26.1.2反比例函数的图象和性质2 优秀教案

合集下载

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2

人教版九年级数学下册:26.1.2《反比例函数的图象和性质》教案2一. 教材分析《反比例函数的图象和性质》是人教版九年级数学下册第26章第1节的内容。

本节课主要介绍了反比例函数的图象和性质,是学生在学习了正比例函数和一次函数的基础上进行学习的。

通过本节课的学习,使学生能理解反比例函数的概念,会绘制反比例函数的图象,掌握反比例函数的性质,并能应用于实际问题中。

二. 学情分析学生在学习本节课之前,已经学习了正比例函数和一次函数的相关知识,对函数的概念、图象和性质有一定的了解。

但反比例函数的概念和性质与前两者存在较大差异,需要学生在已有的知识基础上进行迁移和拓展。

同时,学生需要理解反比例函数图象的特点,如双曲线、渐近线等,这对学生的空间想象能力有一定要求。

三. 教学目标1.了解反比例函数的概念,掌握反比例函数的性质。

2.学会绘制反比例函数的图象,并能分析反比例函数图象的特点。

3.能将反比例函数应用于实际问题中,提高解决问题的能力。

4.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图象的绘制和分析。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过设置问题引导学生思考,分析案例使学生理解反比例函数的应用,小组合作讨论促进学生交流和拓展思维。

六. 教学准备1.准备反比例函数的相关案例和问题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备反比例函数图象的素材,如图片、图表等。

七. 教学过程导入(5分钟)教师通过展示一些实际问题,如购物时商品的单价和数量的关系,引出反比例函数的概念。

让学生思考并讨论这些问题,引导学生发现其中的规律。

呈现(10分钟)教师通过多媒体展示反比例函数的图象和性质,引导学生观察和分析。

同时,教师给出反比例函数的定义,并解释反比例函数的性质。

操练(10分钟)教师提出一些有关反比例函数的问题,让学生独立解答。

教师选取部分学生的解答进行讲解和分析,引导学生掌握反比例函数的性质。

26.1.2 反比例函数的图象和性质 教案 人教版九年级数学下册

26.1.2 反比例函数的图象和性质 教案 人教版九年级数学下册
通过对上节课的学习回顾,做好本节微课学习的知识准备,有利于学生顺利推进学习进程。
环节2:对比思考(对比一次函数的图象性质增减性的学习,结合反比例函数的图象,初步描述反比例函数图象的增减性)
【解说词】我们在学习一次函数的时候就知道,系数k不仅会影响函数图象的分布,还会影响到图象的上升和下降,也就是增减性。对于反比例函数而言,情况又会如何呢?请大家暂停视频片刻,结合反比例函数图象,独立思考后组织语言尝试描述,反比例函数图象的增减性。
【解说词】其实啊,两位同学的描述都抓住了反比例函数图象增减性的特点,不过还不够全面和准确,在这之前我们需要给出一个重要的前提:在同一象限内。所以最准确的反比例函数增减性的描述应该是:当k>0时,在每一象限内,y的值随x的值增大而减小,图象“下降”;当k<0时,在每一象限内,y的值随x的值增大而增大,图象“上升”。请同学们注意:“在每一象限内”这个前提条件必不可少。你明白了吗?
承接上一环节,学生有很多参差不齐的答案,教师在预设学生错误表达时,选取了两种具有代表性的错误描述语,供学生思考和分辨。学生通过思考、辨别、试举反例等思维活动,去判断学生代表的描述是否有误。这一过程中可能会有学生认同学生代表的说法,也有可能会发现其问题所在,不论结果如何,都需要让学生在此环节中充分的思考和判断。
通过对比学习,不仅回顾了一次函数的图象性质,同时可以参照一次函数的图像性质描述语,初步组织语言进行描述。学生的描述用语可能不规范、不正确,但通过该环节,能够引导学生进行思考、仿读、初步总结。结合图象也能够培养学生数形结合的数学思想。
环节3:交流讨论
微课中通过老师转述两名学生具有代表性的图象增减性描述语,引发学生的对比思考,模拟课堂中师生、生生互动的场景。
本环节是教师需要意识到的关键环节,面对学生的认知不一,需要教师在学生不准确的结论中提出反例或质疑,让学生重新回到起点进行思考:如何改进、更正才能使结论描述更加完善和准确?这其实也是给学生一个自我反思的机会,梳理疑惑,寻找更为准确的描述语。

26.1.2反比例函数的图像与性质 --(教学课件)- 初中数学人教版九年级下册

26.1.2反比例函数的图像与性质   --(教学课件)- 初中数学人教版九年级下册

解:(1)∵这个函数的图象的一支位于第一象限 ∴另一支必位于第三象限
∵这个函数的图象位于第一、三象限
∴m-5>0, 即m>5
例题练习
例2.如图,它是反比例函数
图象的一支,根据图象,回答下
列问题: (1)图象的另一支位于哪个象限?常数m 的取值范围是什么?
(2)在这个函数图象的某一支上任取点 A(x₁,y₁)和点 B(x2,y2).如果 x₁>x2, 那么 y₁ 和y2有怎样的大小关系?
(2)∵m-5>0
∴在这个函数图象的任一支上,y 随 x 的增大而小 ∴ 当x₁>x2时 ,yi<y2
、练习1 1.下列函数中,函数值y随自变量x的值增大而增大的是(D)

解析 :A、
为反比例函数,在x<0 内,函数值y 随自变量x的值增大而增大,并且在x>0 内,
函数值y 随自变量x 的值增大而增大,故选项错误;
用描点法画出反比例函数


列表
的图象
X
-12 -6 -4 -3 -2 -1 1 2 3
12
12 y=
X
-0.5 1
-1.5 -2 -3 0 6 3 2 1.5 1 0.5
-1 -2 -3 -4 -6- 12 12 6
321
描连 点线
观察反比例函数的y=⁶ 与
图象,回答下面的问题:
(1)反比例函数的图象是什么形状?
D.图像经过点(a,a+2),则a=1
练习3
解析:逐项分析如下.
选项
分析
A
3>0,∴图象位于第一、三象限.
是否符合题意 否
B
x≠0,y≠0,故图象与坐标轴无公共点.

