船模自航试验及实船性能预估船舶阻力与推进

合集下载

第六章船模自航试验及实船性能预估船舶阻力与推进

第六章船模自航试验及实船性能预估船舶阻力与推进

第六章 船模自航试验及实船性能预估为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。

船模自航试验是分析研究各种推进效率成分的重要手段。

对于给定的船舶来说,通过自航试验应解决两个问题:① 预估实船性能,即给出主机马力、转速和船速之间的关系,从而给出实船的预估航速,验证设计的船舶是否满足任务书中所要求的航速。

② 判断螺旋桨、主机、船体之间的配合是否良好。

如果配合不佳,则需考虑重新设计螺旋桨。

此外,根据实船试航结果与相应的船模自航试验数据,可以进行船模及实船的相关分析,积累资料以便改进换算办法,使船模试验预报实船的性能更正确可靠。

§ 6-1 自航试验的相似条件及摩擦阻力修正值一、相似定律在船模阻力试验时,我们只满足了傅氏数相同的条件,对于船模的雷诺数只要求超过临界数值。

因此,mm ss g g L V L V =上式中,下标带m 者表示模型数值,带s 者表示实船数值(以下相同)。

在螺旋桨敞水试验时,只满足进速系数相同的条件,对于螺旋桨模型的雷诺数也只要求超过临界数值,因此,mm Am s s As D n VD n V = 在进行船模的自航试验时,两者都要求满足,根据几何相似,有:λD DL L ==ms m s 则满足傅氏数相等时有: λV V /s m = (6-1)满足进速系数相等时有:λn V n V mAms As = 由于 ()s s As 1V ωV -=,()m m Am 1V ωV -= 故()()λn Vωn Vωmmmsss11-=-或 ⎪⎪⎭⎫⎝⎛--=s ms m 11ωω λn n 假定伴流无尺度作用,则m s ωω=,因此,可得:λn n s m = (6-2)(6-1)及(6-2)两式是船模自航试验应满足相似定律的条件,由于船后螺旋桨满足了进速系数相等的条件,因此在不考虑尺度作用的情况下,螺旋桨实桨及其模型在推力、转矩及收到马力方面存在下列关系:⎪⎪⎪⎭⎪⎪⎪⎬⎫===5.3ms Dm Ds 4ms m s 3ms ms λρρP P λρρQ Q λρρT T (6-3)(6-3)式只对螺旋桨说来是正确的,但自航试验是把螺旋桨与船体联系起来统盘考虑的。

船模自航试验

船模自航试验

强迫自航法
自由自航法
图1 此种方法在欧洲大陆、美国和日本应用最广,故俗称大陆法。在进行自航试验时,按船模及其实船傅 氏数相等的条件选定若干个船模试验速度,对每一选定的速度预先决定其摩擦阻力修正值。各种测量仪器的布置 如图1所示,阻力仪上钢丝经导轮连接于船模上A点处。在进行试验时,阻力仪砝码杆上所挂之砝码重量相应于摩 擦阻力的修正值。然后开动拖车,并借制动装置迫使船模与拖车一起进行加速,在加速过程中调整螺旋桨的转速。 待拖车达到所需之船模速度时,将制动装置松开,使船模的运动不受拖车影响,并进一步调整螺旋桨的转速,使 拖车速度和船模速度相同,这时船模处于稳定的自航状态,即开始记录该状态下拖车的速度(即船模速度)、螺 旋桨的推力、转矩及转速。
谢谢观看
简介
简介
船舶设计过程中为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作 用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。通过自航试验可以得知船 舶的如下内容:1)估算实船的航行性能,即主机马力、转速和船速之间的关系;2)分析推进效率的各种成分, 为设计合理的推进器提供资料;3)比较船型快速性能的优劣。
在科学研究中,有时需对一系列的模型进行自航试验,以便全面地分析螺旋桨与船体问的相互作用问题。在 这种情况下,并无对应的实船存在,故常修正到一航船模在螺旋桨推力和拖车上的强制力作用下运动,亦即借调整强制力以保持船模和拖车的 速度相一致。当桨模推进船模之速度大于拖车的速度时,则拖车将对船模施以附加阻力延缓其运动速度(此时阻 力仪摆轮上的钢丝应经过导轮系于船模上的B点,如图1所示),反之,当船模的速度小于拖车的速度时,则拖车 将对船模施以拉力增加其运动速度(此时阻力仪摆轮上的钢丝应经过导轮系于船模上的A点,点A与点B的位置应 在桨模轴线附近)。显然,在拖车对自航船模不起作用时(桨模本身推进船模之速度恰为拖车的速度,强制力为 零时),就相当于自由自航状态。

船模实训报告

船模实训报告

网络教育学院船模性能实验》实验报学习中心:层次:专升本专业:船舶与海洋工程学号:学生:完成日期: 2013年2月6日《告实验报告一一、实验名称:船模阻力实验二、实验目的:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。

