暨南大学810高等代数研究生入学考试真题
暨南大学810高等代数2010--2020年考研专业课真题
考试科目名称及代码:810高等代数(A卷)
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、(10分)设 为给定正整数, 为给定常数,计算对角线上元素均为 、其它位置元素均为1的 阶矩阵 的行列式 .
2证明 在某基下的矩阵是
六(15分)1设 ,证明秩 =秩 =秩 。
2设 是实对称矩阵, ,证明 。
七(15分)已知矩阵 是数域 上的一个 级方阵,如果存在 上的一个 级可逆方阵 ,使得 为对角矩阵,那么称 在 上可对角化。分别判断 能否在实数域上和复数域上可对角化,并给出理由。
八(16分)用 表示实数域 上次数小于4的一元多项式组成的集合,它是一个欧几里得空间,内积为 。设 是由零次多项式及零多项式组成的子空间,求 以及它上的一个基。
研究方向:各专业研究方向
考试科目名称:810高等代数
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分
一、判断下列命题的正误(只需回答“正确”或“错误”并将你的答案写在答题纸上,不需说明理由,每题2分,共20分):
1唯一解,并求其解;
2无穷多解,给出解的表达式;
3无解。
四(15分)设
1求 的全部特征值;
2对 的每个特征值 ,求 的属于特征值 的特征子空间的维数和一组基;
3求正交矩阵 ,使 是对角矩阵,并给出此对角矩阵。
五(15分)设 是数域 上的一个n维线性空间 ,若有线性变换 与向量 使得 ,但 。
1证明 线性无关;
2020年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
暨南大学数学考研真题
********************************************************************************************
招生专业与代码:基础数学070101;计算数学070102;概率论与数理统计070103;应用数学070104;运筹学与控制论070105
4、给出线性空间 的两组基 和 :
,
则基 到 的过渡矩阵为。若线性变换 在基 下的矩阵为 ,则 在基 下的矩阵为。
5、已知3级方阵 ,则 的初等因子为, 的Jordan标准形为。
考试科目:高等代数共3页,第1页
6、正交矩阵的实特征值只可能是。
7、对欧几里得空间 中的向量 ,有 ,而且等号成立当且仅当。
七、(15分)用 表示数域 上所有 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为 上的线性空间。数域 上形如
的 级矩阵称为循环矩阵,它的行向量的每个元素都是前一个行向量各元素依次右移一个位置得到的结果。用 表示数域 上所有 级循环矩阵组成的集合。证明 是 的一个子空间,并求 的一个基和维数。
八、(20分)你认为高等代数课程中最重要的概念、最重要的结论是什么,你最感兴趣的内容是什么?高等代数有哪些重要的应用?谈谈你对高等代数的体会和感想。
考试科目名称及代码:高等代数810
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一、填空题(共40分,每空4分)
1、设 , ,则 除 的商式和余式分别是_______和_________。
2、行列式 的值是________。
3、如果把实 级对称矩阵按照合同分类,即两个实 级对称矩阵属于同一类当且仅当它们合同,则共有________类。
2019暨南大学考研709数学分析与810高等代数复习全析(含真题)
2019暨南大学考研709数学分析与810高等代数复习全析(含真题)《2019暨南大学考研709数学分析复习全析(含真题,共三册)》《2019暨南大学考研709数学分析复习全析(含历年真题,共三册)》由鸿知暨大考研网依托多年丰富的教学与辅导经验,与该专业课优秀研究生合作汇编而成。
全书内容紧凑权威细致,编排结构科学合理,为参加2019暨南大学考研的考生量身定做的必备专业课资料。
《2019暨南大学考研709数学分析复习全析(含历年真题)》全书编排根据:《数学分析》(华东师大,高教第四版,上下册)2018暨南大学709数学分析考试大纲官方规定的参考书目为:《数学分析》(华东师范大学,高教第四版,上下册)结合提供的往年暨大考研真题内容,帮助报考暨南大学硕士研究生的同学通过暨大教材章节框架分解、配套的课后习题讲解及相关985、211名校考研真题与解答,帮助考生梳理指定教材的各章节内容,深入理解核心重难点知识,把握考试要求与考题命题特征。
通过研读演练本书,达到把握教材重点知识点、适应多样化的专业课考研命题方式、提高备考针对性、提升复习效率与答题技巧的目的。
同时,透过测试演练,以便查缺补漏,为初试高分奠定坚实基础。
适用院系:经济学院:071400统计学(数学方向)信息科学技术学院:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论适用科目:709数学分析内容详情本书包括以下几个部分内容:Part 1 - 考试重难点:通过总结和梳理《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)各章节复习和考试的重难点,建构教材宏观思维及核心知识框架,浓缩精华内容,令考生对各章节内容考察情况一目了然,从而明确复习方向,提高复习效率。
