中考数学专题题库∶圆与相似的综合题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题题库∶圆与相似的综合题及详细答案
一、相似
1.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形.以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:
(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC2=CF•EG.
【答案】(1)证明:连接BD,
∵四边形BCDE是正方形,
∴∠DBA=45°,∠DCB=90°,即DC⊥AB,
∵C为AB的中点,
∴CD是线段AB的垂直平分线,
∴AD=BD,
∴∠DAB=∠DBA=45°,
∴∠ADB=90°,
即BD⊥AD,
∵BD为半径,
∴AD是⊙B的切线
(2)证明:∵BD=BG,
∴∠BDG=∠G,
∵CD∥BE,
∴∠CDG=∠G,
∴∠G=∠CDG=∠BDG= ∠BCD=22.5°,
∴∠ADQ=90°﹣∠BDG=67.5°,∠AQB=∠BQG=90°﹣∠G=67.5°,
∴∠ADQ=∠AQD,
∴AD=AQ
(3)证明:连接DF,
在△BDF中,BD=BF,
∴∠BFD=∠BDF,
又∵∠DBF=45°,
∴∠BFD=∠BDF=67.5°,
∵∠GDB=22.5°,
在Rt△DEF与Rt△GCD中,
∵∠GDE=∠GDB+∠BDE=67.5°=∠DFE,∠DCF=∠E=90°,
∴Rt△DCF∽Rt△GED,
∴ ,
又∵CD=DE=BC,
∴BC2=CF•EG.
【解析】【分析】(1)连接BD,要证AD是圆B的切线,根据切线的判定可知,只须证明∠ADB=即可。

由正方形的性质易得BC=CD,∠DCB=∠DCA=,∠DBC=∠CDB=,根据点C为AB的中点可得BC=CD=AC,所以可得∠ADC=,则∠∠ADB=,问题得证;
(2)要证AQ=AD,需证∠AQD=∠ADQ。

由题意易得∠AQD=-∠G,∠ADQ=-∠BDG,根据等边对等角可得∠G=∠BDG,由等角的余角相等可得∠AQD=∠ADQ,所以AQ=AD;
(3)要证乘积式成立,需证这些线段所在的两个三角形相似,而由正方形的性质可得CD=DE=BC,所以可知BC、CF、EG分别在三角形DCF和三角形GED中,连接DF,用有两对角对应相等的两个三角形相似即可得证。

2.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时, =________;②当α=180°时, =________.
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.
【答案】(1);
(2)解:如图2,

当0°≤α<360°时,的大小没有变化,
∵∠ECD=∠ACB,
∴∠ECA=∠DCB,
又∵,
∴△ECA∽△DCB,

(3)解:①如图3,

∵AC=4 ,CD=4,CD⊥AD,
∴AD=
∵AD=BC,AB=DC,∠B=90°,
∴四边形ABCD是矩形,
∴BD=AC= .
②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,

∵AC= ,CD=4,CD⊥AD,
∴AD= ,∵点D、E分别是边BC、AC的中点,
∴DE= =2,
∴AE=AD-DE=8-2=6,
由(2),可得

∴BD= .
综上所述,BD的长为或.
【解析】【解答】(1)①当α=0°时,
∵Rt△ABC中,∠B=90°,
∴AC= ,
∵点D、E分别是边BC、AC的中点,
∴ ,BD=8÷2=4,
∴.
②如图1,

当α=180°时,
可得AB∥DE,
∵,

【分析】(1)①当α=0°时,Rt△ABC中,根据勾股定理算出AC的长,根据中点的定义得出AE,BD的长,从而得出答案;②如图1,当α=180°时,根据平行线分线段成比例定理得出AC∶AE=BC∶BD,再根据比例的性质得出AE∶BD=AC∶BC,从而得出答案。

(2)当0°≤α<360°时,A E∶ B D 的大小没有变化,由旋转的性质得出∠ECD=∠ACB,进
而得出∠ECA=∠DCB,又根据EC∶DC=AC∶BC=,根据两边对应成比例,及夹角相等的三
角形相似得出△ECA∽△DCB,根据相似三角形对应边成比例得出AE∶BD=EC∶DC=;(3)①如图3,在Rt△ADC中,根据勾股定理得出AD的长,根据两组对边分别相等,且有一个角是直角的四边形是矩形得出四边形ABCD是矩形,根据矩形对角线相等得出BD=AC=;②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,在Rt△ADC中,利用勾股定理得出AD的长,根据中点的定义得出DE的
长,根据AE=AD-DE算出AE的长,由(2),可得AE∶BD=,从而得出BD的长度。