其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。

(2)确定设计船舶的阻力性能;对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。

(3)预报实船性能;船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。

(4)系列船模实验;为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。

此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。

(5)研究各种阻力成分实验;为了研究分类,确定某种阻力成分,必须进行某些专门体对阻力的影响。

(7)流线实验;在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。

(8)航行状态的研究;在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。

三、实验原理:1.简述水面船舶模型阻力实验相似准则。

(1)船模与实船保持几何相似。

(2)船模实验的雷诺数达到临界雷诺数以上。

(3)船模与实船傅汝德数相等。

2.分别说出实验中安装激流丝和称重工作的作用。

称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。

3.船模阻力实验结果换算方法有哪些???1mm金属丝缚在船模的19站处使其在金属丝以后的边界层中产生紊流。

2)称重工作:准确称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。

3.船模阻力实验结果换算方法有哪些?常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。

二因次方法亦称傅汝德方法;三因此方法为1978年ittc性能委员会推荐的换算方法。

船模自航试验指导书

船模自航试验指导书

T=
Rtm − Z 1− t
2. 在进行试验时,阻力仪砝码杆上的砝码重量相应于预定的强制力 Z。由拖车通过刹车装置带动船 模前进,同时启动螺旋桨,当拖车加速到预定速度时,保持匀速前进,松开刹车装置,使船模于 拖车脱开,同时调节螺旋桨转速使其达到预计的推力 T,使船模与拖车等速前进,待稳定后,记 录船模速度 V,转速 n,强制力 Z,推力 T,转力矩 Q。依上述方法系统改变强制力进行试验,可 得对应于一个速度的一组自航数据。改变试验速度依次进行试验,可得相应速度的若干组自航数 据。 六、试验数据的整理和分析 1. 对测量数据进行速度修正 在对某一预定速度 Vm 进行试验时,一般需要变更强制力 Z 五次,即该组试验要进行五次。由于很难 保证五次测得的速度都是预定的试验速度 Vm ,故需将试验测得的数据修正到对应于预定苏打 Vm 的数值。 如某次试验测得的船模速度为 V0 ,其相应测得的数据为 n0 , T0 , Q0 , Z 0 ,则可用下述方法将其修正至预定速
[Cts ]m =
Rts 1 ρ sVs2 S s 2
,表示由船模阻力换算所得的实船总阻力系数。
在实船性能预估中,其总阻力系数应取为 [C ts ]s = [C ts ]m + ∆CT 。 ∆CT 称为实船性能的相关因子。根 据交大水池的分析结果
∆CT = 0.1831 − 1.6154 × 10 −10 RN ( RN 为实船雷诺数) 。
船模自航试验指导书
一、船模自航试验的目的: 通过船模阻力试验及螺旋桨模型敞水试验,我们分别求得船体阻力曲线及螺旋桨的敞水性征曲线,但 是,实际上船体和螺旋桨是一个整体,当船舶在船后螺旋桨工作时运行,它们之间彼此相互影响附近的速 度场和压力场,此种影响是非常复杂的,迄今还不能用纯粹理论的方法来正确计算,而船模自航试验是目 前研究船体和螺旋桨相互影响最有效的方法。 船模自航试验的目的是测定船模在螺旋桨推进下的航行性能,据此可检验该船型、主机和螺旋桨之间 的配合情况,求得该船型在某一速度下的伴流分数和推力减额分数。对于新设计的船舶来说,自航试验可 用于预报实船能够达到的航速以及船体、主机和螺旋桨是否匹配。自航试验还可以对若干方案进行比较, 从而选择较优的方案。 在船模进行自航试验之前,必须完成船模阻力试验和螺旋桨模型的敞水试验。综合三种试验的结果才 能进行完整的数据分析和预报实船性能。 二、自航试验的相似理论 我们知道在船模阻力试验时必须保持模型和实船的 Fr 数相等, 而在敞水试验时必须保持进速系数 J 相 等。故在船模自航试验时必须同时满足 Fr 数和 J 相等的条件。 设 LS ,DS ,VS ,V AS,n S,及Lm,Dm , Vm,V Am,n m 分别为实船和船模的船长,桨直径,船速, 进速,转速,则由 Fr 数相等的条件得:

船舶阻力试验简介

船舶阻力试验简介

船舶阻力试验简介船舶阻力与造船工程实际密切相关,对设计性能良好的船舶具有重要意义。

迄今为止,船模试验依旧是研究各种船型阻力的通用方法。

船模试验中计算实船阻力的基本方法依旧在实船建造的前期工作中占有极大的比重,因此本文通过了解、学习各种相关论文分析船舶阻力试验的各种方法介绍并简要叙述其优缺点。

1阻力分类目前,船模试验依旧是研究各种船型阻力的通用方法。

在船模试验中,模型船体并不安装螺旋桨等推进器,而是依靠一定的牵引力在水池中进行匀速向前运动。

因此在进行模型试验时候我们只模拟船舶航行阻力中水阻力中的静水阻力。

而静水阻力通常由裸体阻力和附体阻力组成,其中裸体阻力还会受到环境条件的影响而发生变化。

进一步划分的话,船的裸体阻力还将包含有摩擦阻力和压阻力两种阻力成分。

根据性质的不同,压阻力还含有粘压阻力和兴波阻力两种阻力。

因此我们在高速三体船模型阻力试验中的阻力研究主要研究船的总阻力、黏性阻力和兴波阻力三种阻力。

2研究船舶阻力的方法船舶阻力的研究方法分别有理论研究方法、试验方法和数值模拟。

1)理论研究方法应用流体力学的理论,建立物理或数学模型,根据有关试验观察和测量,结合理论的推演计算。

对于像船舶快速性这样的复杂问题,往往只能获得基本的、定性的解决。

2)数值模拟根据数学模型,采用数值方法(数值模拟)预报船舶航行性能和优化船型和推进器的设计。

但是,由于船型复杂多样,围绕船体的流动也极为复杂,因此数值模拟只能解决部分问题,而大量快速性的实际问题,主要的还是依靠模型试验。

3)试验方法试验方法包括船模试验和实船试验。

船模试验是根据对问题本质的理性认识,按照相似理论(或因次分析)制作小尺度的船模和桨模,在试验池中进行试验,以获得问题定性和定量的解决。

许多优良船型或重要船舶几乎都要进行船模试验。

在船舶快速性研究的历史上,船模试验一直是最主要的方法,在某种意义上说,曾经是唯一的方法。

但船模试验有其局限性,诸如因尺度效应不能完全模拟实船的情况等。

第六章船模自航试验及实船性能预估船舶阻力与推进

第六章船模自航试验及实船性能预估船舶阻力与推进

第六章 船模自航试验及实船性能预估为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。

船模自航试验是分析研究各种推进效率成分的重要手段。

对于给定的船舶来说,通过自航试验应解决两个问题:① 预估实船性能,即给出主机马力、转速和船速之间的关系,从而给出实船的预估航速,验证设计的船舶是否满足任务书中所要求的航速。

② 判断螺旋桨、主机、船体之间的配合是否良好。

如果配合不佳,则需考虑重新设计螺旋桨。

此外,根据实船试航结果与相应的船模自航试验数据,可以进行船模及实船的相关分析,积累资料以便改进换算办法,使船模试验预报实船的性能更正确可靠。

§ 6-1 自航试验的相似条件及摩擦阻力修正值一、相似定律在船模阻力试验时,我们只满足了傅氏数相同的条件,对于船模的雷诺数只要求超过临界数值。

因此,mm ss g g L V L V =上式中,下标带m 者表示模型数值,带s 者表示实船数值(以下相同)。

在螺旋桨敞水试验时,只满足进速系数相同的条件,对于螺旋桨模型的雷诺数也只要求超过临界数值,因此,mm Am s s As D n VD n V = 在进行船模的自航试验时,两者都要求满足,根据几何相似,有:λD DL L ==ms m s 则满足傅氏数相等时有: λV V /s m = (6-1)满足进速系数相等时有:λn V n V mAms As = 由于 ()s s As 1V ωV -=,()m m Am 1V ωV -= 故()()λn Vωn Vωmmmsss11-=-或 ⎪⎪⎭⎫⎝⎛--=s ms m 11ωω λn n 假定伴流无尺度作用,则m s ωω=,因此,可得:λn n s m = (6-2)(6-1)及(6-2)两式是船模自航试验应满足相似定律的条件,由于船后螺旋桨满足了进速系数相等的条件,因此在不考虑尺度作用的情况下,螺旋桨实桨及其模型在推力、转矩及收到马力方面存在下列关系:⎪⎪⎪⎭⎪⎪⎪⎬⎫===5.3ms Dm Ds 4ms m s 3ms ms λρρP P λρρQ Q λρρT T (6-3)(6-3)式只对螺旋桨说来是正确的,但自航试验是把螺旋桨与船体联系起来统盘考虑的。

船舶静力学基本知识

船舶静力学基本知识

船舶静力学基本知识1、简述表示船体长度的三个参数并说明其应用场合?答:船长[L] Length船长包括:总长,垂线间长,设计水线长。

总长(Length overall)——自船首最前端至船尾最后端平行于设计水线的最大水平距离。

垂线间长 (Length Between perpendiculars)首垂线(F.P.)与尾垂线(A.P.)之间的水平距离。

首垂线:是通过设计水线与首柱前缘的交点可作的垂线(⊥设计水线面)尾垂线:一般舵柱的后缘,如无舵柱,取舵杆的中心线。

军舰:通过尾轮郭和设计水线的交点的垂线。

水线长[ ](Length on the waterline):——平行于设计水线面的任一水线面与船体型表面首尾端交点间的距离。

设计水线长:设计水线在首柱前缘和尾柱后缘之间的水平距离。

应用场合:静水力性能计算用:分析阻力性能用:船进坞、靠码头或通过船闸时用:2、简述船型系数的表达式和物理含义。

答:船型系数是表示船体水下部分面积或体积肥瘦程度的无因次系数,它包括水线面系数、中横剖面系数、方形系数、棱形系数(纵向棱形系数)、垂向棱形系数。

船型系数对船舶性能影响很大。

(1)水线面系数——与基平面平行的任一水线面的面积与由船长L、型宽B所构成的长方形面积之比。

(waterplane coefficient)表达式:物理含义:表示是水线面的肥瘦程度。

(2)中横剖面系数[ ]——中横剖面在水线以下的面积与由型宽B吃水所构成的长方形面积之比。

(Midship section coefficient)表达式:物理含义:反映中横剖面的饱满程度。

(3)方形系数[ ]——船体水线以下的型排水体积与由船长L、型宽B、吃水d所构成的长方体体积之比。

(Block coefficient)表达式:物理含义:表示的船体水下体积的肥瘦程度,又称排水量系数(displace coefficient)。

(4)棱形系数[ ]——纵向棱形系数 (prismatic coefficient)船体水线以下的型排水体积Δ与相对应的中横剖面面积、船长L所构成的棱柱体积之比。