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例

人教版九年级数学下册26.1.2反比例函数的图象与性质优秀教学案例
(三)学生小组讨论
在学生掌握了反比例函数的基本性质后,我会组织小组讨论。每个小组选取一个或几个反比例函数,通过绘制图象、分析性质,探讨反比例函数在实际问题中的应用。我会鼓励学生尝试用反比例函数解决一些简单的几何问题,如求两个反比例函数交点的问题。
(四)总结归纳
在总结归纳环节,我会邀请几个小组代表展示他们的讨论成果,让学生通过对比和讨论,总结出反比例函数的普遍性质和图象特征。我会引导学生从数形结合的角度,理解反比例函数的本质,并强调反比例函数在实际问题中的应用价值。
二、教学目标
(一)知识与技能
1.理解反比例函数的定义,掌握反比例函数的一般形式,并能准确表述。
2.学会绘制反比例函数的图象,分析图象特征,总结反比例函数的性质。
3.能够运用反比例函数的性质解决实际问题,提高数学应用能力。
4.掌握反比例函数与一次函数、二次函数等其他类型函数之间的关系,拓展函数知识体系。
(五)实施多元化评价
本案例采用多元化的评价方式,包括自评、互评、师评等,全面评价学生的学习过程和结果。这种评价方式有助于激发学生的学习动力,促使学生反思自己的学习,不断提高。
(二)问题导向
在教学过程中,我将采用问题导向法,引导学生发现问题、提出问题、解决问题。首先,通过提出问题“反比例函数的图象有什么特点?”让学生进行独立思考。然后,组织学生进行小组讨论,共同探讨反比例函数的性质。在学生掌握性质后,再提出问题:“反比例函数在实际生活中有哪些应用?”引导学生将所学知识运用到实际问题中。
(五)作业小结
为了巩固本节课的学习内容,我会布置以下作业:
1.绘制并分析至少三个不同反比例函数的图象,总结它们的性质。
2.结合实际情境,编写至少两个反比例函数的应用问题,并解答。

26.1.2 反比例函数的图象和性质 教案

26.1.2  反比例函数的图象和性质  教案

26.1.2 反比例函数的图象和性质 教案教学目标1.了解反比例函数图象绘制的一般步骤,并学会绘制简单的反比例函数图象.2.根据反比例函数的图象探索反比例函数的性质.3.能利用反比例函数的性质分析并解决一些基本问题,抓住函数的变化规律是由k 决定的这一性质.教学重难点重点:能准确画出反比例函数的图象,根据图象探索并掌握反比例函数的性质. 难点:理解反比例函数的性质,并能灵活应用.教学过程导入我们共同学习了反比例函数的意义,知道了反比例函数在现实生活中处处存在,例如:1.某村的耕地面积为300公顷,该村人口数量为n 人,人均耕地面积为m 公顷/人,则m ,n 之间存在反比例函数的关系,其解析式为m =300n. 2.我们班陈胜男同学将10元全部用来购买铅笔,购买铅笔的支数为x ,每支铅笔的价格为y 元/支,则x ,y 之间存在反比例函数的关系,其解析式为y =10x. 这些函数与一次函数一样,也有自己独特的函数图象,但它们的函数图象是怎样的?通过本节的学习,我们可以了解反比例函数的图象.探究新知探究点一 反比例函数图象的画法【例1】画出反比例函数y =4x的图象. 【解析】根据函数图象的画法,进行列表、描点、连线即可.【解】列表:描点、连线:【方法总结】画函数图象的一般步骤: ①列表;②描点;③连线.探究点二 反比例函数的性质类型一 根据解析式判定反比例函数的性质【例2】已知反比例函数y =-2x,下列结论错误的是 ( ) A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象分布在第二、四象限D .若x >1,则-2<y <0【解析】A.因为-1×2=-2,所以图象必经过点(-1,2),结论正确,不符合题意;B.根据反比例函数的性质可知,该函数图象分别在第二、四象限内y 随x 的增大而增大,B 项忽略了x 的取值范围,结论错误,符合题意;C.由k =-2可知,该函数图象在第二、四象限内,结论正确,不符合题意;D.根据y =-2x的图象可知,在第四象限内,当x >1时,-2<y <0,结论正确,不符合题意.【答案】B类型二 根据反比例函数的性质确定系数的取值范围【例3】在反比例函数y =1-k x的每一条曲线上,y 都随x 的增大而减小,则k 的值可以是 ( )A .-1B .3C .1D .2【解析】∵在反比例函数y =1-k x的每一条曲线上,y 都随x 的增大而减小,∴1-k >0,解得k <1.【答案】A【方法总结】对于函数y =k x,当k >0时,其图象位于第一、三象限,在每个象限内,y 随x 的增大而减小;当k <0时,其图象位于第二、四象限,在每个象限内,y 随x 的增大而增大.熟记这些性质在解题时能事半功倍. 课堂训练:1.长方形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为 ( )A .直线B .双曲线在第三象限的一支C .双曲线D .双曲线在第一象限的一支2.已知反比例函数y =(m -2)52-mx . (1)求m 的值;(2)它的图象位于哪些象限?(3)当12≤x ≤2时,求函数值y 的取值范围. 答案1.D2.解:(1)依题意可得m 2-5=-1且m -2≠0,解得m =-2,∴当m =-2时,函数y =(m -2)52-m x 是反比例函数.(2)当m =-2时,代入函数解析式可得y =-4x. ∵k =-4<0,∴它的图象位于第二、四象限.(3) ∵该反比例函数的图象在每个象限内,y 随x 的增大而增大,且12≤x ≤2, ∴-8≤y ≤-2板书设计:反比例函数的图象和性质1.画图步骤(1)列表;(2)描点、连线.要求:(1)取点要均衡;(2)曲线要“平滑”;(3)不能与x 轴、y 轴相交.2.性质(1)图象是双曲线;(2)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内,y 随着x 的增大而减小;(3)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y 随着x 的增大而增大;(4)双曲线两支向两边无限延伸,与坐标轴没有交点,双曲线两支关于坐标原点成中心对称. 课堂小结本节课学生能够用描点法画反比例函数的图象,并掌握反比例函数的性质.教学反思函数是刻画变量之间关系的数学模型.本节课是学生已学完一次函数,并初步认识、感知反比例函数的概念之后,对反比例函数的图象和性质进一步的掌握.教学中,应从函数的角度加深学生对函数本质意义和研究方法的认识,在探索过程中不断体验数形结合的思想,了解数学模型的应用价值.。

26.1.2反比例函数的图象和性质(第2课时)(教案)

26.1.2反比例函数的图象和性质(第2课时)(教案)