Part 2 - 教材课后习题与解答针对《数学分析》(华东师大,高教第四版,上册)、《数学分析》(华东师大,高教第四版,下册)教材课后习题配备详细解读,以供考生加深对教材基本知识点的理解掌握,做到对暨大考研核心考点及参考书目内在重难点内容的深度领会与运用。
考研真题:广东暨南大学2022年[高等数学]考试真题
考研真题:暨南大学2022年[高等数学]考试真题一、填空题1. 若,则_____________________________.Q x x Q Px x =-+-+→11)8(lim 221=P =Q 2. 二次型为正定型,那么的取值范围3231212322213212245),,(x x x x x x ax x x x x x f --+++=a 是_________________3.若 ,则__________________________.03275=--+x x y y ==0|x dy 4. ______________________.=++++++∞→)...2211(lim 222nn n n n n 5.以函数作为通解的微分方程是_______________________.12C x C y +=6.二次积分___________________________.⎰⎰≤++=+1)(22222)(y x y x dxdy e y x 7.函数展开成正弦级数为_________________________.π<<=x x f 0,1)(8.曲面在点处的切平面方程为_______.532+=+++z y e z y x )2,2,1(-9.设在上可导,且,则)(x f ),(+∞-∞⎰≠=xx dt t f x x F 10)0()()(=)(''x F __________________.二、选择题1. 行列式_____________=v u d c yx b a 00000000(A)xyuv abcd -(B)bcuv adxv -(C)))((yu xv bc ad --(D) ))((uv xy cd ab --2. 四元线性方程组的基础解系是__________⎪⎩⎪⎨⎧=-==+00041241x x x x x (A)T )0,0,0,0((B)T )0,2,0,0((C)T )1,0,1(-(D) 和T )0,2,0,0(T)1,0,0,0(3. 设可导,,则是在处可导的)(x f |))1ln(|1)(()(x x f x F +-=0)0(=f )(x F 0=x ________________(A) 充要条件(B) 充分不必要条件(C) 必要不充分条件(D) 既不充分也不必要4. 若级数收敛,那么说法正确的是___________)(1n n n b a +∑∞=(A)和中至少有一个收敛 ∑∞=1n n a ∑∞=1n n b (B)和有相同的敛散性∑∞=1n n a ∑∞=1n n b (C)和都收敛 ∑∞=1n n a∑∞=1n n b (D) 收敛||1n n n b a +∑∞=5. 设是以为顶点的正方形,其方向为逆时针方向,那L )1,0(),0,1(),1,0(),0,1(--D C B A么___________⎰=-+Ly x d y x )()((A)0(B)2-(C)4-(D) 8-6. 设在上可导且其反函数也可导,已知则)(x f ),0(+∞,3)1(=f ,1)1('=f ,3)3('=f ___________==-31|)(x dxx df (A)1/3(B)3(C)1(D) 不能确定7. 设为正整数,那么 _______________.n m ,=→nx mx x sin sin lim π(A). n m nm --)1((B) nm (C) n m -(D) 不存在8. 将XOZ 坐标面上的抛物线绕Z 轴旋转一周得到的方程是__________.x z =2(A)222y x z +=(B)x y x =+22(C)y x z +±=2(D) xz y =+22三 、计算题1.,求.⎪⎪⎪⎭⎫ ⎝⎛-=6/10013/10212/1A n n A ∞→lim 2. 设向量组,,,。
暨南大学810高等代数专业课考研真题(2019年)
2 2
1 2
2 1
证明:由 −α1 + α2 , −α1 + α3 生成的子空间W =L(-α1 + α2,-α1 + α3)是 χ 的不变子空 间. 九、(10 分= ) 设αi (αi,1,αi,2,,⋅⋅⋅,= αi,n )T (i 1, 2,..., r ; r < n) 是 n 维实向量,且向
2019年暨南大学硕士研究生入学考试试题
2019 年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
招生专业与代码:070101 基础数学、070102 计算数学、070103 概率论与数理统计、070104 应用数学、070105 运筹学与控制论
七、(15 分) 设数域F上的3× 4矩阵A为
定义线性变换
1 0 1 1
A=
3
1
4
7
−1 1 0 3 ,
= Q(a) Aa, ∀a ∈ F 4 .