3.如图,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P 是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.
(1)填空:抛物线的解析式为________,点C的坐标________;
(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标.
【答案】(1)y=﹣x2+3x+4;(-1,0)
(2)解:∵点A的坐标为(0,4),点C的坐标为(-1,0),∴.
∵点P的横坐标为m,∴P(m,﹣m2+3m+4).
①当点P在直线AQ下方时,QP=4-(﹣m2+3m+4)= m2-3m,
由△AQP∽△AOC得:,即:,
∴(舍去)或.
当时,﹣m2+3m+4=,此时点P的坐标为();
②当点P在直线AQ上方时,PQ=﹣m2+3m+4-4=﹣m2+3m,
由△AQP∽△AOC得:,即:,
∴=0(舍去)或=,此时P点坐标为().
综上所述:点P的坐标为()或().
【解析】【解答】解:(1)∵抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),
∴,解得:,∴抛物线的解析式为:y=﹣x2+3x+4.
令y=0,得:﹣x2+3x+4=0,解得:x=4或x=-1,∴点C的坐标为(-1,0).
【分析】(1)根据题意,将A,B两点的坐标代入到解析式中,分别求出b,c,可以求出抛物线的解析式;
(2)C为x轴上的交点,令y=0,通过解一元二次方程,解得C点坐标。

4.如图,抛物线与轴交于A,B两点(点B在点A的左侧),与y轴交于点C,顶点为D,其对称轴与轴交于点E,联接AD,OD.
(1)求顶点D的坐标(用含的式子表示);
(2)若OD⊥AD,求该抛物线的函数表达式;
(3)在(2)的条件下,设动点P在对称轴左侧该抛物线上,PA与对称轴交于点M,若△AME与△OAD相似,求点P的坐标.
【答案】(1)解:∵,∴顶点D的坐标为(4,-4m)
(2)解:∵
∴点A(6,0),点B(2,0),则OA=6,∵抛物线的对称轴为x=4,∴点E(4,0),
则OE=4,AE=2,又DE=4m,
∴由勾股定理得:,,
又OD⊥AD,∴,则,解得:,
∵m>0,∴抛物线的函数表达式
(3)解:如图,过点P作PH⊥x轴于点H,
则△APH∽△AME,
在Rt△OAD中,,设点P的坐标为,
当△APH∽△AME∽△AOD时,∵,
∴,即,
解得:x=0,x=6(舍去),∴点P的坐标为;
②△APH∽△AME∽△OAD时,∵,∴,即

解得:x=1,x=6(舍去),∴点P的坐标为;
综上所述,点P的坐标为或 .
【解析】【分析】(1)将抛物线的解析式配成顶点式即可求得顶点D的坐标;
(2)要求抛物线的解析式,只须求出m的值即可。

因为抛物线与x轴交于点A、B,所以令y=0,解关于x的一元二次方程,可得点A、B的坐标,则OA、OD、AD均可用含m的
代数式表示;因为OD⊥AD,所以在直角三角形OAD中,由勾股定理可得,将OA、OD、AD代入可得关于m的方程,解方程即可得m的值,则抛物线的解析式可求解;
(3)△AME与△OAD中的对应点除直角顶点D、E固定外,其余两点都不固定,所以分两种情况:
①当△AME∽△AOD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△AOD,可得相应的比例式求解;
②当△AME∽△OAD时,过点P作PH⊥x轴于点H,易得△APH∽△AME∽△OAD,可得相应的比例式求解。

5.在正方形中,,点在边上,,点是在射线上的一个动点,过点作的平行线交射线于点,点在射线上,使始终与直线垂直.
(1)如图1,当点与点重合时,求的长;
(2)如图2,试探索:的比值是否随点的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;
(3)如图3,若点在线段上,设,,求关于的函数关系式,并写出它的定义域.
【答案】(1)解:由题意,得 ,
在Rt△中,