第五章船模阻力试验船舶阻力与推进

第五章船模阻力试验船舶阻力与推进

第五章 船模阻力试验船模试验是研究船舶阻力最普遍的方法,目前关于船舶阻力方面的知识,特别是提供设计应用的优良船型资料及估算阻力的经验公式和图谱绝大多数是由船模试验结果得来的。

新的理论的发展和新船的设计是否能得到预期的效果都需要由船模试验来验证。

而理论分析的进一步发展,又为船型设计和船模试验提供更为丰富的内容,以及指出改进的方向。

因此船模试验是进行船舶性能研究的重要组成部分。

本章先对船模试验池和船模阻力试验作一简要介绍,然后分别从设计和研究观点来讨论表达船模阻力数据的方法。

§ 5-1 拖曳试验依据、设备和方法船模试验是研究船舶阻力性能的主要方法。

因此需要了解船模阻力试验的依据,试验设备和具体的试验方法。

一、船模阻力试验的依据由§1-2的阻力相似定律指出:如能使船模和实船实现全相似,即船模和实船同时满足Re 和Fr 数相等,则可由船模试验结果直接获得实船的总阻力系数。

§1-4中已阐述船模和实船难以实现全相似条件。

根据现实可能性,也不能实现船模和实船单一的粘性相似,即保持Re 相等,这是因为,如要使Re m = Re s ,则必有:υm L m /v m = υs L s /v s即 υm = α υs v m / v s (5-1) 式中,α为船模缩尺比。

因为船模和实船的运动粘性系数两者数值相近,如假定v m = v s ,则(5-1)式为:υm = α υs (5-2) 由于船模均要比实船缩小几十倍以上,因而要求船模的速度较实船速度大几十倍,甚至达到超音速情况下进行试验,显然是不现实的。

因此船模阻力试验,对水面船舶来说,实际上就是在满足重力相似条件下(保持Fr 数相等)进行的。

由于是在部分相似条件下所得的船模阻力值,因此必需借助于某些假设,诸如傅汝德假定,休斯假定等才能换算得到相应的实船总阻力。

二、船模试验池船模试验池是进行船舶性能研究和某些结构、强度试验的重要设施,因而世界各国均普遍建造了各种船模试验池。

大工20春《船模性能实验》实验报告

大工20春《船模性能实验》实验报告

大连理工大学网络教育学院《船模性能实验》实验报告
实验1:船模阻力实验
一、实验知识考察
1、简述水面船舶模型阻力实验相似准则。

(1)由阻力相似定律可知:如果船模和实船能实现全相似,即船模和实船同时滿足Re和Fr数相等,则可由船模试验结果直接获得实船的总阻力系
数,实船的总阻力也可精确确定。

但是船模和实船同时滿足Re和Fr数
相等的所谓全相似条件实际上是难以实现的。

船模与实船保持几何相
似。

(2)船模实验的雷诺数达到临界雷诺数以上。

(3)船模与实船傅汝德数相等。

2、船模阻力实验结果换算方法有哪些?
常用的船模阻力试验结果换算方法有两种,即二因次方法和三因次方法.
二因次方法亦称傅汝德方法;三因次方法(也称1+K法)为1978年ITTC性能委员会推荐的换算方法.
二、实验后思考题二、实验后思考题
1、船模阻力实验结果换算方法之间的区别是什么?
常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。

这两种方法的区别在于对粘性阻力的处理原则不同。

2、实船摩擦阻力计算中,粗糙度补贴系数是根据什么选取的?
实船船体表面比较粗糙,故实船摩擦阻力为粗糙度补贴系数,按不同船长选取。

1。

船舶阻力推进计算题及答案

船舶阻力推进计算题及答案

船舶阻力与推进典型例题详解1.1.FroudeFroude 比较定律和Froude 假定及其相关一些概念例题1:某万吨船的船长=wl L 167m,排水量=∆25000t,航速kn V s 16=,对应船模缩尺比33=α,试着求船模的长度、排水量及其相应的速度。

解:根据流体力学中相似定律,可以知道有以下规律:α=VmVsα=m sL L 3αρρsm m s =∆∆因此求解结果如下表所示:参数Lwl(m)∆(t)Vs 实船1672500016船模5.0606060610.6956618532.7852425例题2:设有五艘尺度、船型、航速各不相同的船舶如下表:船类船长(m)航速(kn/h)货船12012客货船16023高速客船8523鱼雷艇2632拖轮46127分别计算它们的Froude 数Fn 和速长比LV s,并判断它们属于何种速度范围?解:注意计算Froude 数中各个量单位,gLV Fr s=,其中速度使用m/s 单位,g 为9.8m/s^2,L 单位为m ,而在速长比中,v 的单位为kn ,L 的单位为ft ,两者关系:L V F sr 2977.0=Fr LVs355.3=计算结果如下:L (m )航速(kn/h )Vs(km/h)Fr 船长(ft )速长比货船120.0012.00 6.170.18393.700.60客货船160.0023.0011.830.30524.93 1.00高速客船85.0023.0011.830.41278.87 1.38鱼雷艇26.0032.0016.46 1.0385.30 3.46拖轮(单放)46.0012.00 6.170.29150.920.98拖轮(拖带)46.007.003.600.17150.920.57例题3:某海船m L wl 100=,m B 14=,m T 5=,排水体积34200m =∇,航速为17kn,(1)试求缩尺比为20、25、30、35时船模的相当速度和重量;(2)当缩尺比为25,在相当速度时测得兴波阻力为1公斤,实验水池温度为12度,求其他船模在相当速度时的兴波阻力;(3)所有船模对应的实船在水温15度的海水中兴波阻力为多少吨?解:第一问考查相似定律,第二问考查Froude 比较定律,计算结果如下:α实船排水体积船模排水体积(m3)实船航速(m/s)船模速度(m/s )船模相当重量kg 船模Rw (kg )实船(kg )204200.000.538.74 1.96524.50 1.9516049.77254200.000.278.74 1.75268.54 1.0016049.77304200.000.168.74 1.60155.410.5816049.77354200.000.108.741.4897.870.3616049.772.二因次法解决船舶阻力问题(62)(B)例题4:某海船的水线长m L wl 100=,宽度m B 14=,吃水m T 5=,排水体积34200m =∇,中央剖面面积269m A M =,航速17kn,试求尺度比为25=α的船模相应速度。