26.1.2反比例函数的图象和性质(第2课时)(教案)(或第二、第四象限),而说图象的两个分支分别在第一、第三象限(或第二、第四象限).(2)反比例函数的增减性不是连续的,因此在谈到反比例函数的增减性时,一般都是在各自的象限内的增减情况.(3)反比例函数的图象无限接近坐标轴,但永远不能和坐标轴相交,也不能“翘尾巴”(4)反比例函数图象的位置和函数的增减性都是反比例系数k的符号决定的;反过来,由双曲线所在位置和函数的增减性,也可以推断出k的符号.如:已知双曲线kyx=在第二、第四象限,则可知k<0.三、典例精析,掌握新知例1 已知反比例函数kyx=(0k≠)的图象经过点A(2,6).(1)这个函数的图象位于哪些象限?y随x 值的增大如何变化?(2)点B(3,4),C(122-,445- ),D(2,5)是否在这个函数的图象上?【分析】由反比例函数的表达式kyx=(0k≠)经过点A,把A点坐标(2,6)代入相应的x,y后,可得k=12,故12yx=;由于k=12>0,知函数的图象位于第一、三象限,在各个象限内y随x值的增大而减小(增减性可先想象出图象,再依据图象特征可作出说明,注意“各个象限”或“各个分支”是描述反比例函数增减性的前提条件,不能漏掉),再把B、C、D三点坐标代入12yx=中可判断B、C、D三点是否在该函数的图象上.【教学说明】本例应先让学生独立思考,锻炼分析问题、解决问题的能力,教师再根据学生的完全情况确定评讲方法.例2 如图是反比例函数5myx-=的图象的一个分支,根据图象回答下列问题:(1)图象的另一个分支位于哪个象限?常数m的取值范围是什么?(2)在这个函数图象的某一支上任取点A(x1,y1)和点B(x2,y2),如果 x1>x2,那么y1与y2的大小关系如何?说说你的理由.【分析】反比例函数的图象只有两种可能,位于第一、第三象限或者位于第二、第四象限.观察图象知,此反比例函数的图象的一支位于第一象限,那么另一支必位于第三象限,而位于第一、三象限的反比例函数的表达式中k>0,即m-5>0,∴ m>5 .而当m>5时,在图象的各个分支上y随x值的增大而减小,故当x1>x2时 y1<y2.【教学说明】本例仍应先让学生自主探索,形成初步认识后,教师再与全班同学一道分析并给出解答过程,让学生通过反思加深对反比例函数的图象及其性质的理解.四、运用新知,深化理解1.如图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限,常数n的取值范围是什么?(2 ) 在这个函数图象的某一支上任取点A (a,b)和B (a' ,b' )如果a<a',那么b与b'的大小关系如何?为什么?2.如图,正比例函数y = kx与反比函数3 yx =的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC.求△ABC的面积.【教学说明】第1题学生能轻松获得结论,而第2题则需教师给予点拨引导,教师可让学生先分别求出S△AOB 和S△BOC,再求出S△ABC. 在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你感觉到本节知识有哪些地方是较难理解的?与同伴交流.课后作业1. 布置作业:从教材“习题26.1”中选取.2. 完成练习册中本课内容.教学反思反比例函数的图象和性质是以前函数内容的延续,也是以后学习二次函数的基础.本课时的学习是学生对反比例函数图象和性质的一个再认知的过程,由于八年级学生是刚刚接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识.另外在教学时,教师要与学生进行互动交流,并积极让学生自主探究反比例函数中k 值的几何意义.。

26.1.2反比例函数的图像与性质(教案)

26.1.2反比例函数的图像与性质(教案)
2.教学难点
-理解反比例函数图像与性质之间的关系,特别是\( x \)接近0时,\( y \)值的变化;
-将反比例函数图像与实际情境联系起来,进行数学建模;
-解决涉及反比例函数的实际问题时,如何提取关键信息,建立数学模型。
举例:在分析反比例函数图像时,难点在于让学生理解当\( x \)接近0时,\( y \)值会无限增大,图像呈现出渐进线。此时,教师可通过动态演示或实际案例(如速度与时间的关系),帮助学生形象理解这一难点。
此外,课堂总结时,我询问了学生们的疑问,他们提出了一些很好的问题,这表明他们在课堂上确实有所思考。我感到欣慰的同时,也意识到自己在解答问题时需要更加耐心和细致,确保每个学生都能跟上课堂节奏。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如\( y = \frac{k}{x} \)(\( k \neq 0 \))的函数。它在描述一些变量关系时非常重要,如在经济学、物理学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以速度与时间的关系为例,当速度固定时,行驶的距离与时间成反比,从而引入反比例函数的概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。通过实践活动和小组讨论,我们加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三、教例函数的定义及其表达形式,强调\( k \neq 0 \)的条件;
-反比例函数图像的特点,包括图像在坐标轴上的分布、对称性等;

人教版九年级数学下册26.1.2反比例函数的K与图形优秀教学案例

人教版九年级数学下册26.1.2反比例函数的K与图形优秀教学案例
7.注重启发式教学,培养学生的创新意识:创设有趣的数学问题,激发学生的思考,培养学生的创新意识,让学生感受数学的价值。
8.及时反馈与指导,关注学生学习进步:在学生完成作业后,教师及时批改并给予反馈,关注学生的知识掌握和能力培养,为学生的持续进步提供指导。
9.教学内容与实际生活紧密结合,提高学生的数学素养:通过生活中的实例,让学生体会反比例函数的实际意义,感受数学与生活的联系,提高学生的数学素养。
5.作业设计具有针对性,提高学生解决问题能力:布置具有针对性的作业,巩固学生对反比例函数知识的理解,提高学生在实际问题中运用反比例函数的能力,培养学生解决问题的能力。
6.结合多媒体教学手段,提高课堂教学趣味性:利用多媒体技术,生的直观感受,增强课堂教学的趣味性。
三、教学策略
(一)情景创设
1.利用生活实际问题,激发学生学习兴趣,引导学生从实际问题中抽象出反比例函数模型。
2.利用多媒体技术,如几何画板、PPT等,展示反比例函数的图象和性质,提高学生的直观感受。
3.创设有趣的数学问题,激发学生的思考,培养学生的创新意识。
在教学过程中,我将注重情景的创设,以生活实际问题为切入点,激发学生学习兴趣。通过多媒体技术的辅助,让学生直观地感受反比例函数的图象和性质,从而更好地理解反比例函数的本质。同时,我将创设一些有趣的数学问题,激发学生的思考,培养学生的创新意识。
让学生以小组为单位,选择一个实际问题,运用反比例函数的知识进行解决,从而提高学生的数学素养。
(四)总结归纳
1.引导学生总结反比例函数的性质及其应用。
通过提问方式,让学生回顾本节课所学内容,引导学生自主总结反比例函数的性质及其应用。
2.强调反比例函数在实际生活中的重要性,激发学生学习兴趣。