∴∴





∴△∽△



(2)解:答:的比值随点的运动没有变化理由:如图,
∵∥
∴ ,





∴△∽△

∵,

∴的比值随点的运动没有变化,比值为(3)解:延长交的延长线于点
∵∥





∵∥ , ∥
∴∥

∵ ,

又 ,


它的定义域是
【解析】【分析】(1)根据正方形的性质得出 A B = B C = C D = A D = 8 , ∠ C = ∠ A = 90 °,在Rt△ B C P 中,根据正切函数的定义得出tan ∠ P B C = P C ∶B C,又 tan ∠ P B C
=,从而得出PC的长,进而得出RP的长,根据勾股定理得出PB的长,然后判断出△P B C ∽△ P R Q,根据相似三角形对应边成比例得出PB∶RP=PC∶PQ,从而得出PQ的长;(2)RM∶MQ的比值随点 Q 的运动没有变化,根据二直线平行同位角相等得出∠ 1 = ∠ A B P , ∠ Q M R = ∠ A,根据等量代换得出∠ Q M R = ∠ C = 90 °,根据根据等角的余角相等得出∠ R Q M = ∠ P B C ,从而判断出△ R M Q ∽△ P C B,根据相似三角形对应边成比例,得出PM∶MQ=PC∶BC,从而得出答案;
(3)延长 B P 交 A D 的延长线于点N,根据平行线分线段成比例定理得出PD∶AB=ND∶NA,又N A = N D + A D = 8 + N D ,从而得出关于ND的方程,求解即可得出ND,根据勾股定理得出PN,根据平行线的判定定理得出PD∥MQ,再根据平行线分线段成
比例定理得出PD∶MQ=NP∶NQ,又RM∶MQ=3∶4,RM=y,从而得出MQ=y,又 P D = 2 , N Q = P Q + P N = x +,根据比例式,即可得出y与x之间的函数关系式。

6.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO 的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.
(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;
(2)请利用如图1所示的情形,求证: = ;
(3)若AO=2 ,且当MO=2PO时,请直接写出AB和PB的长.
【答案】(1)解:∵2BM=AO,2CO=AO,
∴BM=CO,
∵AO∥BM,
∴四边形OCBM是平行四边形,
∵∠BMO=90°,
∴▱OCBM是矩形,
∵∠ABP=90°,C是AO的中点,
∴OC=BC,
∴矩形OCBM是正方形
(2)解:连接AP、OB,
∵∠ABP=∠AOP=90°,
∴A、B、O、P四点共圆,
由圆周角定理可知:∠APB=∠AOB,
∵AO∥BM,
∴∠AOB=∠OBM,
∴∠APB=∠OBM,
∴△APB∽△OBM,

(3)解:当点P在O的左侧时,如图所示,
过点B作BD⊥AO于点D,
易证△PEO∽△BED,
∴,
易证:四边形DBMO是矩形,
∴BD=MO,OD=BM,
∴MO=2PO=BD,
∴,
∵AO=2BM=2 ,
∴BM= ,
∴OE= ,DE= ,
易证△ADB∽△ABE,
∴AB2=AD•AE,
∵AD=DO=DM= ,
∴AE=AD+DE=
∴AB= ,
由勾股定理可知:BE= ,
易证:△PEO∽△PBM,
∴,
∴PB= ;
当点P在O的右侧时,如图所示,
过点B作BD⊥OA于点D,
∵MO=2PO,
∴点P是OM的中点,
设PM=x,BD=2x,
∵∠AOM=∠ABP=90°,
∴A、O、P、B四点共圆,
∴四边形AOPB是圆内接四边形,
∴∠BPM=∠A,
∴△ABD∽△PBM,
∴,
又易证四边形ODBM是矩形,AO=2BM,
∴AD=BM= ,
∴,
解得:x= ,
∴BD=2x=2
由勾股定理可知:AB=3 ,BM=3
【解析】【分析】(1)根据一组对边平行且相等的四边形是平行四边形得出四边形OCBM
是平行四边形,根据有一个角是直角的平行四边形是矩形得出▱OCBM是矩形,根据直角三角形斜边上的中线等于斜边的一半得出OC=BC,根据有一组邻边相等的矩形是正方形得出结论;
(2)连接AP、OB,根据∠ABP=∠AOP=90°,判断出A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,根据二直线平行内错角相等得出∠AOB=∠OBM,根据等量代换得
出∠APB=∠OBM,从而判断出△APB∽△OBM,根据相似三角形对应边成比例得出;(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,
根据相似三角形对应边成比例得出,易证:四边形DBMO是矩形,根据矩形的性质得出BD=MO,OD=BM,故MO=2PO=BD,进而得出BM,OE,DE的长,易证△ADB∽△ABE,根据相似三角形对应边成比例得出AB2=AD•AE,从而得出AE,AB的长,由勾股定理可得BF 的长,易证:△PEO∽△PBM,根据相似三角形对应边成比例得出BE ∶PB=OM ∶PM=2 ∶3 ,根据比例式得出PB的长;当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,设PM=x,BD=2x,由∠AOM=∠ABP=90°,得出四边形AOPB是圆内接四边形,根据圆内接四边形的性质得出∠BPM=∠A,从而判断出△ABD∽△PBM,根据相似三角形对应边成比例得出 AD ∶BD=PM ∶BM,根据比例式得出x的值,进而得出BD,AB,BP的长。