船舶阻力与推进

船舶阻力与推进

∇/L 、 Cm 、Cp 或 Cb
3
船体形状: (3) 船体形状: 表征船体形状的因素很多, 表征船体形状的因素很多,可归纳为三个 主要方面: 主要方面: 横剖面面积曲线的形状: ① 横剖面面积曲线的形状:可由浮心纵向位 平行中体长度L 置xc,平行中体长度 p和位置,以及曲线两端 的形状来表征。 的形状来表征。 满载水线面的形状: ② 满载水线面的形状:可以由满载水线面的 面积,满载水线平行中段, 面积,满载水线平行中段,满载水线首尾端 的形状以及满载水线首端半进角等因素表征。 首尾形状: ③ 首尾形状:包括首尾横剖面形状和纵剖面 形状。 形状。
∆ (0.01L ) 3
对 Rr /∆的 的
▽/(0.1L)
3
2 9
4
6
8
1
2
▽/(0.1L) 3 4
3
5
Cp = 0.86
0.75 7 0.70 Rr/Δ (N/t) 0.65 5 0.60 Rr/Δ (N/t)
300
Cp = 0.80
0.75 250 0.55 0.70 200 0.60
Cp = 0.55
2.船舶分类及其主要阻力成分
低速船航速较低,兴波阻力很小, 低速船航速较低,兴波阻力很小,其总阻力中 航速较低 摩擦阻力与粘压阻力占主要成分, 摩擦阻力与粘压阻力占主要成分, 中速船的航速较低速船有所增大, 中速船的航速较低速船有所增大,兴波阻力成 的航速较低速船有所增大 分随之增大, 分随之增大,故在设计过程中既要注意减小兴波阻 又要防止其他阻力成分的增长。 力,又要防止其他阻力成分的增长。 高速船的兴波阻力是总阻力中的主要成分, 高速船的兴波阻力是总阻力中的主要成分,有 的兴波阻力是总阻力中的主要成分 时可达50%以上。为此, 时可达50%以上。为此,设计中应力求减少兴波阻 50%以上 力。

第六章 船型对阻力影响 船舶阻力 与推进

第六章 船型对阻力影响 船舶阻力 与推进

第六章船型对阻力的影响船舶设计中的一个重要步骤是确定船型参数,就是确定表征船体水线以下部分的一些特征参数的数值和几何形状。

但是应该指出的是:船舶设计是一个必须考虑各种因素的综合性问题。

船型参数的选择应顾及总体布置、工艺结构、快速性、耐波性、稳性、航区和经济性等诸方面既有联系又有矛盾的各种要求。

本章主要应用船舶阻力的基本知识在分析船模试验和实船试航的基础上来讨论船型对阻力的影响,以使在船舶设计过程中考虑选择阻力较低的船型参数:同时亦可对某些给定船舶的阻力性能进行分析,以期供设计或改型时考虑。

§6-1 船型对阻力影响的基本概念为了便于叙述和理解船型对阻力的影响问题,有几个概念先予以阐述。

一、船型、航速与阻力性能之间的关系1.优良船型的含义船型对阻力性能的影响是与船速密切联系的,在不同速度范围内,船型参数对阻力的影响不仅程度上不同,甚至还有本质上的差别,因此,所谓阻力性能优良的船型是对某一定速度范围而言。

换句话说,优良的船型将随速度而异,低速时阻力性能良好的船型,在高速时可能反而不佳。

由此可以推断:对于不同速度范围内的船舶说来,影响船体阻力的主要船型参数应该是不同的。

为此,在船舶设计过程中考虑参数选择的出发点不应完全相同。

由此知,讨论船型对阻力性能的影响问题,必须与设计船的速度范围联系在一起。

但是应该看到,对于同一设计船的航速也有不同的要求,如民用船舶,速度有服务速度和试航速度之分。

前者是在平均海面情况中所能保持的速度,后者是在试航时使用全部功率所能达到的速度。

过去惯例在任务书中规定试航速度,但对实际服务情况未必经济合理,对军舰,其巡航速度与最大速度相差甚大,对船型的要求常相矛盾。

所有这些不同的航速要求,在设计中应根据具体情况予以注意。

2.船舶分类及其主要阻力成分目前研究一般水面排水型船的阻力问题,较普遍的是按照傅汝德数将各类船舶分为低速船(Fr<0.18)、中速船(0.18<Fr<0.30)和高速船(Fr>0.30)。