26.1.2反比例函数图像和性质(2)

26.1.2反比例函数图像和性质(2)

课题:26.1.2 反比例函数的图象和性质(第2课时)【学习目标】1.理解反比例函数k 值的几何意义,进一步提高从函数图象中获取信息的能力;2.经历用反比例函数的图象和性质解决数学简单问题的过程.【学习重点】用反比例函数的图象和性质解决数学简单问题.【学习难点】用反比例函数的图象和性质解决数学简单问题.【学习过程】一、探究反比例函数k 值的几何意义任务一:如图,点P (2,3),点Q 分别在函数图象上(1)出y 与x 的函数解析式;(2)如果点Q (4,b )在双曲线上,求b 的值;(3)比较矩形AOBP 与矩形CODQ 面积的大小.归纳:反比例函数k 值的意义:反比例函数图象上任意一点作两轴垂线,与两轴围成的矩形面积相等,并且等于 .任务二:如图,点P 是反比例函数y x3=图象上的一点,PD ⊥x 轴于D .则△POD 的面积为 .变式1:直线y =kx 与反比例函数y x6=-的图象相交于点A 、B ,过点A 作AC 垂直于y 轴于点C ,求S △ABC .变式2:如图在坐标系中,直线y x k =+与双曲线k y x=在第一象限交与点A ,与x 轴交于点C ,AB 垂直x 轴,垂足为B ,且S △AO B =1 (1)求两个函数解析式(2)求△ABC 的面积二、课堂小结请谈谈你对反比例函数k 值的几何意义的理解.三、达标检测1. 若反比例函数k y x=的图象经过点(m ,3m ),其中m ≠0,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限2. 函数k y x =的图象经过点(-4,6),则下列个点中在k y x=图象上的是( ) A .(3,8 ) B .(-3,8) C .(-8,-3) D .(-4,-6)3. 已知反比例函数xk y =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。

人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义优秀教学案例

人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义优秀教学案例
人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义优秀教学案例
一、案例背景
本节课的教学内容为人教版九年级数学下册26.1.2反比例函数比例系数K的几何意义。反比例函数是初中数学中的重要内容,对于培养学生的逻辑思维能力、空间想象能力和抽象概括能力具有重要意义。在本节课中,我们需要让学生掌握反比例函数比例系数K的几何意义,理解反比例函数图象的特征,以及能够运用比例系数K解决实际问题。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结学习经验和方法。
2.学生之间进行互评、他评,共同提高学习效果。
3.教师对学生的学习情况进行评价,关注学生的进步和成长。
在教学过程中,我们将注重反思与评价,教师引导学评,共同提高学习效果。最后,教师对学生的学习情况进行评价,关注学生的进步和成长。通过反思与评价,培养学生自我监控、自我反思的能力,提高学生的学习效果。
在案例背景中,我们首先可以通过展示实际生活中的反比例函数现象,如商场打折、人口增长等,引发学生的兴趣和思考。然后,通过引导学生观察反比例函数的图象,让学生发现图象上各点的坐标特点,进而总结出比例系数K的几何意义。接下来,我们可以设计一些具有挑战性的数学问题,让学生在解决过程中深化对反比例函数的理解。最后,通过小组讨论、探究活动等方式,让学生在实践中感受反比例函数的应用价值,提高解决问题的能力。
2.培养学生运用比例系数K解决实际问题的能力,提高学生的数学素养。
3.引导学生掌握反比例函数的基本性质,能够运用反比例函数解决生活中的实际问题。
在教学过程中,我们将通过观察实际生活中的反比例函数现象,引导学生发现反比例函数的比例系数K与图象特征之间的关系。通过设计具有挑战性的数学问题,激发学生的思考,培养学生的解决问题能力。在解决实际问题的过程中,让学生感受数学与生活的紧密联系,体会数学的价值。

26.1.2反比例函数的图像和性质(2)

26.1.2反比例函数的图像和性质(2)

余庆县实验中学九年级(下)数学《三环五步》课堂教学教学设计(师生共用)上课时间2018年月日(第周星期)总第课时课题26.1.2反比例函数的图像和性质(2)主备人黄行龙二次备课人黄行龙九年级()班学生学习目标1、进一步掌握反比例函数的性质;2、掌握过反比例函数图像上一点作两坐标轴的垂线,此垂线段与两坐标轴围成的矩形的面积问题(k的几何意义);3、会通过反比例的图像比较两个函数的函数值的大小,体会数形结合的数学思想。

学习重点(1)掌握k的几何意义;(2)会通过反比例函数的图像比较两个函数的函数值的大小;学习难点体会数形结合的数学思想.使用要求1、自学P2—3中的内容;2、独立完成学案,然后小组交流、展示。

小组评价评价人签名2018年月日学习过程备注一、自主预习探究问题K>0 k<0图象性质二、自主学习感受新知1、怎样才能判断出一个点在不在函数图象上呢?2、怎样根据实际情况确定自变量的取值范围?3、阅读课本P7—8例题3、例题4:4、交流、讨论第1、2小问。

学 习 过 程备 注 三、自主交流 运用新知。

1、反比例函数 y= 的图象过点(-4,-2),那么它的解析式为________; 当x=1时,y=____。

2、已知点A (-3,a ),B (-2,b ),在双 曲线 y =- 上,则 a :b= 。

3、已知点A(-2,y 1),B(-1,y 2)都在反比例函数的图象上,则y 1与y 2的大小关系(从大到小)为 . 4、已知点A(-2,y 1),B(-1,y 2)都在反比例 函数 的图象上,则y 1与y 2的大 小关系(从大到小)为 。

5、已知点A(x 1,y 1),B(x 2,y 2)且x 1<0<x 2都在反比例函数 的图象上,则y 1与y 2的大小关系(从大到小)为 。

6、如图,点P 是反比例函数图象上的一点,过点P 分别 向x 轴、y 轴作垂线,若阴影部分面积为3,则这个反比 例函数的关系式是 。

人教版九年级下册26.1.2反比例函数的图象和性质课程设计

人教版九年级下册26.1.2反比例函数的图象和性质课程设计

人教版九年级下册26.1.2反比例函数的图象和性质课程设计一、课程背景本课程是人教版九年级下册数学课程中与反比例函数相关的一节课,主要介绍了反比例函数的图象和性质。