7.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;②推断: AG∶BE的值为:
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2 ,则BC=________.
【答案】(1)证明:∵四边形ABCD是正方形,
∴∠BCD=90°,∠BCA=45°,
∵GE⊥BC、GF⊥CD,
∴∠CEG=∠CFG=∠ECF=90°,
∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
∴EG=EC,
∴四边形CEGF是正方形
(2)解:连接CG,
由旋转性质知∠BCE=∠ACG=α,
在Rt△CEG和Rt△CBA中,
=cos45°= 、 =cos45°= ,
∴ = ,
∴△ACG∽△BCE,
∴,
∴线段AG与BE之间的数量关系为AG= BE
(3)
【解析】【解答】(1)②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,
∴,GE∥AB,
∴,
故答案为:;
( 3 )∵∠CEF=45°,点B、E、F三点共线,
∴∠BEC=135°,
∵△ACG∽△BCE,
∴∠AGC=∠BEC=135°,
∴∠AGH=∠CAH=45°,
∵∠CHA=∠AHG,
∴△AHG∽△CHA,
∴,
设BC=CD=AD=a,则AC= a,
则由得,
∴AH= a,
则DH=AD﹣AH= a,CH= = a,
∴由得,
解得:a=3 ,即BC=3 ,
故答案为:3 .
【分析】(1)①根据正方形的性质得出∠BCD=90°,∠BCA=45°,根据垂直的定义及等量代换得出∠CEG=∠CFG=∠ECF=90°,根据三个角是直角的四边形是矩形得出四边形CEGF是矩形,根据三角形的内角和得出∠CGE=∠ECG=45°,根据等角对等边得出EG=EC,根据有一组邻边相等的矩形是正方形即可得出四边形CEGF是正方形;②根据正方形的性质得出GE∥∥CD,根据平行于同一直线的两条直线互相平行得出GE∥AB,根据平行线分线段成比例定理得出GC∶EC=AG∶BE,根据等腰直角三角形的边之间的关系得出GC∶EC=,从而得出答案;
(2)连接CG,由旋转性质知∠BCE=∠ACG=α,根据余弦函数的定义得出
,,从而判断出△ACG∽△BCE,根据相似三角形对应边的比等于相似比即可得出结论线段AG与BE之间的数量关系为AG= BE ;
( 3 )根据∠CEF=45°,点B、E、F三点共线,由邻补角定义得出∠BEC=135°,根据△ACG∽△BCE,得出∠AGC=∠BEC=135°,故∠AGH=∠CAH=45°,然后判断出△AHG∽△CHA,根据相似三角形对应边成比例得出AG∶AC=GH∶AH=AH∶CH,设BC=CD=AD=a,则AC= a,根据比例式得出关于AH的方程,求解AH的值,根据DH=AD ﹣AH表示出DH,根据勾股定理表示出CH,根据前面的比例式得出关于a的方程,求解得出a的值,从而得出BC的值。

8.如图,半径为4且以坐标原点为圆心的圆O交x轴,y轴于点B、D、A、C,过圆上的动点不与A重合作,且在AP右侧.
(1)当P与C重合时,求出E点坐标;
(2)连接PC,当时,求点P的坐标;
(3)连接OE,直接写出线段OE的取值范围.
【答案】(1)解:当P与C重合时,
,的半径为4,且在AP右侧,

点坐标为;
(2)解:如图,作于点F,
为的直径,


∽,


,,

点P的坐标为或;
(3)解:如图,连结OP,OE,AB,BE,AE,
,都为等腰直角三角形,
,,

∽,



【解析】【分析】当P与C重合时,因为,的半径为4,且在AP右侧,所以,所以E点坐标为;作
于点F,证明∽,可求得CF长,在中求得PF的长,进而得出点P的坐标;连结OP,OE,AB,BE,AE,证明∽,可得,根据,即可得出OE的取值范围.
二、圆的综合
9.如图,已知在△ABC中,AB=15,AC=20,tanA=1
2
,点P在AB边上,⊙P的半径为定
长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.
(1)求⊙P的半径;
(2)当AP=65时,试探究△APM与△PCN是否相似,并说明理由.
【答案】(1)半径为35;(2)相似,理由见解析.
【解析】
【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;
(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出
MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的
长,然后求出AM
MP