船舶阻力与推进 答案

船舶阻力与推进  答案

船舶阻力与推进答案一单项选择题1.以下关于降低粘压阻力的船型要求说法,错误的是(D )A.去流段长度满足Lr4.≥B.后体收缩要缓和C.前体线型应适当注意D.避免船体曲率变化过小2.由于兴波干扰作用,兴波阻力曲线上会出现(B)。

A.首波系和尾波系B.波阻谷点和波阻峰点C.横波系、散波系D.基元波、叠加波3.船模阻力试验前要安装人工激流装置,一般用1φ=mm细金属丝缚在船模上,该金属丝应装在船模的(A)。

A.9.5站B.9.75站C.9.25站D.9站4.假定船体的摩擦阻力等于同速度、同长度、同湿面积的平板摩擦阻力,通常称为(D)A.雷诺定律B.傅汝德定律C.傅汝德假定D.平板假定5. 剩余阻力通常包含(B )A.摩擦阻力和粘压阻力B.兴波阻力和粘压阻力C.破波阻力和波形阻力D.摩擦阻力和压差阻力6.下列几种推进器中,推进效率最高的是(A)A.螺旋桨B.明轮C.直叶推进器D.喷水推进器7.螺旋桨工作时,桨叶所受的应力最大处为(B)A.叶梢B.根部C.0.6R处D.0.25R处8.已知螺旋桨的直径为5米,该桨的盘面积等于(C)A.30.213m2B.4.90625m2C.19.625m2D.29.367m29.螺旋桨模型的敞水试验中,实际上桨模与实桨之间只能满足的条件为(C)A.傅汝德数相等B.雷诺数相等C.进速系数相等D.雷诺数和进速系数均相等10.某船的船后平均伴流分数为0.18,推力减额分数为0.13,则该船的船身效率为(D)A.0.96 B.1.0C.1.04 D.1.0611.螺旋桨进速AV与船速V的关系为(A)A.AV V<B.AV V>C.AV V=D.不确定12.下列不一定介于[0,1]之间的效率是(B)A.0ηB.HηC.RηD.Sη13.对于船体表面粗糙度的处理采用粗糙度补贴系数,对于一般船舶,我国取fC∆为(C)A.30210.-⨯B.30310.-⨯C.30410.-⨯D.30510.-⨯14.船模阻力试验是将实船按一定缩尺比制成几何相似的船模,在船池中拖曳以测得船模阻力与速度之间的关系,应满足的条件是(B)A.Re相等B.Fr相等C.Re和Fr相等D.无条件二、判断题(本大题共10小题,每题1分,共10分)1.当两条形似船雷诺数相等时,粘性阻力系数必相等。

船舶静力学

船舶静力学

《船舶静力学》简答题1、简述表示船体长度的三个参数并说明其使用场合?答:船长[L] Length船长包括:总长,垂线间长,设计水线长。

总长Loa ( Length overall )——自船首最前端至船尾最后端平行于设计水线的最大水平距离。

垂线间长SP ( Length Between perpendiculars )首垂线(F. P.)和尾垂线(A. P.)之间的水平距离。

首垂线:是通过设计水线和首柱前缘的交点可作的垂线(丄设计水线面)尾垂线:一般舵柱的后缘,如无舵柱,取舵杆的中心线。

军舰:通过尾轮郭和设计水线的交点的垂线。

水线长[L^ ] (Length on the waterline) :——平行于设计水线而的任一水线而和船体型表而首尾端交点间的距离。

设计水线长:设计水线在首柱前缘和尾柱后缘之间的水平距离。

使用场合:静水力性能计算用:L PP分析阻力性能用:Lwi船进坞、靠码头或通过船闸时用:Loa2、简述船型系数的表达式和物理含义。

答:船型系数是表示船体水下部分面积或体积肥瘦程度的无因次系数,它包括水线面系数Cwp、中横剖而系数C M、方形系数C B、棱形系数cp(纵向棱形系数)、垂向棱形系数Cvpo船型系数对船舶性能影响很大。

(1) 水线面系数Cwp()——和基平而平行的任一水线而的而积和由船长L、型宽B所(waterpla ne coefficie nt表达式:Cwp wP B L物理含义:表示是水线面的肥瘦程度。

(2)【]]一一中横剖面在水线以下的面积(Midship sectio n coefficie nt)所构成的氏方体体积之比。

(Block coefficient )表达式:C B物理含义:coefficie nt)构成的长方形而积之比。

)⑷棱形系数[Cp]纵向棱形系数(prismatic coefficient)船体水线以下的型排水体积△和相对应的中横剖而而积Am.船长L所构成的棱柱体积中横剖面系数[C M A M和由型宽B吃水所构表达式:Cm物理含义:反映中横剖而的饱满程度。