在教学过程中,应该注重学生的活动性和参与性,激发他们的学习兴趣,培养他们的数学思维能力。

二、教学目标本课程的教学目标有以下几点:1.了解反比例函数的定义和表示方法;2.掌握反比例函数的图象绘制方法;3.理解反比例函数的性质,包括零点、渐近线、单调性等;4.能够在实际问题中运用反比例函数进行建模和求解。

三、教学重点和难点本课程的教学重点和难点在于:1.反比例函数的图象绘制方法;2.反比例函数的性质及其应用。

四、教学过程设计(一)引入新知识1.通过介绍银行利率和每年用电量与年电费的关系等实际问题,引导学生认识反比例函数的概念和应用;2.通过对反比例函数定义和表示方法的讲解,使学生了解反比例函数的基本特性。

(二)探究性学习1.提供反比例函数的图象绘制方法,并让学生自行探究反比例函数图象的规律;2.通过绘制多个反比例函数的图象,让学生深入理解反比例函数图象的特点,掌握图象的绘制方法。

(三)知识总结和巩固1.通过讲解反比例函数的性质,如零点、渐近线和单调性等,让学生掌握反比例函数的重要性质;2.提供大量实际应用例题,让学生运用反比例函数进行建模和求解,加深对反比例函数的认识。

(四)拓展与应用1.通过介绍反比例函数在各个领域中的应用,鼓励学生深入研究反比例函数的其他性质和应用;2.提供适当的拓展教材和参考书目,鼓励学生在课外深入了解反比例函数的相关知识。

五、教学评估1.通过完成课堂练习和作业,检查学生掌握反比例函数的图象绘制方法和性质的能力;2.提供大量实际应用例题,检查学生运用反比例函数进行建模和求解的能力;3.在教学过程中,通过课堂互动和个别辅导,了解学生的学习情况和思维能力,对课程进行动态调整。

六、教学资源1.课件:提供反比例函数的定义、表示和图象绘制方法等教学材料,方便学生跟随上课内容;2.教材:推荐使用人教版九年级下册数学教材,便于学生系统掌握反比例函数的相关知识;3.实际应用例题集:提供反比例函数在实际问题中的应用例题,方便学生进行综合实践。

