骨架构 架吸收地震能量之能力
高韧性接头
▪ 高韧件接头所采的预选定性的观念。现用简支两载重点间产生一等弯矩
区 .而当载重逐渐增加时.其等弯矩区将同时达到降伏。 黑色则代表等应力的降伏区。而若同一梁受中央的单点集 中荷重时,则可见其将产生一弯矩锑度.如图其最大应将集中
钢结构的连接ppt课件
矩,J=Ix+Iy; Ix——围焊缝对ox轴的惯性矩; Iy——围焊缝对oy轴的惯性矩
角焊缝的最小焊脚尺寸应满足hf≥1.5 (t m ax㎜), tmax较 厚的焊件的厚度。对埋弧自动焊, hf可减少1㎜;对T 形连接的单面角焊缝应增加1㎜;当tmax≤4㎜时,取hf = tmax。
③侧面角焊缝的最大计算长度 侧面角焊缝的应力沿长度分布不均匀,两端大,中间小。 焊缝中部尚未能充分发挥其承载力。因此,规定侧面角
需要的角焊缝有效高度为
焊脚尺寸hf=he/0.7=9㎜
N 118600
he lw[f]2080856.3m m
焊件钢板最大厚度tmax=14㎜,最小厚度tmin=10㎜,故焊脚
尺寸hf=9㎜,满足1.5 (5t m.a6x ㎜)<hf<1.2tmin(=12㎜) 。
(2)轴心力作用下角钢角焊缝的计算
• 直角角焊缝的截面形式有普通焊缝(等边)、平坡焊 缝和深熔焊缝。一般采用普通直角焊缝(图20-9a), 但是普通直角焊缝受力时力线弯折,应力集中严重,焊 缝根部容易开裂。因此在直接承受动力荷载的直角焊缝 常采用平坡焊缝(图20-9b)和深熔焊缝(图20-9c)。
•斜角焊缝常用于钢管结构中。对于α>135°或α<60° 的斜角焊缝,除了钢管结构外,不宜用作受力焊缝。
N3 helf [f ]
再通过平衡关系,可得到:
N1 N2
e2 e1 e2
e1 e1 e2
N N
N3 2
N3 2
k1N
N3 2
k2
N
N3 2
(20-9)
对于图20-16c)所示的L形焊缝,则不需先选定端
焊缝的厚度hf,而令式(20-9)的N2=0,可得到:
钢结构的构件连接方式
d e钢结构的构件连接方式钢结构的连接方法大体来看,有以下几种:焊接——是使用最普遍的方法,该方法对几何形体适应性强,构造简单,省材省工,易于自动化,工效高;但是焊接属于热加工过程,对材质要求高,对于工人的技术水平要求也高,焊接程序严格,质量检验工作量大。
铆接——该方法传力可靠,韧性和塑性好,质量易于检查,抗动力荷载好;但是由于铆接时必须进行钢板的搭接,相对来讲费钢、费工。
普通螺栓连接——这种方式装卸便利,设备简单,工人易于操作;但是对于该方法,螺栓精度低时不宜受剪,螺栓精度高时加工和安装难度较大。
高强螺栓连接——此法加工方便,对结构削弱少,可拆换,能承受动力荷载,耐疲劳,塑性、韧性好摩擦面处理,安装工艺略为复杂,造价略高射钉、自攻螺栓连接——较为灵活,安装方便,构件无须预先处理,适用于轻钢、薄板结构不能受较大集中力。
焊接连接 焊接是钢结构较为常见的连接方式,也是比较方便的连接方式,在众多的钢结构中,焊接是最为常见的一种。
根据焊接的形式,焊缝可以分为对接(平接)焊缝、角焊缝、和顶接焊缝三大类。
对接焊缝对接焊缝按受力与焊缝方向分直缝——作用力方向与焊缝方向正交;斜缝——作用力方向与焊缝方向斜交两类。
从直观来看,直缝受拉,斜缝受拉与剪的同时作用。