分别求 Im Q和KerQ的一个基和维数.
八、(10 分)设 3 维线性空间 V 的线性变换 χ 在基α1,α2,α3 下的矩阵为
2 2 −2
b
五、(20 分) 已= 知矩阵 A
2
5
−4
与矩阵B=
−2 −4 a
1
相似,求
10
a,b 的值,并求一正交矩阵 P 使得P−1AP = B.
暨南大学高等代数2010--2019年考研真题
5设 是数域 上的一个3维线性空间, 是 的一组基,若 上的一个线性函数 满足 ,则 =。( )
6已知方阵 的初等因子组为 ,则 的Jordan标准形是。
7“代数基本定理”的内容是_______________。
8、线性变换在不同基下的矩阵相似。
9、一个 的 矩阵 的行列式 是 的2次多项式,则 可逆。
10、如果 维欧氏空间 的一个线性变换 在一组标准正交基下的矩阵的行列式值为2009,则 是正交变换。
二、在每个题后给出的3个答案中选择一个正确的答案填空,将其前的字母填写在答题纸上:(每小题3分,共30分)
证明:由 生成的子空间 是 的不变子空间.
九、(10分) 设 是n维实向量,且向量组 线性无关. 已知 是线性方程组
的非零解向量.试判断向量组 的线性相关性.
十、(10分)设n级方阵 两两可交换,且满足 .记 的解空间为 , 的解空间为 , 的解空间为 .证明 .
十一、(10分:存在n阶可逆实对称矩阵 使得 .
研究方向:各专业研究方向
考试科目名称:810高等代数
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。
一填空题(共9小题44分,每空4分)
1 级行列式 等于____________。
2设 是一个 级方阵, 是 级单位矩阵,且 ,则 ______。
3设 是 中全体对称矩阵作成的数域 上的一个线性空间,则 的维数为,一组基为。
考试科目:高等代数共页,第页
2011年招收攻读硕士学位研究生入学考试试题
********************************************************************************************
暨南大学2005—2007年真题(高等代数)
暨南大学2005——2007年招收攻读硕士学位研究生入学考试试题(高等代数) 2005年1、 (20’)设m 是大于1的整数,12()...1m m f x xx --=+++,证明:()f x 整除()mf x c +的充要条件是c=-m2、 (20’)设n 阶行列式2cos 100012cos 100012cos 000002cos 102cos n D βββββ=1,(1) 当2k βπ=时,k 为整数,计算n D (2) 当k βπ≠时,k 为整数,证明sin(1)sin n n D ββ+=3、 (15’)下列线性方程组的系数行列式0D =,D 的某个元素ij a 的代数余子式0ij A ≠,11112212112222112200(1)0n n n n n n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩证明:这个方程组的解都可以写成12(,,,)i i in kA kA kA 的形式,k 为任意数.4、(20’)设A ,B 是两个n 级方阵,证明:AB 与BA 有相同的特征多项式5、(20’)将下列二次型化为标准形,并写出所用的满秩的线性替换.222123123121323(,,)235448f x x x x x x x x x x x x =+++--.6、(15’)设123(,,)L ααα表示向量1(1,0,2,0)α=,2(0,2,0,3)α=,3(2,6,4,9)α=生成的实向量空间4R 的子空间,把123(,,)L ααα的一个基底扩充成4R 的一个基.7、(20’)设σ是实向量空间3R 的线性变换,对任意向量(,,)x y z α=,()(,,)(2,23,3)x y z y z x z x y σασ==+-+--.求σ的特征根与特征向量.8、(20’)设σ是n 维线性空间V 的线性变换,且σ的值域与σ的核重合,证明: (1)n 是偶数;(2)如何选取V 的基,才能使σ在这个基下的矩阵是若尔当(Jordon )标准形,并写出这个标准形.2006年一、 选择题(每小题5分)1、用多项式2()31g x x x =-+除多项式42()2456f x x x x =+-+所得的余式()r x =( )2.4914.4914.14.491.a x b x c x d x e ----前面的答案均不对2、如果()g x 是一个非零多项式,且'(1)(1)0g g ==,'(2)(2)0g g ==,则()g x 一定有因子:( )22.7..16.