船舶阻力船模实验报告

船舶阻力船模实验报告

船舶阻力船模实验报告实验目的:本实验旨在通过船舶阻力的船模实验,探究船舶在运动中所受到的阻力及其影响因素,并对实验结果进行分析和讨论。

实验装置和材料:1. 船模装置:用于模拟真实船舶运动的实验装置,包括船模、推进器、测力传感器等。

2. 测力传感器:用于测量船模受到的阻力大小。

3. 航行介质:为了保证实验的准确性和可重复性,我们选择使用同质的水作为航行介质。

4. 启动装置:用于控制船模的启动和停止,确保实验过程的可控性。

实验步骤:1. 准备工作:安装船模、推进器和测力传感器,并确保各设备的正常运作。

2. 实验参数设置:根据实验需要,设置船模的初始位置、速度和船模与水的接触面积等参数。

3. 开始实验:启动装置使船模开始运动,在船模运动的过程中,测力传感器记录下船模所受到的阻力。

4. 实验数据记录:根据实验参数设置,实时记录下船模受到的阻力大小和相应的运动参数,如速度、时间等。

5. 实验重复:重复实验步骤3和步骤4,进行多次试验,以获得更加准确和可靠的数据。

6. 实验结束:停止船模运动,关闭实验装置,记录实验过程中的观察和发现。

实验数据处理和分析:1. 数据处理:整理所获得的实验数据,计算不同条件下船模受到的平均阻力和标准差。

2. 数据分析:根据实验数据,探究船舶阻力与船模初始速度、接触面积等参数之间的关系,并进行相关性分析。

3. 结果讨论:根据实验分析的结果,讨论船舶阻力的影响因素,并解释实验结果的合理性。

4. 总结:对实验过程和结果进行总结,提出改进实验设计和进一步研究的建议。

实验安全注意事项:1. 在实验过程中,注意保持实验区域的整洁和安全,避免杂物或障碍物对实验的干扰。

2. 操作实验装置时,注意遵守使用说明和操作规程,确保设备的正常运作和人身安全。

3. 在实验过程中,严禁向实验区域投掷物体或进行不安全操作,保证实验环境的安全。

4. 当实验装置出现故障或异常情况时,应立即停止实验,并及时报告相关人员进行处理。

船模性能实验

船模性能实验

《船模性能实验》实验报告学习中心:层次:专业:学号:学生:完成日期:实验报告一一、实验名称:船模阻力实验二、实验目的:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。

其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。

(2)确定设计船舶的阻力性能对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。

(3)预报实船性能船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。

(4)系列船模实验为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。

此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。

(5)研究各种阻力成分实验为了研究分类,确定某种阻力成分,必须进行某些专门的实验。

(6)附体阻力实验目的在于求得附体的阻力值以及比较不同形式的附体对阻力的影响。

(7)流线实验在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。

(8)航行状态的研究在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。

三、实验原理:1.简述水面船舶模型阻力实验相似准则。

(1)船模与实船保持几何相似;(2)船模实验的雷诺数e R 达到临界雷诺数以上;(3)船模与实船傅汝德数相等。

2.分别说出实验中安装激流丝和称重工作的作用。

1)安装激流丝:用1=Φmm 金属丝缚在船模的19站处使其在金属丝以后的边界层中产生紊流。

2)称重工作:准确称量船模重量和压载重量,以达到按船模缩尺比要求的实船相应的排水量。

3.船模阻力实验结果换算方法有哪些?常用的船模阻力实验结构换算方法有两种,即二因次方法和三因次方法。

二因次方法亦称傅汝德方法;三因此方法为1978年ITTC 性能委员会推荐的换算方法。

4.简述傅汝德假定的内容,并写出傅汝德换算关系式。

《 船 模 性 能 实 验》实 验 报 告

《 船 模 性 能 实 验》实 验 报 告

《船模性能实验》实验报告《船模性能实验》实验报告大连理工大学网络教育学院船舶模型性能实验报告网络教育学院船模性能试验报告学习中心:层次:专升本专业:船舶与海洋工程学号:学生:完成日期:2021年2月6日一《告大连理工大学网络教育学院船舶模型性能实验报告实验报告一一、实验名称:船模阻力实验二、实验目的:主要研究船模在水中匀速直线运动时所受到的作用力及其航行状态。