对接焊缝在焊接上有以下处理形式: a )直边缝:适合板厚t 10mm b )单边V 形:适合板厚t =10~20mmc )双边V 形:适合板厚t =10~20mmd )U 形:适合板厚t > 20mme )K 形:适合板厚t > 20mm b斜缝 直缝f)X形:适合板厚t > 20mm对接焊缝的优点是用料经济、传力均匀、无明显的应力集中1[1],利于承受动力荷载;但也有缺点,需剖口,焊件长度要精确。
对接焊缝需要做以下构造处理:首先,在施焊过程中,起落弧处易有焊接缺陷,所以用引弧板;但采用引弧板施工复杂,除承受动力荷载外,一般不用,计算时将焊缝长度两端各减去5mm。
钢结构连接方式
a) 改变厚度
b) 改变宽度
图3.2.4 不同厚度或宽度的钢板拼接
4. 对接焊缝的强度
1)受压、受剪的对接焊缝与母材强度相等。 2)三级检验的焊缝允许存在的缺陷较多,故其抗 拉强度为母材强度的85%。 3)一、二级检验的焊缝的抗拉强度可认为与母材 强度相等。
若内力沿侧焊缝全长分布时,计算长度不受此限制。
焊脚尺寸的取值
hfmin≤ hf ≤ hfmax
角焊缝计算长度(lw)取值
lwmin≤lw ≤ lwmax
(3)减小角焊缝应力集中的措施
a) 构件端部仅有两边侧缝连接时:
2 1
312
1.1
f
w t
(3.2.6)
式中 : 1、1——为腹板与翼缘 交接处的正应力和剪应力。
1.1为考虑到最大折算应力只 在局部出现,而将强度设计值适 当提高系数。
图3.2.7b 弯矩和剪力联合作 用下的对接焊缝
工字形截面梁在弯曲时,弯曲正应力主要由上、下翼缘承担,剪应力主要 由腹板承担,这使得截面上各处的材料能达到充分的利用。
图3.3.3 角焊缝的应力分布
破坏形式
为试验焊缝与试件水 平方向的夹角。
正面角焊缝的破坏强 度比侧面角焊缝高。
斜焊缝的受力性能和 强度介于正面角焊缝和侧 面角焊缝之间。
图3.3.4 角焊缝荷载与变形关系
2.构造要求
角焊缝构造包括三个方面:焊脚尺寸、焊缝长度和减小 焊缝应力集中的措施。 (1)焊脚尺寸 角焊缝的焊脚尺寸是指焊缝根脚至焊缝外边的尺寸--hf a) 最小焊脚尺寸(hf,min) 为了保证焊缝的最小承载能力以及防止焊缝由于冷却速度 快而产生淬硬组织,导致母材开裂,hf,min应满足以下要求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f
钢结构得构件连接方式
钢结构得连接方法大体来瞧,有以下几种:
焊接——就是使用最普遍得方法,该方法对几何形体适应性强,构造简单,省材省工,易于自动化,工效高;但就是焊接属于热加工过程,对材质要求高,对于工人得技术水平要求也高,焊接程序严格,质量检验工作量大。
铆接——该方法传力可靠,韧性与塑性好,质量易于检查,抗动力荷载好;但就是由于铆接时必须进行钢板得搭接,相对来讲费钢、费工。
普通螺栓连接——这种方式装卸便利,设备简单,工人易于操作;但就是对于该方法,螺栓精度低时不宜受剪,螺栓精度高时加工与安装难度较大。
高强螺栓连接——此法加工方便,对结构削弱少,可拆换,能承受动力荷载,耐疲劳,塑性、韧性好摩擦面处理,安装工艺略为复杂,造价略高
射钉、自攻螺栓连接——较为灵活,安装方便,构件无须预先处理,适用于轻钢、薄板结构不能受较大集中力。
焊接连接
焊接就是钢结构较为常见得连接方式,也就是比较方便得连接方式,在众多得钢结构中,焊接就是最为常见得一种。
根据焊接得形式,焊缝可以分为对接(平接)焊缝、角焊缝、与顶接焊缝三大类。
对接焊缝
对接焊缝按受力与焊缝方向分直缝——作用力方向与焊缝方向正交;斜缝——作用力方向与焊缝
方向斜交两类。
从直观来瞧,直缝受拉,斜缝