(1)(2).a x b x c x d x x e ----前面的答案均不对3、如果行列式0112013aD x-=-的第一行第一列元素a 的代数余子式114A =,则x =( )..7.3.2.6.a b c d e 前面的答案均不对4、由行列式定义的x 的多项式212111()321111xx x f x xx-=的最高项系数是( )..7.2.8.6.a b c d e 前面的答案均不对5、如果齐次线性方程组1112131412122232423132333434142434440000a a a a x a a a a x a a a a x a a a a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦只有零解,则( ). 11121314121222324231323334341424344413.57a a a a x a aa a x a a a a a x a a a a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦线性方程组无解; 11121314121222324231323334341424344410.90a a a a x a aa a xb a a a a x a a a a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦线性方程组有无穷解; 11121314121222324231323334341424344413.88a a a a x a a a a x c a a a a x a a a a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦线性方程组有唯一一组解;11121314121222324231323334341424344401.01a a a a x a a a a x d a a a a x a a a a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦线性方程组有两组不同的解; .e 前面的答案均不对6、如果向量组{}123,,ααα是线性无关组,则( )也是线性无关组.{}{}{}1223311221122331.,,.,,.,,a b c αααααααααααααααα+++-++-{}122331.,,.d e αααααα---前面的答案均不对7、一个矩阵的对角线上方元素全为零,称为下三角矩阵,则( ). .a 任意两个同阶下三角方阵的乘积不再是下三角矩阵; .b 任意两个同阶下三角方阵的乘积一定是对角矩阵; .c 任意两个同阶下三角方阵的乘积一定不可逆; .d 任意两个同阶下三角方阵的乘积一定可逆; .e 前面的答案均不对. 8、设{}12,,,n ααα和{}12,,,n βββ均是实数域R 上的同一个向量空间V 的基,从基{}12,,,n ααα到{}12,,,n βββ的过渡矩阵为A ,即1122n n A βαβαβα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,向量空间V 中的向量γ关于基{}12,,,n βββ的坐标为12,,,n y y y (),即[]1212,,,n n y y y ββγβ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则向量γ关于基{}12,,,n ααα的坐标为( )1''12121212.,,,.,,,.,,,.,,,n n n n a y y y A b y y y A c y y y A d A y y y -()()()().e 前面的答案均不对9、三元二次型222123111222333121213132323(,,)222f x x x a x a x a x a x x a x x a x x =+++++可能的规范型是:( ){}{}{}222222222222222222123123123123123123..,.,,a y y y b y y y y y y c y y y y y y y y y +++++-+++---{}222222222123123121.,,0.d y y y y y y y y y e +±±--±±±,,前面的答案均不对10、当( )时,二次型222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+正定.44444.