PN
NC
的值,得出
AM
MP
=
PN
NC
,利用两边对应成比例且夹角相等的两
三角形相似即可证明.
【详解】(1)如图,作BD⊥AC,垂足为点D,
∵⊙P与边AC相切,
∴BD就是⊙P的半径,
在Rt△ABD中,tanA= 1BD
2AD =,
设BD=x,则AD=2x,
∴x2+(2x)2=152,
解得:5
∴半径为5
(2)相似,理由见解析,
如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,∴PH垂直平分MN,
∴PM=PN,
在Rt△AHP中,tanA=1
2
PH
AH =,
设PH=y,AH=2y,
y2+(2y)2=(52解得:y=6(取正数),∴PH=6,AH=12,
在Rt△MPH中,
()22
356
-,
∴MN=2MH=6, ∴AM=AH-MH=12-3=9, NC=AC-MN-AM=20-6-9=5, ∴935535AM MP ==,35
5
PN NC =
, ∴
AM MP =PN
NC , 又∵PM=PN ,
∴∠PMN=∠PNM , ∴∠AMP=∠PNC , ∴△AMP ∽△PNC.
【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键.
10.如图,四边形ABCD 内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB , DF . (1)求证:DF 是⊙O 的切线;
(2)若DB 平分∠ADC ,AB =52AD ,∶DE =4∶1,求DE 的长.
【答案】(1)见解析5 【解析】
分析:(1)直接利用直角三角形的性质得出DF =CF =EF ,再求出∠FDO =∠FCO =90°,得出答案即可;
(2)首先得出AB =BC 即可得出它们的长,再利用△ADC ~△ACE ,得出AC 2=AD •AE ,进而得出答案. 详解:(1)连接OD . ∵OD =CD ,∴∠ODC =∠OCD .
∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.
∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.
(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.
∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.
又∵AC⊥CE,∴∠ACE=90°,
∴△ADC~△ACE,∴AC
AD =
AE
AC
,∴AC2=AD•AE.
设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,
∴100=4x•5x,∴x=5,∴DE=5.
点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.
11.如图,PA、PB是⊙O的切线,A,B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC、BC.
(Ⅰ)求∠ACB的大小;
(Ⅱ)若⊙O半径为1,求四边形ACBP的面积.
【答案】(Ⅰ)60°;(Ⅱ
33
【解析】
分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;
(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.
详解:(Ⅰ)连接OA,如图,
∵PA、PB是⊙O的切线,
∴OA⊥AP,OP平分∠APB,
∴∠APO=1
2
∠APB=30°,
∴∠AOP=60°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACO=1
2
AOP=30°,
同理可得∠BCP=30°,
∴∠ACB=60°;
(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,
∴OP=2OC,
而S△OPA=1
2
3
∴S△AOC=1
2S△PAO=
3
4

∴S△ACP=33
4

∴四边形ACBP的面积=2S△ACP33.
点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.
12.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接EF,求证:∠FEB=∠GDA;
(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.
【答案】(1)(2)见解析;(3)9
【解析】
分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边
上的中线等于斜边的一半,得到AD=DC=BD=1
2
AC,进而确定出∠A=∠FBD,再利用同角的
余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.
详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.
∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=1
2
AC,∠CBD=∠C=45°,
∴∠A=∠FBD.
∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.
∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,
A FBD
AD BD
EDA FDB
∠=∠