受拉与剪得同时作用。
对接焊缝在焊接上有以下处理形式:
a)直边缝:适合板厚t 10mm
b)单边V 形:适合板厚t =10~20mm
c)双边V 形:适合板厚t =10~20mm
d)U 形:适合板厚t > 20mm
e)K 形:适合板厚t > 20mm
f)X 形:适合板厚t > 20mm
对接焊缝得优点就是用料经济、传力均匀、无明显得应力集中1[1],利于
承受动力荷载;但也有缺点,需剖口,焊件长度要精确。
对接焊缝需要做以下构造处理:首先,在施焊过程中,起落弧处易有焊接缺陷,所以用引弧板;但采用引弧板施工复杂,除承受动力荷载外,一般不用,计算时将焊缝长度两端各减去5mm 。
其次,变厚度板对接,在板得一面或两面切成坡度不大于1:4得斜面,避免应力集中。
另外,变宽度板对接,在板得一侧或两侧切成坡度不大于1:4得斜边,避免应力集中。
对于对接焊缝得强度,有引弧板得对接焊缝在受压时与母材等强,但焊缝得抗拉强度与焊缝质量等级有关。
对接焊缝得应力分布认为与焊件原来得应力分布基本相同。
计算时,焊缝中最大应力(或折算应力)不能超过焊缝得强度设计值。
对接焊缝得计算包括:轴心受力得对接焊缝、斜向受力得对接焊缝、钢梁得对接焊缝、牛腿与翼缘得对接焊缝。
角焊缝
——作用力方向与焊缝长度方向垂直,其受
,应力集中严重,焊缝根部形成高峰应力,易于开裂,端缝破坏 b 侧缝
强度要高一些,但塑性差;侧缝:作用力方向与焊缝长度方向平行,其应力分布简单些,但分布并不均匀,剪应力两端大,中间小,侧缝强度低,但塑性较好。
角焊缝可以分为直角焊缝与斜角焊缝。
直角焊缝又可以有(a)普通焊缝、(b)平坡焊缝、(c)深熔焊
缝。
一般采用(a)做法,但应力集中较严重,在承受动力荷载时
采用(b)、(c)。
斜角角焊缝有(d)斜锐角焊缝、(e)斜钝角焊缝、(f)斜凹面
角焊缝,主要用于钢管连接中。
角焊缝得构造要求:
(1)承受动力荷载得结构中,垂直于受力方向得焊缝不宜
采用不焊透得对接焊缝。
(2)在直接承受动力荷载得结构中,角焊缝表面应做成直
线形或凹形,焊脚尺寸得比例:对正面角焊缝宜为1:1、5,长边
顺内力方向;对侧面角焊缝可为1:1。
(3)在次要构件或次要焊接连接中,可采用断续角焊缝。
断续角焊缝之间得净距,不应大于15t(对受压构件)或30t(对受拉构件),t 为较薄焊件得厚度。
另外还要注意: 部位 项目
构 造 要 求 备 注 焊脚尺寸 hf
上限
;对板边: t1为较薄焊件厚 下限 ;当 t2为较厚焊件厚对自动焊可减1mm;对单面T 型焊应加
1mm
焊缝长度 lw
上限
(受动力荷载); (其她情况); 内力沿侧缝全长均匀分布者
不限 下限 8hf 或 40mm,取两者最大值
端部仅有两侧面角焊缝连
接
长度 lw
距离 l0 t 为较薄焊件厚
端部 转角 转角处加焊一段长度 2hf (两面侧缝时)或用三面围焊 转角处焊缝须连续施焊 搭接连接 搭接最
小长度 5t1或 25mm,取两者最大值 t1 为较薄焊件厚度
对于h f ,称之为焊缝得焊脚高度,而h e 为焊缝得喉部截面高度,就是焊缝
得计算尺度。
——两焊脚边得夹角,
——焊脚尺寸。
焊接应力与焊接变形
钢结构构件或节点在焊接过程中,局部区域受到很强得高温作用,在此不
均匀得加热与冷却过程中产生得变形称为焊接变形表现在构件局部得鼓起、
歪曲、弯曲或扭曲等。
而在焊接后冷却时,焊缝与焊缝附近得钢材不能自由收缩,由此约束而产
生得应力称为焊接应力。