其具体目标包括:(1)船型研究通过船模阻力实验比较不同船型阻力性能的优劣。

(2)确定设计船舶的阻力性能;对具体设计的船舶,通过船模阻力实验,计算实船的有效功率,供设计推进器应用。

(3)预报实船性能;船模自航实验前,必须进行船模阻力实验,为分析自航实验结果预报实船提供必要的数据。

(4)系列船模实验;为提供各类船型的阻力图谱,必须进行系列船模的阻力实验。

此外还有进行几何相似船模组实验,其目的在于研究推进方面的一些问题。

(5)研究各种阻力成分实验;为了研究分类,确定某种阻力成分,必须进行某些专门的实验。

(6)附体阻力实验;目的在于求得附体的阻力值以及比较不同形式的附体对阻力的影响。

(7)流线实验;在船模实验的同时,有时还要进行船模流线实验,目的在于确定舭龙骨,轴支架等附体以及船首尾侧推器开孔的位置等。

(8)航行状态的研究;在船模阻力实验时,测量船模在高速直线运动时的纵倾及升沉等状态,这对于高速排水型船,滑行快艇、水翼艇等高速船舶尤为重要。

三、实验原理:1.简述水面船舶模型阻力实验相似准则。

(1)船舶模型在几何上与真实船舶相似。

(2)船模试验的雷诺数达到临界雷诺数以上。

(3)船模与实船傅汝德数相等。

2.分别说出实验中安装激流丝和称重工作的作用。

激流线的作用是使其在金属线后面的边界层中产生湍流;称重工作是对船模的重量和压载重量进行精确称重,从而根据船模的比例实现实船的相应位移。

3.船模阻力试验结果的换算方法是什么?2大连理工大学网络教育学院船舶模型性能实验报告1)安装激流丝:用??1mm金属丝缚在船模的19站处使其在金属丝以后的边界层中产生紊流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船模自航试验及实船性能预估船舶阻力与推进
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
第六章船模自航试验及实船性能预估
为了获得螺旋桨与船体之间的相互作用诸因素,如伴流分数、推力减额分数以及其他相互作用系数,应进行三种试验:船模阻力试验、螺旋桨敞水试验及有附体的船模自航试验。

船模自航试验是分析研究各种推进效率成分的重要手段。

对于给定的船舶来说,通过自航试验应解决两个问题:
① 预估实船性能,即给出主机马力、转速和船速之间的关系,从而给出实船的预估航速,验证设计的船舶是否满足任务书中所要求的航速。

② 判断螺旋桨、主机、船体之间的配合是否良好。

如果配合不佳,则需考虑重新设计螺旋桨。

此外,根据实船试航结果与相应的船模自航试验数据,可以进行船模及实船的相关分析,积累资料以便改进换算办法,使船模试验预报实船的性能更正确可靠。

§ 6-1 自航试验的相似条件及摩擦阻力修正值
一、相似定律
在船模阻力试验时,我们只满足了傅氏数相同的条件,对于船模的雷诺数只要求超过临界数值。

因此,
上式中,下标带m 者表示模型数值,带s 者表示实船数值(以下相同)。

在螺旋桨敞水试验时,只满足进速系数相同的条件,对于螺旋桨模型的雷诺数也只要求超过临界数值,因此,
在进行船模的自航试验时,两者都要求满足,根据几何相似,有:则满足傅氏数相等时有:λV V /s m = (6-1) 满足进速系数相等时有:λn V n V m
Am
s As = 由于()s s As 1V ωV -=,()m m Am 1V ωV -= 故
()()λn V
ωn V
ωm
m
m
s
s
s
11-=
-

--=s m
s m 11ω
ω λn n 假定伴流无尺度作用,则m s ωω=,因此,可得:
λn n s m = (6-2)
(6-1)及(6-2)两式是船模自航试验应满足相似定律的条件,由于船后螺旋桨满足了进速系
数相等的条件,因此在不考虑尺度作用的情况下,螺旋桨实桨及其模型在推力、转矩及收到马力方面存在下列关系:
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
===5.3m
s Dm Ds 4m
s m s 3m
s m
s λρρP P λρρQ Q λρρT T (6-3)
(6-3)式只对螺旋桨说来是正确的,但自航试验是把螺旋桨与船体联系起来统盘考虑的。

因此推力与阻力之间必然有:
对于实船 ()s s s 1R t T =-
对于船模 ()m m m 1R t T =- 如果将(6-3)、(6-4)两式联系起来分析,发现两者是不一致的。

从推进的角度出发,当满足傅氏数和进速系数相同的条件时,模型与实桨的推力之间确实存在缩尺比三次方的关系。

假定推力减额无尺度作用,即t s = t m ,则从(6-4)式看来,实船与船模的阻力之间也应与缩尺比三次方有关才能使两者一致。

但是,在《船舶阻力》课程中我们已知,当船模与实船在傅氏数相同时,两者的总阻力并不存在缩尺比三次方的关系,即
为了克服这个矛盾,需要在船模自航试验中作适当处理后才能进行实船的换算。

二、摩擦阻力的修正-实船自航点的确定
在船模自航试验中,当满足傅氏数Fr 及进速系数J 相同的条件时,则模型与实船之间的各种力基本上是缩尺比的三次方关系,唯阻力之间不存在这种关系。

在阻力中,剩余阻力部分实际上也是满足这种关系的,因为在Fr 相同时实船和船模的剩余阻力系数相等,故两者总阻力之间不存在缩尺比三次方关系主要是摩擦阻力部分造成的。

为了使试验中各种力都存在缩尺比三次方的关系,需对阻力进行修正(实际上是对摩擦阻力修正),人为地将其硬凑成三次方关系。

设船模在速度V m 时的阻力为R m ,实船在相当速度m s V λV =时的阻力为R s ,则摩擦阻力修正值F D 为:
或()D m 3m s s F R λρρ
R -= (6-5)
这样,在船模自航试验中,当船模速度为V m 时,我们设法预先对船模加一个拖曳力F D ,则螺旋桨模型发出的推力T m 仅需克服阻力(R m -F D ),此点称为实船自航点即相当于实际螺旋桨发出推力T s 克服实船的总阻力R s 。

经过这样处理以后,船模自航试验系统中各种力便都存
在λ3
的关系。

假定t m = t s ,则(6-5)式可写作:
或3m s m s λρρ
T T =
从上面的分析可知,进行摩擦修正(或称为决定实船自航点)的目的,是使模型桨的载荷与实船螺旋桨相当,只有在这种情况下,才能根据船模自航试验的结果预估实船推进性能。

§ 6-2 自航试验方法及数据表达
一、自航试验概述
(6-4)。

相关文档
最新文档