九年级数学下册 26.1.2 反比例函数的图象和性质(第2课时)教案 (新版)新人教版

九年级数学下册 26.1.2 反比例函数的图象和性质(第2课时)教案 (新版)新人教版

26.1.2 反比例函数的图象和性质第二课时一、教学目标1.核心素养通过学习反比例函数的图象和性质,充分体现几何直观,渗透模型思想.2.学习目标(1)进一步理解和掌握反比例函数的图象和性质.(2)灵活运用反比例函数的图象和性质解决问题.(3)领会反比例函数的解析式与图象之间的联系,体现数形结合及转化的思想方法.3.学习重点灵活运用反比例函数的图象和性质解决问题.4.学习难点与反比例函数相关的面积的计算,以及自变量和函数值大小的比较.二、教学设计(一)课前设计1.预习任务任务1阅读教材P7-P8,思考:怎样用待定系数法求反比例函数的解析式?任务2怎样判定一个点是否在反比例函数的图象上?任务3思考1:过反比例函数图象上任意一点作坐标轴的垂线,与坐标轴形成的矩形面积与k有什么关系?思考2:过反比例函数图象上任意一点作某一个坐标轴的垂线,并将这个点与原点相连,形成的三角形的面积积与k有什么关系?2.预习自测1.一个反比例函数的图象经过点(2.5,-3),则这个函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三答案:B2.如图,点A为反比例函数3yx=上的任一点,过点A作AB⊥x轴于点B,则AOBS∆等于()A .3B .32C .1D .无法确定 答案:B3.若点(1.5,2)在反比例函数xk y =的图象上,则k = ,在图象的每一支上,y 随x 的增大而 .答案:3,减小(二)课堂设计1.知识回顾(1)反比例函数的图象是双曲线.(2)当k >0时,它的两个分支位于一、三象限;在每一个象限内,y 随x 的增大而减小.(3)当k <0时,它的两个分支位于二 、四象限;在每一个象限内,y 随x 的增大而增大.(4)反比例函数的图象既关于x 轴对称,还关于y 轴对称,也关于原点对称.(5)同学们预习本课,知道过双曲线上一点作坐标轴的垂线,与坐标轴围成的矩形面积等于|k |.2.问题探究问题探究一 感受“数”与“形”结合的必要性●活动一 回顾旧知,加深理解问题1 下列反比例函数:①2y x =-;②1y 3x =;③107y x =-;④3y 100x=. (1)图象位于第一、三象限的是 ;(2)图象位于第二、四象限的是 .教师提出如下问题,学生独立思考并写出答案.(1)上述四个答案中,k 的值分别是多少?(2)当k 0>时,反比例函数的图象分别位于第几象限?(3)当k 0<时,反比例函数的图象分别位于第几象限?问题 2 在反比例函数:①2y x =-;②1y 3x =;③107y x =-;④3y 100x=的图象上,11(x ,y )、22(x ,y )分别是图象上同一象限内的点:(1)若12x x <,则12y y <的函数是 .(2)若12x x <,则12y y >的函数是 .教师提出如下问题,学生独立思考并回答,然后独立写出答案,再交流反馈.(1)反比例函数2y x=-的图象位于哪几个象限?y 随x 的变化趋势是什么? (2)反比例函数107y x =-的图象位于哪几个象限?y 随x 的变化趋势是什么? 问题探究二 探究反比例函数图象的性质●活动一 探究矩形面积与k 值例1 如图,点A 为2y x=上的任意一点,过点A 分别作x 轴和y 轴的垂线,垂足分别为点B 和点C ,求矩形ABOC 的面积.【知识点:反比例函数的性质,矩形的面积;数学思想:数形结合】详解:设点A 的坐标为(a ,b),则矩形的面积为ab∵x2y =过点A (a ,b ) ∴ab=2,即矩形的面积刚好等于反比例的k 值2.●活动二 若将反比例函数的解析式改为xk y =,请模仿上述解答过程得出准确答案.详解:设点A 的坐标为(a ,b),则矩形的面积为ab∵xk y =过点A (a ,b ) ∴ab=k ,即矩形的面积刚好等于反比例的k 值.●活动三 探究三角形面积与k 值例2 如图,点A 为x k y =上的任意一点,过点A 分别作x 轴的垂线,垂足为点B ,求三角形ABO 的面积.【知识点:反比例函数的性质,三角形的面积;数学思想:数形结合】详解:设点A 的坐标为(a ,b),则三角形ABO 的面积为ab 21 ∵xk y =过点A (a ,b ) ∴ab k =,即ab k = ∴k 21S ΔABO =,即△ABO 的面积刚好等于k 的绝对值的一半. 问题探究二 反比例函数图象离原点的距离与k 值的关系在同一坐标系中,作x 1y =、x 2y =、x 3y =、x 4y =的图象,如图. 可以发现,当k>0时,随着k 的增大,反比例函数xk y =的图象的位置相对于原点越来越远.1x =2x在同一坐标系中,作出一系列k <0反比例函数xk y =的图象. 可以发现,当k <0时,随着k 的增大,反比例函数xk y =的图象的位置相对于原点越来越近. 综上所述,在同一坐标系中,作多个反比例函数x k y =的图象. 可以发现,当|k |越大时,反比例函数xk y =的图象的位置相对于原点越来越远.问题探究三 反比例函数性质的应用.●活动一 面积与k 的关系的应用例3 如图,正比例函数x y =与反比例函数xy 1=的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )A .1B .2C .23D .25 【知识点:反比例函数的性质;数学思想:数形结合】详解:设点B 的坐标为(m ,n)∵反比例函数x y 1=过点B(m ,n) ∴ mn=1 ∴2121)()(21==-•-•=∆mn n m S BOC 由反比例函数的对称性知:点A 与点B 关于原点O 对称,即AO=BO∴BOC AOB S S ∆∆=2=1方法2:由反比例函数的性质知:21k 21S ΔBOC =⨯= ∴由对称性知OA=OB ,BOC AOB S S ∆∆=2=1.●活动二 反比例函数图象与性质的关系例4 已知反比例函数的图象经过点A (2,6).(1)反比例函数的图象在第几象限?y 随x 的增大而如何变化?(2)点B (3,4),C (-212,544-),D (2,5)是否在这个反比例函数的图象上? 【知识点:反比例函数的性质;数学思想:数形结合】师生共同分析,教师引导并提出下列问题:(1)点A (2,6)在图象上的含义是什么?(2)图象的位置由哪两个量来确定?我们如何救出这个量?(3)反比例函数y 随x 的变化情况与哪个量有关?y 随x 的变化情况有没有限制条件?(4)某点不在函数图象上的含义是什么?学生解答,在小组里讨论,互相检查,小组代表展示解答过程.详解:(1)设反比例函数的解析式为x k y =∵它过点(2,6)∴k xy 2612==⨯=,它的图象过一、三象限;在每一个象限内,y 随x 的增大而减小.(2)∵12y x= ∴x 3=时,y 4=x =-122时,244y 455=-=- x 2=时,y 6=∴点B 和点C 在此反比例函数上,而点D (2,5)不在这个反比例函数的图象上. ●活动三 拓展提高 活学活用例5 过反比例函数)01>=x xy (的图象上的任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1、 S 2,则它们的大小关系为( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定 【知识点:反比例函数的性质;数学思想:数形结合】详解:∵2k S S ΔBOD ΔAOC == ∴COE COE S S ∆∆-=-ΔBOD ΔAOC S S ,即S 1=S 2,故先C .3.课堂总结【知识梳理】(1)判断反比例函数的图象的两个分支在哪些象限,只需判断k 的正负即可. 当k 为正时,它的两个分支分别在一、三象限;当k 为负时,它的两个分支分别在二、四象限.(2)判断一个点是否在函数图象上,只需将它的横(纵)坐标代入求出纵(横)坐标,如果刚好相等,则表示这个点在在此函数图象上;若求出的值与告知的坐标不相等,则说明这个点不在函数的图象上.(3)过反比例函数的图象上任一点作坐标轴的垂线,它们与坐标轴围成的面积等于|k |.(4)过反比例函数的图象上任一点作某一坐标轴的垂线,则这个点与垂足和原点围成的三角形面积等于k 的绝对值的一半.【重难点突破】(1) 过反比例函数的图象上任一点作坐标轴的垂线,它们与坐标轴围成的面积等于k 的绝对值.利用与坐标轴围成矩形面积求k 时特别要注意,主要是图象过二、四象限时容易出现符号错误.(2) 过反比例函数的图象上任一点作某一坐标轴的垂线,则这个点与垂足和原点围成的三角形面积等于k 的绝对值的一半.利用三角形面积求k 时特别要注意,主要是图象过二、四象限时容易出现符号错误.(3)判断一个点是否在反比例函数图象上时,只需要将它的一个坐标代入,若另一个坐标刚好也相等,则函数必过这一点;否则函数不过这个点.4.随堂检测1.如图,点P 是反比例函数2y x=-图象上的一点,若PD ⊥x 轴于点D ,则△POD 的面积为( ).A .1B .2C .4D .12 答案:A解析:2.如图,点P 是反比例函数xm y =图象上第二象限内的一点,且矩形OEPF 的面积为3,则m 的值为( ).A .3B .6C .-3D .-1.5 答案:C解析:3.如图,点P 是反比例函数xm y =图象上的一点,若PD ⊥x 轴于点D ,△POD 的面积为2,则m 的值为( )A .-2B .-4C .-1D .4答案:B解析: 4. 反比例函数xa y =的图象上有一点A ,AB ∥x 轴交y 轴于点B ,△ABO 的面积为1,则反比例函数的解析式为( )A .2x 1y -=B .x 1y -=C .x2y -= D .4x 1y -= 答案:C解析: 5.如图,A 、B 两点在双曲线xy 4=上,分别经过A 、B 两点向坐标轴作垂线段,已知1阴影=S ,则12S S +=( )A .3B .4C .5D .6 答案:D解析:。