具体分为:纵向应力,沿着焊缝长度方向得应力;横向
应力,垂直于焊缝长度方向且平行于构件表面得应力;厚度方向应力,垂直于
焊缝长度方向且垂直于构件表面得应力。
焊接应力对于焊接构建与结构得影响较大,会使结构提前发生屈服:对常
温下承受静力荷载结构得强度虽然没有影响,但刚度会显著降低;而由于焊接
应力使焊缝处于三向应力状态,在钢结构实际受力过程中,阻碍了塑性变形,
裂纹易发生与发展;对于承受动荷载得构件,焊接应力会降低疲劳强度;对于
受压杆件,焊接变形就是杆件曲率增加,降低了压杆得稳定性。
焊接变形预应力问题对于焊接工艺影响很大,应尽可能避免。
减少焊接应力与焊接变形应从以下几方面着手:
(1)采用适当得焊接程序,如分段焊、分层焊;
(2)尽可能采用对称焊缝,使其变形相反而抵消;
(3)施焊前使结构有一个与焊接变形相反得预变形;
(4)对于小构件焊前预热、焊后回火,然后慢慢冷却,以消除焊接应力。
(5)合理得焊缝设计,包括:避免焊缝集中、三向交叉焊缝;焊缝尺寸不宜太大;焊缝尽可能对称布置,连接过渡平滑,避免应力集中现象;避免仰焊等。
铆接与螺栓连接 铆接与普通螺栓连接在受力效果上就是相同得,只就是施工方法得差异。
而螺栓连接又可以根据受力效果分为普通螺栓与高强螺栓两大类。
普通螺栓
普通螺栓就是以承担剪力与拉力为传力方式得螺栓,可以分为精制(A 、B,A 级用于M24以下,B 级用于M24以上)与粗制(C)两类。
精制螺栓高,加工精度要求与成本较高,栓径与孔径之差为0、5~0、
8mm,I 类孔,使用在构件精度很高得结构,机械结构以及连
接点仅用一个螺栓或有模具套钻得多个螺栓连接得可调
节杆件(柔性杆)上。
粗制螺栓相对较低,栓径与孔径之差为
1~1、5mm,用于抗拉连接、静力荷载下抗剪连接、加防松措施后受风振作用抗剪、可拆卸连接以及安装螺栓、与
抗剪支托配合抗拉剪联合作用等。
从螺栓得受力分析可以瞧到,对于承担剪力得普通螺
栓与铆钉(以下统称螺栓)连接得构件,其受力有以下薄弱
环节,需要注意:
2r
d
螺栓受剪并受侧向挤压作用,因此必须配置足够数量得螺栓以承担剪力;钢板孔挤压,一般钢材与螺栓材料相同,如果螺栓可以承担挤压应力,钢材亦可;钢材在螺栓消弱截面得拉力,这要十分注意,避免
由于螺栓得消弱作用导致钢材被拉断;钢材在螺栓孔到端部得剪切作用,
会产生钢材得破孔,也要注意。
另外,使用连接板得,连接板也要注意以上
作用。
当螺栓穿过得钢板过多时,在侧向力得作用下,螺栓也会弯曲破
坏。
承担拉力得螺栓主要就是被拉断。
螺栓可以根据需要,采取不同得排列方式,并列式、错列式、单排或
双排等多种形式。
高强螺栓
高强螺栓就是在安装时将螺帽拧紧,使螺杆产生预拉力而压紧构件接触面,靠接触面得摩擦来阻止连接板相互滑移,以达到传递外力得目得。
高强螺栓按传力机理分摩擦型高强螺栓与承压型高强螺栓。
这两种螺栓构造、安装基本相同。
但就是摩擦型高强螺栓靠摩擦力传递荷载,所以螺杆与螺孔之差可达1、5~2、0mm。
承压型高强螺栓传力特性就是保证在正常使用情况下,剪力不超过摩擦力,与摩擦型高强螺栓相同。
当荷载再增大时,连接板间将发生相对滑移,连接依靠螺杆抗剪与孔壁承压来传力,与普通螺栓相同,所以螺杆与螺孔之差略小些,为1、0~1、5mm。
摩擦型高强螺栓得连接较承压型高强螺栓得变形小,承载力低,耐疲劳、抗动力荷载性能好。
而承压型高强螺栓连接承载力高,但抗剪变形大,所以一般仅用于承受静力荷载与间接承受动力荷载结构中得连接。