(,0).(,0)(0,1).(,0)(0,).(,0)(1,2)55555a tb tc td t ∈-∈-∈-∈-.e 前面的答案均不对11、( )是实数域上次数不超过3次的多项式作成的向量空间的一组基.{}{}{}{}333.1,,,.1,2,,.1,,(1),(1)(2).1,2,9,a x x x b x x x c x x x x x x d x x x -+----+-+.e 前面的答案均不对12、若尔当矩阵1000010000000001000n nA λλλλλ⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦满足0nA =的充要条件是( ). .0.0.0.0.a b c d e λλλλ><≠=前面的答案均不对13、区间[]0,1上所有实函数全体按实数与函数的乘法和函数与函数的加法作成实数域上一个向量空间,该空间是( )......a b c d e 无限维向量空间有限维向量空间分数维向量空间三维向量空间前面的答案均不对14、如果A 是n 阶实矩阵,()f E A λλ=-是A 的特征多项式,则( )..()0.()0.().1().a f A b f A c f A d f A e ≠=可逆是对特征值前面的答案均不对15、区间[]0,1上所有可微实函数全体按实数与函数的乘法和函数与函数的加法作成实数域上的一个向量空间,由2211sin ,cos ,sin ,cos ,sin ,cos 22x x x xx x e x e x xe x xe x x e x x e x ⎧⎫⎨⎬⎩⎭生成的子空间关于微分变换D 是( )......a b c d e 其核空间其象空间不变子空间其核空间的正交补空间前面的答案均不对16、矩阵126103114A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦的初等因子是( ). {}{}{}{}32323(1)..1,(1).1,(1).1,(1),(1).a b c d e λλλλλλλλ--------前面的答案均不对17、设12,(,,)n u u u u =,12,(,,)n v v v v =都是n 维(2)n ≥欧氏空间n R 中给定的非零行向量,E 是n 阶单位矩阵.令[]121,,,,1,2,,;0nn i i i i V x x x x R i n u x =⎧⎫=∈==⎨⎬⎩⎭∑,则矩阵'A E v u =-( ).'.1.1.v u a b c ⊥有特征值且其特征子空间为V 有特征值且其特征子空间为V 有特征值且其特征子空间为V'.v u .d e ⊥有特征值且其特征子空间为V 前面的答案均不对18、如果λ是实正交矩阵Q 的实特征值,则( ).1.1.{1,1}.cos sin .a b c d i e λλλλθθ==-∈-=+前面的答案均不对19实数域上两个有限维向量空间同构的充要条件是( )......a b c d e 它们有相同的维数它们有不同的维数它们有相同的基它们为相同的向量空间前面的答案均不对 20、如果{}12,,,n ααα是欧氏空间V 的一组标准正交基,则( )是1{}W k k V α=∈的正交补空间W ⊥的一组基。
暨南大学2010年招收攻读硕士学位研究生入学考试试题
2010年招收攻读硕士学位研究生入学考试试题******************************************************************************************** 学科、专业名称:081001 通信与信息系统、081002 信号与信息处理、430109电子与通信工程研究方向:01光电子与光通信、02通信网络与信息系统、03微电子器件与集成电路设计、04多媒体技术与信息安全、05无线通信与传感技术;01机器人与测控系统、02量子信息与量子系统、03信息技术与智能仪器、04通信信号处理及SoC设计、05图像处理与应用系统; 01光通信与无线通信、02网络与多媒体技术、03微电子技术与集成电路设计、04测控系统与智能仪器、05信息系统与信息处理技术考试科目:823 电子技术基础共8 页,第 1 页考试科目:823 电子技术基础共8 页,第 2 页考试科目:823 电子技术基础共8 页,第 3 页T2和T3分别构成什么电路?考试科目:823 电子技术基础共8 页,第 4 页考试科目:823 电子技术基础共8 页,第 5 页、如图 求出和表达式,对电流反馈写出20.2sin()k 22sin(10a +∙∙=t v ππ考试科目:823 电子技术基础共8 页,第 6 页考试科目:823 电子技术基础共8 页,第7 页考试科目:823 电子技术基础共8 页,第8 页2010年招收攻读硕士学位研究生入学考试试题********************************************************************************************学科、专业名称:光学工程研究方向:考试科目名称:820 数字电子技术 图2.2 00003210=Q Q Q Q ,则第2个CP 的上升沿到]。