26.1.2 反比例函数的图象和性质人教版教案设计

26.1.2 反比例函数的图象和性质人教版教案设计

《反比例函数的图象与性质》教学设计教学环节(二)师生活动类比探究1.例2 画出反比例函数6yx与12yx的图象。

(我们用什么方法画反比例函数的图象呢?有哪些步骤?)分析:所要画的图象是反比例函数的图象,自变量的取值范围是x≠0,怎样取值比较恰当呢?x…-12-6-4-3-2-11236yx…-1.5-26212yx…-1-2-4-6124观察反比例函数6yx与的图象,回答下列问题:(1)每个函数的图象分别位于哪些象限?(2)在每一个象限内,随着x的增大,y如何变化?你能由他们的解析式说明理由吗?(3)对于反比例函数(0)ky kx,考虑问题(1)(2),你能得出同样的结论吗?2.画一画:回顾我们利用函数图象,从特殊到一般研究反比例函数(0)ky kx的性质的过程,你能用类似的方法研究反比例函数(0)ky kx的图象和性质吗?请你借鉴画反比例函数6yx的图象的经验,在同一平面直角坐标系中画出反比例函数的图象,并说一说该函数图象的特征。

3.想一想:反比例函数6yx与6yx的图象有什么共同特点?有什么不同点?不同点由什么决定?他们有什么联系?12yx6yx教学环节(四)师生活动基础闯关1.反比例函数5yx的图象大致是()2.已知反比例函数4kyx若函数的图象位于第一三象限,则k_____________;若在每一象限内,y随x增大而增大,请写出一个符合条件的k的值:4.画出函数4yx的图象:(1)列表(填空):(2)描点连线:(3)由图象可知,函数4yx也由条曲线组成,分别位于第象限,试猜想:3yx的图象位于第象限.x…-8 -5 -4 -2 -1 1 2 4 5 8 …y……设计意图检验学生对本课知识的掌握及应用情况。

通过练习,既培养学生思维的敏捷性,又激发学生的参与和竞争意识.在回答过程中,教师给予适当评讲,并积极调动学生的参与热情,让整个课堂充满活跃的气氛.教学环节(五)师生活动中考链接1.已知k<0,则函数12,ky kx yx在同一坐标系中的图象大致是( )思考:把条件“k<0”改为“k≠0”结果还是一样吗?2.已知反比例函数)0≠(kxky-=的图象在第二、四象限,那么一次函数y=kx-k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限3.函数kyx与)0≠(2kkkxy-=在同一平面直角坐标系中的图象可能是()4.(2017江西)如图,直线)0≠(11kxky=与双曲线2(0)ky xx相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将AOBRt△沿OP 方向平移,使点O移动到点P,得到''PBA△ .过点A'作'A C y轴交双曲线于点C。

人教版九年级数学下册26.1.2反比例函数的系数K的几何意义优秀教学案例

人教版九年级数学下册26.1.2反比例函数的系数K的几何意义优秀教学案例
(二)讲授新知
1.通过讲解反比例函数系数K的几何意义,使学生理解系数K与函数图像之间的关系。
2.利用图形和实例,直观地展示反比例函数系数K的几何意义,帮助学生建立空间想象能力。
3.引导学生通过观察、分析、归纳,总结反比例函数系数K的几何意义,培养学生自主学习的能力。
(三)学生小组讨论
1.将学生分成小组,给出具有挑战性和启发性的问题,让学生在小组内进行讨论、交流。
人教版九年级数学下册26.1.2反比例函数的系数K的几何意义优秀教学案例
一、案例背景
本节课的教学内容为人教版九年级数学下册26.1.2反比例函数的系数K的几何意义。反比例函数是初中数学中的重要内容,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。系数K在反比例函数中的几何意义,是理解反比例函数本质的关键。
3.引导学生归纳总结本节课的主要内容,确保学生能够牢固掌握反比例函数系数K的几何意义。
(五)作业小结
1.布置具有针对性的作业,让学生巩固本节课所学内容,提高运用反比例函数系数K解决实际问题的能力。
2.要求学生在作业中运用所学知识,解决实际问题,培养学生的实践操作能力。
3.教师及时批改作业,给予学生反馈,指导学生改进学习方法,提高学习效果。
4.直观展示,加深理解:利用图形和实例,直观地展示反比例函数系数K的几何意义,帮助学生建立空间想象能力,加深对反比例函数系数K的理解。
5.总结归纳,巩固知识:通过归纳总结,使学生能够牢固掌握反比例函数系数K的几何意义,布置具有针对性的作业,巩固所学知识,提高学生的实践操作能力。
2.引导学生运用反比例函数系数K的几何意义,解决实际问题,提高学生的合作意识和问题解决能力。
3.教师巡回指导,给予学生必要的帮助和指导,确保讨论的顺利进行。

26.1.2反比例函数图像和性质教学设计

26.1.2反比例函数图像和性质教学设计
当$x$从正无穷大逐渐减小到$0$(或从负无穷大逐渐增大到$0$),$y$从$0$ 逐渐增大到正无穷大(或从$0$逐渐减小到负无穷大),即双曲线无限接近于坐 标轴但不与坐标轴相交。
反比例函数的渐近线是坐标轴,即$x$轴和$y$轴。当$x$趋近于正无穷或负无穷 时,$y$趋近于$0$;当$y$趋近于正无穷或负无穷时,$x$趋近于$0$。
题。
过程与方法
通过探究、观察、归纳等过程,培 养学生的数学思维和自主学习能力 。
情感态度与价值观
培养学生严谨的数学态度,感受数 学之美,增强学习数学的兴趣和信 心。
教学内容
反比例函数的概念及表达式; 反比例函数的图像特征; 反比例函数的性质及应用。
教学重点与难点
教学重点
反比例函数的概念、图像特征和 性质。
分组讨论生活中遇到的类似现象或应用实例
学生分组,每组选择一个与反 比例函数相关的生活现象或应 用实例进行讨论。
讨论内容包括:现象或实例的 描述、与反比例函数的联系、 数学模型的建立等。
各组选派代表进行汇报,分享 讨论成果,其他同学可提出问 题和建议。
思考如何将所学知识应用到其他领域或场景中
学生思考反比例函数在其他领域或场景中的应用,如物理、化学、经济等。
k为比例系数,决定了双曲线的形状 和位置。当k>0时,双曲线位于第一 、三象限;当k<0时,双曲线位于第 二、四象限。
反比例函数在定义域内是连续的,但 在x=0处没有定义,因此不连续。
03
反比例函数图像特征
Chapter
图像形状与位置
01
反比例函数的图像是一双曲线,且双曲线位于第一、三象限或第二、四象限。
奇偶性
反比例函数$y = frac{k}{x}$($k neq 0$)是奇函数。因为对于定义 域内的任意$x$,都有$f(-x) = f(x)$,满足奇函数的定义。

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计

人教版数学九年级下册26.1.2《反比例函数的图象和性质》教学设计一. 教材分析人教版数学九年级下册26.1.2《反比例函数的图象和性质》是反比例函数部分的重要内容。