=

⎪∠=∠


∴△AED≌△BFD(ASA),∴AE=BF;
(2)连接EF,BG.
∵△AED≌△BFD,∴DE=DF.
∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.
∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.
∵∠GBA=∠GDA,∴∠FEB=∠GDA;
(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:
EF 2=EB 2+BF 2.
∵EB =4,BF =2,∴EF =2242+=25.
∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DE
EF
. ∵EF =25,∴DE =25×
2
2
=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EB
ED
,即GE •ED =AE •EB ,∴
10•GE =8,即GE =
4105,则GD =GE +ED =910
5
. ∴119101109222
S GD DF GD DE =⨯⨯
=⨯⨯=⨯⨯=.
点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.
13.如图所示,以Rt △ABC 的直角边AB 为直径作圆O ,与斜边交于点D ,E 为BC 边上的中点,连接DE .
(1)求证:DE 是⊙O 的切线;
(2)连接OE ,AE ,当∠CAB 为何值时,四边形AOED 是平行四边形?并在此条件下求sin ∠CAE 的值.
【答案】(1)见解析;(2)10
10
. 【解析】
分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°
(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.
详解:(1)证明:连接O 、D 与B 、D 两点, ∵△BDC 是Rt △,且E 为BC 中点, ∴∠EDB=∠EBD .(2分) 又∵OD=OB 且∠EBD+∠DBO=90°, ∴∠EDB+∠ODB=90°. ∴DE 是⊙O 的切线. (2)解:∵∠EDO=∠B=90°,
若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点, 又∵BD ⊥AC ,
∴△ABC 为等腰直角三角形. ∴∠C AB=45°. 过E 作EH ⊥AC 于H , 设BC=2k ,则EH=2
2
k ,AE=5k , ∴sin ∠CAE=
10
EH AE

点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
14.已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1
sin 3
P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =. (1)当m=6时,求线段CD 的长;
(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;
(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.
【答案】(1)CD=25;(2)m=
2381
2n n
- ;(3) n 的值为955或9155 【解析】
分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论; (2)解Rt △POH ,得到Rt 3
m
OH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论;
(3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论. 详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .
在Rt △1
sin 63
POH P PO =Q 中,
=,,∴2OH =. ∵AB =6,∴3OC =. 由勾股定理得: 5CH = ∵OH ⊥DC ,∴225CD CH ==.
(2)在Rt △1
sin 3POH P PO m Q 中,
=,=,∴3
m OH =. 在Rt △OCH 中,2
2
93m CH ⎛⎫- ⎪⎝⎭
=. 在Rt △1O CH 中,2
2
363m CH n ⎛⎫-- ⎪⎝
⎭=. 可得: 22
36933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭
=,解得23812n m n -:=.
(3)△1POO 成为等腰三角形可分以下几种情况: ① 当圆心1O 、O 在弦CD 异侧时
i )1OP OO =,即m n =,由2381
2n n n
-=,解得9n :=.
即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去. ii )11O P OO =,由22
233
m m n m -
+-()() n =, 解得:23m n =,即23n 2381
2n n
-=,解得9155n :=
. ②当圆心1O 、O 在弦CD 同侧时,同理可得: 2
8132n m n
-=.
∵1POO ∠是钝角,∴只能是m n =,即2
8132n
n n
-=,解得955n :=. 综上所述:n 的值为
955或9
155
. 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
15.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F . (1)求证:BC 是⊙O 的切线;
(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)
【答案】(1)证明见解析 (2)233
π
【解析】 【分析】
(1)连接OD ,只要证明OD ∥AC 即可解决问题;
(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题. 【详解】 (1)连接OD .
∵OA =OD ,∴∠OAD =∠ODA .
∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.
(2)连接OE ,OE 交AD 于K .
∵¶¶AE DE
=,∴OE ⊥AD . ∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE
是等边三角形,∴∠AOE =60°,∴S 阴=S 扇形OAE ﹣S △AOE 26023360π⋅⋅=-⨯22233π=
-. 【点睛】
本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
16.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM . (1)求证:CM 2=MN.MA ;
(2)若∠P=30°,PC=2,求CM 的长.
【答案】(1)见解析;(2)2 【解析】 【分析】
(1)由··CM
DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;
(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()11
22
OA PO PC CO ==+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长. 【详解】
(1)O Q e 中,M 点是半圆CD 的中点,
∴ ··CM
DM =, CAM DCM ∴∠=∠, 又CMA NMC ∠=∠Q , AMC CMN ∽∴∆∆, ∴ CM AM MN CM
=,即2·CM MN MA =; (2)连接OA 、DM ,
PA Q 是O e 的切线,
90PAO ∴∠=︒, 又30P ∠=︒Q ,
()11
22
OA PO PC CO ∴==+,
设O e 的半径为r ,
2PC =Q ,
()1
22
r r ∴=+,
解得:2r =, 又CD Q 是直径, 90CMD ∴∠=︒, CM DM =Q ,
CMD ∴∆是等腰直角三角形,
∴在Rt CMD ∆中,由勾股定理得222CM DM CD +=,即()2
22216CM r ==,
则28CM =,
22CM ∴=.
【点睛】
本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点。

相关文档
最新文档