图3四、(10分)用4选1数据选择器实现以下逻辑功能:Y=A⊙B⊙C(要求列出过程)五、(10分)试用ROM实现两个2位二进制数的加法运算(列出过程,用简化阵列图表示)。
暨南大学数学学科2011年硕士研究生入学考试
暨南大学数学学科2011年硕士研究生入学考试自命题科目《高等代数》考试大纲本《高等代数》考试大纲适用于暨南大学数学学科各专业(基础数学、概率论与数理统计、应用数学)硕士研究生入学考试。
高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。
它的主要内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型理论、线性空间、线性变换、λ-矩阵、欧氏空间。
要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。
一、考试的基本要求要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试内容(一)多项式1.一元多项式的整除、最大公因式、带余除法公式、互素、不可约、因式分解、重因式、根及重根、多项式函数的概念及判别;2.复根存在定理(代数基本定理);3.根与系数关系;4.一些重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质,整系数多项式的因式分解定理等;5.运用多项式理论证明有关命题,如与多项式的互素和不可约多项式的性质有关的问题的证明与应用;6.用多项式函数方法证明有关结论。
(二)行列式1.n-级排列、对换、n-级排列的逆序及逆序数和奇偶性;2.n-阶行列式的定义,基本性质及常用计算方法(如三角形法、加边法、降阶法、递推法、按一行或一列展开法、Laplace展开法、Vandermonde行列式法);3.Vandermonde行列式;4.行列式的代数余子式。
(三)线性方程组1.向量组线性相(无)关的判别及相应齐次线性方程组有(无)非零解的相关向量判别法、行列式判别法;2.向量组的极大线性无关组的性质,向量组之间秩的大小关系定理及其三个推论,向量组的秩的概念及计算,矩阵的行秩、列秩、秩概念及其行列式判别法和计算;3.Cramer法则,线性方程组有(无)解的判别定理,齐次线性方程组有(无)非零解的矩阵秩判别法、基础解系的计算和性质、通解的求法;4.非齐次线性方程组的解法和解的结构定理;(四)矩阵理论1.矩阵基本运算、分块矩阵运算及常用分块方法并用于证明与矩阵相关的结论,如有关矩阵秩的不等式;2.初等矩阵、初等变换及其与初等矩阵的关系和应用;3.矩阵的逆和矩阵的等价标准形的概念及计算,矩阵可逆的条件及其与矩阵的秩和初等矩阵的关系,伴随矩阵概念及性质;4.行列式乘积定理;5.矩阵的转置及相关性质;6.一些特殊矩阵的常用性质,如,对角阵、三角阵、三对角阵、对称矩阵、反对称矩阵、幂等矩阵、幂零矩阵、正交矩阵等;7.矩阵的迹、方阵的多项式;8.矩阵的常用分解,如等价分解、满秩分解、实可逆矩阵的正交三角分解、约当分解;9.应用矩阵理论解决一些问题。
810高等代数2023
暨南大学数学学科2023年硕士研究生入学考试自命题科目《高等代数》考试大纲本《高等代数》考试大纲适用于暨南大学数学学科各专业(基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制轮)硕士研究生入学考试。
高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的必修基础课。
它的主要内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型理论、线性空间、线性变换、λ-矩阵、欧氏空间。
要求考生熟悉基本概念、掌握基本定理、有较强的运算能力和综合分析解决问题能力。