本节内容是在学生已经掌握了比例函数的知识基础上进行学习的,通过本节课的学习,使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质,并能运用反比例函数解决一些实际问题。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于比例函数有一定的了解,但反比例函数作为一种新的函数形式,对学生来说还比较陌生。

因此,在教学过程中,需要引导学生通过观察、分析、归纳等方法,自主探究反比例函数的图象和性质,提高学生的动手操作能力和思维能力。

三. 教学目标1.知识与技能:使学生理解反比例函数的概念,会画反比例函数的图象,了解反比例函数的性质。

2.过程与方法:通过观察、分析、归纳等方法,培养学生自主探究的能力。

3.情感态度与价值观:激发学生学习函数的兴趣,培养学生的团队协作精神。

四. 教学重难点1.反比例函数的概念及其图象的画法。

2.反比例函数的性质及其运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究,培养学生的动手操作能力和思维能力。

六. 教学准备1.教学课件:制作反比例函数的图象和性质的课件,用于辅助教学。

2.学生活动材料:反比例函数图象和性质的练习题,用于巩固所学知识。

3.教学设备:投影仪、计算机等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾比例函数的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示反比例函数的图象和性质,引导学生观察、分析,并总结反比例函数的特点。

3.操练(10分钟)教师布置练习题,学生独立完成,巩固所学知识。

教师选取部分学生的作业进行讲解和点评。

4.巩固(5分钟)教师通过提问方式检查学生对反比例函数图象和性质的掌握情况,并对学生的回答进行指导和纠正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26.1.2 反比例函数的图象和性质
知能准备文档设计者:设计时间:文档类型:文库精品文档,欢迎下载使用。

Word精品文档,可以编辑修改,放心下载
【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质. 2、能用反比例函数的定义和性质解决实际问题.
【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质
【学思指导】教法:讲授法、对比法
学法:类比法、数形结合法
学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征.
【板书设计】
【课前预习】
1.若y=(21)(1)n n x
-+是反比例函数,则n 必须满足条件 n ≠1
2或
n ≠-1 .
2.用描点法画图象的步骤简单地说是 列表 、 描点 、 连线 .
3.试用描点法画出下列函数的图象:(1)y=2x ; (2)y=1-2x .
设计意图:通过回忆,学会用描点法画函数的图象
课堂引讨——【展示互动】
问题:我们已知道,一次函数y=kx+b (k ≠0)的图象是一条直线,•那么反比例函数y=k
x
(k 为常数且k ≠0)的图象是什么样呢? [尝试] 用描点法来画出反比例函数的图象. 画出反比例函数y=6x 和y=-6x
的图象.
解:列表
思考:取什么值更易描出来
x …-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …y=6
x
-1 -1.
5
-2 -6 3 1
y=-
6
x
1 1.
2
3 6 -1.
5
(请把表中空白处填好)
描点,以表中各对应值为坐标,在直角坐标系中描出各点.
连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来
探究反比例函数y=6
x
和y=-6
x
的图象有什么共同特征?它们之间有什么关系?
做一做把y=6
x
和y=-6
x
的图象放到同一坐标系中,观察一下,看
它们是否对称.
归纳:反比例函数y=6
x 和y=-6
x
的图象的共同特征:
(1)它们都由两条曲线组成.
(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x 轴、y轴).
(3)反比例函数的图象属于双曲线.
此外,y=6
x 的图象和y=-6
x
的图象关于x轴对称,也关于y轴对
称.
做一做在平面直角坐标系中画出反比例函数y=3
x 和y=-3
x

图象.
交流两个函数图象都用描点法画出?
【分析】由y=6
x 和y=-6
x
的图象及y=3
x
和y=-3
x
的图象知道,
(1)它们有什么共同特征和不同点?
(2)每个函数的图象分别位于哪几个象限?
(3)在每一个象限内,y随x的变化而如何变化?
猜想反比例函数y=k
x
(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?
【归纳】(1)反比例函数y=k
x
(k为常数,k≠0)的图象是双曲线.
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.
(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.
设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性
精编精练
(k≠0)例题指出当k>0时,下列图象中哪些可能是y=kx与y=k
x
在同一坐标系中的图象()
【分析】对于y=kx来说,当k>0时,图象经过一、三象限,
来说,当k>0时,图象当k<0时,图象经过二、四象限;对于y=k
x
在一、三象限,当k<0时,图象在二、四象限,所以应选B.
备选例题
1.请你写出一个反比例函数的解析式,使它的图象在第一、三象限.
2.如图所示的函数图象的关系式可能是(• )
A .y=x
B .y=1
x
C .y=x 2
D .y=
1
||
x 设计意图:通过具体的习题使学生加深对本部分知识的理 解能解决具体问题。

.
即时反馈1、已知反比例函数k y x
的图像,如图, 请判断k 是正数还是负数,如果 A (-3, y 1)B (-1, y 2 )是该图像上 的两点,那么y 1与y 2的大小关系 是怎样的? 目标归结:
1.画反比例函数的图象步骤. 2.反比例函数的性质.
3.反比例函数的图象在哪个象限由k 决定,且y 值随x 值变化只能在“每一个象限内”研究.
4.在y=k x
(k ≠0)中,由于x ≠0,同时y ≠0,因此双曲线两个分支不可能到达坐标轴.
目标达成:【作业跟进】分层布置A B C
B A 2
4 6 ---
4 - 2 6 --0 x y
1.已知反比例函数y=k x
的图象如图所示,则k > 0, 在图象的每一支上, y 值随x 的增大而 减小 .
2.下列图象中,是反比例函数的图象的是 (D )
3.在反比例函数y=k x
(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0,则y 1-y 2的值为 (A )
(A )正数 (B )负数 (C )非正数 (D )非负数 4.已知反比例函数y=
2
k x 的图象在第一、三象限内,则k 的值可是________(写出满足条件的一个k 值即可).
5.在直角坐标系中,若一点的横坐标与纵坐标互为倒数,•则这点一定在函数图象上 y=1x
(填函数关系式).
6.若一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数y=
kb
x
的图象一定在 二、四 象限. 7.两个不同的反比例函数的图象是否会相交?为什么?
【答案】不会相交,因为当k1≠k2时,方程1k
x =2k
x
无解.
8.点A(a,b)、B(a-1,c)均在反比例函数y=1
x
的图象上,若a<0,则b < c.【纠错补漏】
【教学反思】
可以编辑的试卷(可以删除)。

相关文档
最新文档