一、考试的基本要求要求考生比较系统地理解高等代数的基本概念和基本理论,掌握高等代数的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试内容(一)多项式1.一元多项式的整除、最大公因式、带余除法公式、互素、不可约、因式分解、重因式、根及重根、多项式函数的概念及判别;2.复根存在定理(代数基本定理);3.根与系数关系;4.一些重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质,整系数多项式的因式分解定理等;5.运用多项式理论证明有关命题,如与多项式的互素和不可约多项式的性质有关的问题的证明与应用;6.用多项式函数方法证明有关结论。
(二)行列式1.n-级排列、对换、n-级排列的逆序及逆序数和奇偶性;2.n-阶行列式的定义,基本性质及常用计算方法(如三角形法、加边法、降阶法、递推法、按一行或一列展开法、Laplace展开法、Vandermonde行列式法);3.Vandermonde行列式;4.行列式的代数余子式。
(三)线性方程组1.向量组线性相(无)关的判别及相应齐次线性方程组有(无)非零解的相关向量判别法、行列式判别法;2.向量组的极大线性无关组的性质,向量组之间秩的大小关系定理及其三个推论,向量组的秩的概念及计算,矩阵的行秩、列秩、秩概念及其行列式判别法和计算;3.Cramer法则,线性方程组有(无)解的判别定理,齐次线性方程组有(无)非零解的矩阵秩判别法、基础解系的计算和性质、通解的求法;4.非齐次线性方程组的解法和解的结构定理;(四)矩阵理论1.矩阵基本运算、分块矩阵运算及常用分块方法并用于证明与矩阵相关的结论,如有关矩阵秩的不等式;2.初等矩阵、初等变换及其与初等矩阵的关系和应用;3.矩阵的逆和矩阵的等价标准形的概念及计算,矩阵可逆的条件及其与矩阵的秩和初等矩阵的关系,伴随矩阵概念及性质;4.行列式乘积定理;5.矩阵的转置及相关性质;6.一些特殊矩阵的常用性质,如,对角阵、三角阵、三对角阵、对称矩阵、反对称矩阵、幂等矩阵、幂零矩阵、正交矩阵等;7.矩阵的迹、方阵的多项式;8.矩阵的常用分解,如等价分解、满秩分解、实可逆矩阵的正交三角分解、约当分解;9.应用矩阵理论解决一些问题。
暨南大学810高等代数历年考研真题专业课考试试题
2016年暨南大学810高等代数考研 真题
2017年暨南大学810高等代数考研 真题
2018年暨南大学810高等代数考研 真题
2019年暨南大学810高等代数考研 真题
2010年暨南大学810高等代数考研 真题
2011年暨南大学810高等代数考研 真题
2012年暨南大学810高等代数考研 真题
2013年暨南大学810高等代数考研 真题
2014年暨南大学810高等代数考研 真题
2015年暨南大学810高等代数考研 真题
目Hale Waihona Puke 录2010年暨南大学810高等代数考研真题 2011年暨南大学810高等代数考研真题 2012年暨南大学810高等代数考研真题 2013年暨南大学810高等代数考研真题 2014年暨南大学810高等代数考研真题 2015年暨南大学810高等代数考研真题 2016年暨南大学810高等代数考研真题 2017年暨南大学810高等代数考研真题 2018年暨南大学810高等代数考研真题 2019年暨南大学810高等代数考研真题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2013年招收攻读硕士学位研究生入学考试试题(副题)
****************************************************************************************
学科、专业名称:数学学科、基础数学、计算数学、概率论与数理统计、应用数学、 运筹学与控制论专业 研究方向:各方向
考试科目名称:高等代数 考试科目代码:810
考试科目: 高等代数 共 4 页,第 1 页
考试科目: 高等代数 共 4 页,第 2 页
2013年招收攻读硕士学位研究生入学考试试题(副题) **************************************************************************************** 学科、专业名称:数学学科、基础数学、计算数学、概率论与数理统计、应用数学、
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分
一、填空题(将题目的正确答案填写在答题纸上。
共7小题,每小题3分,共21分.): 1、多项式32()24f x x x x t =--+有重因式,那么t =_________________.
2、行列式
0341
000
02000234
的第三行元素的代数余子式31323334A A A A +++=_____. 3、如果三阶矩阵1
00
100
A λλ
λ⎛⎫
⎪
= ⎪ ⎪⎝
⎭
那么n A = ___________________. 4、已知两向量1(1,2,4)α=,2(2,1,7)α=,那么与12,αα线性无关的所有向量为_____________________.
5、矩阵方程13322465X ⎛⎫⎛⎫
= ⎪ ⎪⎝⎭⎝⎭, 那么X =_______________________.
6、设数域F 上的三维列向量空间V 上的线性变换ϕ在基123{,,}e e e 下的矩阵是
112201121-⎛⎫ ⎪
⎪ ⎪-⎝⎭
那么ϕ在基321{,,}e e e 下的矩阵是__________________________. 7、已知A 是n 阶实对称矩阵,当实数s 充分大时,sI A +一定是正定矩阵,那么给出s 应满足的下界是_____________.
二、 在每个题后给出的3个答案中选择一个正确的答案填空,将其前的字母填写在答
题纸上:
(共7小题,每小题3分,共21分) 1、 下面论述中, 正确的有几条_______________ (1) 奇数次实系数多项式必有实根; (2) 代数基本定理适用于复数域;
(3) 如果()|(),()|()f x g x f x h x ,那么()|(()())f x g x h x ±; (4) 如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +-=. A 1 B 2 C 3 D 4 2、1320021300
321001*********=____________ A 18 B 36 C -18 D -36 3、已知1234523451234523451234523451
23452345
1
23451333332555553777774
999995x x x x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪++++=⎪⎪++++=⎨⎪++++=⎪++++=⎪⎩ ,那么此方程组__________ A 无解 B 有唯一解 C 有无穷多解 D 解的个数有限
4、已知矩阵21012000A t ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 555033001B ⎛⎫
⎪
= ⎪ ⎪⎝⎭,要使A 和B 相似,则t=_____
A 0
B 1
C 3
D 5
5、向量组1234,,,αααα的秩是
3,向量组1235,,,αααα的秩是4,那么12354,,,34ααααα-的秩是_____
A 2
B 3
C 4
D 无法确定
六、(15分
七、(12分
八、(12分
2
运筹学与控制论专业 研究方向:各方向
考试科目名称:高等代数 考试科目代码:810
考试科目: 高等代数 共 4 页,第 3 页 考试科目: 高等代数 共 4 页,第 4 页
考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分 6、下列关于二次型的陈述正确的是___________ A 非退化线性替换把不定二次型变为不定二次型 B 若A 负定,则A 的所有顺序主子式全小于零 C 若A 为负定矩阵,则必有||0A <
D 实对称矩阵A 半正定当且仅当A 的所有顺序主子式全大于或等于零 7、下列矩阵在实数域上合同于单位阵的是__________________
A 111111111⎛⎫ ⎪
⎪ ⎪
⎝⎭ B 101010101⎛⎫ ⎪ ⎪ ⎪⎝⎭ C 121271118⎛⎫ ⎪ ⎪ ⎪⎝⎭ D 21231323242⎛⎫
⎪
- ⎪
⎪-- ⎪ ⎪ ⎪--⎝⎭
三、(15分) 求矩阵9
6218
123189
6A --⎛⎫ ⎪
=-- ⎪ ⎪--⎝
⎭
的若当标准形. 四、(15分)求下列线性方程组的全部解,并写出对应齐次方程组的基础解系
12451234
1
23451234532
21426348242479
x x x x x x x x x x x x x x x x x x +--=⎧⎪-+-=⎪⎨-++-=⎪⎪+-+-=⎩
五、(15分) 设二次型123121323(,,)f x x x x x x x x x =++,求出非退化线性变换将上述二次型替换成标准型.。