应用偏微分方程习题参考答案与提示
试题集:偏微分方程入门
1.偏微分方程的阶数由什么决定?o A. 方程中未知函数的最高阶导数o B. 方程中未知函数的个数o C. 方程中自变量的个数o D. 方程中常数的个数参考答案: A解析: 偏微分方程的阶数由方程中未知函数的最高阶偏导数决定。
2.下列哪个方程是二阶线性偏微分方程?o A. u x+u y=0o B. u xx+u yy=0o C. u x2+u y2=1o D. u xy+u=0参考答案: B解析: 二阶线性偏微分方程包含未知函数的二阶偏导数,且未知函数及其偏导数的系数为常数或仅依赖于自变量。
3.偏微分方程u t=u xx描述的是什么物理现象?o A. 弹性振动o B. 热传导o C. 流体动力学o D. 电磁波传播参考答案: B解析: u t=u xx是热传导方程,描述热量在均匀介质中的扩散。
4.以下哪个方程是波动方程?o A. u t=u xxo B. u tt=c2u xxo C. u xx+u yy=0o D. u x+u y=0参考答案: B解析: 波动方程通常形式为u tt=c2∇2u,其中c是波速。
5.偏微分方程u xx+u yy=0是哪种类型的方程?o A. 抛物型o B. 双曲型o C. 椭圆型o D. 非线性参考答案: C解析: u xx+u yy=0是拉普拉斯方程,属于椭圆型偏微分方程。
6.以下哪个是偏微分方程的初值条件?o A. u(x,0)=f(x)o B. u(x,y)=f(x,y)o C. u(0,y)=f(y)o D. u(x,1)=f(x)参考答案: A解析: 初值条件通常设定在时间变量的初始时刻,如u(x,0)=f(x)。
7.以下哪个是偏微分方程的边界条件?o A. u(x,0)=f(x)o B. u(x,y)=f(x,y)o C. u(0,y)=f(y)o D. u(x,1)=f(x)参考答案: C解析: 边界条件通常设定在空间变量的边界上,如u(0,y)=f(y)。
偏微分方程总复习和课后习题答案
一、基本概念
1. 偏微分方程的定义P1 2. 偏微分方程的阶数,线性、拟线性、完全非线性 偏微分方程的定义P10 3. 偏微分方程的适定性P23
二、方程的导出,分类与化简
三、公式的直接应用题
1. 2. 3. 4. 5. 达朗贝尔公式P36 公式P42 傅里叶(逆)变换P106 P110例 4.1.7结论 泊松公式P112
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
1 2 u ( x t ) 3t xt 2
1 1 xa t C f1 ( x at ) ( x at ) ( )d 2 2a x0 2 1 1 xa t C f 2 ( x at ) ( x at ) ( )d 2 2 a x0 2
1 1 xat u [ ( x at ) ( x at )] ( )d 2 2a x a t
1 u ( x t ) x (1 a )t cos x sin at a
2 2 2
1 ( 7)
解:
2
1 22 1 x at x at x u ( x t ) 5 x t a t 2 (e e 2e ) 3 2a
1 ( 6)
解:
2 2u u 2 1 a f ( x , t ), x R ,t 0 2 2 t x u ( x, 0) ( x), u ( x, 0) ( x), x R1. t
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
2024年考研数学偏微分方程题目详解与答案
2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。
本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。
一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。
要求求解此偏微分方程。
解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。
此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。
我们可以采用特征线法来求解此类方程。
首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。
将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。
得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。
2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。
(完整word版)偏微分方程数值解习题解答案
L试讨论逼近对蘇程詈+若。
的差分沁1)2)q1 二:行口匚1)解:设点为(X ? ,/曲)屮则町=讥心厶)=班勺厶+J + °(工心)(Y )+0(F ).ot所以截断误差为:3E=丄 ------ + ---- 「 T h 啰_喟+竺护一 o (F )T= 0(T + 力”2)解:设点为:(X y ,/林1 ) 3则町=讥勺,_)=以E ,_+1)+ (Y ) +o (巧卩 ot “;:;=班心+1 厶+i )=叽厶+i )+滋( h )+ * 臥工心)(为 2)+o ox (X)d心;=班心亠心)=班心,/+1)+敕:;D (一力)+ 3 役;D(血 2)+0(亥2)«截断误差为:2舟A 1 ” E= ------------ + ------------ — (―+ _) T h dt dx叭:=班%厶+i )+敗?心)(_勿+0 @2)〜dx-(史+空八dt dx 呼1_吋】+竺丛Q —O (X )-(叱 3 +dtdx 22・试用积分插值法推导知铁。
逼近的差分裕式班勺厶叙)一班勺,乩i)+ ——-——£)dtTq2 “-” *\ | (— 4- —)dxdt = | (un t 4- un x)ds = 0* dt & \得-U] /J+U2 r+x^ A-u4 r = 0+JE (j-l? n)F (j,n)G (j^n+l)H (j-l,n+l)^% ~ 的=旳=竹“4 = W/-lMf MTh=h T-T-ll"h + LL r H + ll:4h —LL:N =Op第二章第三章第四章第五章第六章P781.如果①'(0)二0,则称工。
是』(0)的驻点(或稳定:点)-设矩阵A对称(不必正定),求证忑是』(工)的驻点.的充要条件是1心是方程加二&的解B 42・ 试用积分插值法推导知铁。
逼近的差分裕式证: 充分性:①⑻二J 缶)+ 乂(加° -b t ^+—(Ax r x)①'(Ji) = (Ax c - A, x) + A{Ax r x) aEff))S 宀沪若①0)二Q,即(山° 一氛对=0 心怎宀A X Q -h = ()目卩 Ax-b^则帀是方程Ax^b 的解卩 必要性*若心是芳程A^ = b^\解则 Ax a —h - 0 (J 4X 0 — Z?,x) = 0+^◎ (0)=(吐命-b t x) - 0+J所以町是』0)的驻点dpg%3:证明非齐次两点边值间题心現(&)二 e it (E)二 Qu与T 7面的变分间题等价:求血EH 】,认@) = G 使 J(w t ) = min J(y)其中心SiuHU (2)-d』(#) =壬仗站)-(7» —芒⑹戲(D) +而久込叭如(2.13)(提示;先把边值条件齐衩化)+d dxO 字)+梓二/ ax13页证明:令 = w(x) + v(x)其中 w(x) = Q + (x-a)0 w(a) = a yv @) = “v(a) = 0 v(^>) = 0®所以2S = 瞥+qu = j DX DX Pd r /w 血、《, 乂 、 f"丁〔P(T + :F)]+Q(W + V )" ax dx ax* 丫 d z dv. 产 / d dw 、 豪 令 = - — O —) +(?v = /-(- —^> — +^w) = y;^ ax ax dx ax 所以(1)的等价的形式2厶” =一?0 字)= 卩ax axu(a) = a u\b) = 0a其中久=/-(-£■去字+0W )"ax ax 则由定理22知,讥是辺值间题(2)的解的充要条件是 且满定变分方程"ogf)-C/i 小 0 Vve^Pr (Zv> 一 /j )tdx + p @»: (b)f @) ① W = J(u) = J(u.+^)^— a (u^ + 兔,以.+ 无)一(/,功・ +加)[以・(E )+加@)] 2 □2=J(认)+ N[a@・,f)-(/,£)-+乙agd-Qfm 沁卜• Q dx dx 「(加•一/)加x +卩@加:(砂@)-卩@)戊@) Ja(3) => (4)所以可证得• 3必要性:若如 是边值间题(1)的解。
偏微分方程考试题及答案
偏微分方程考试题及答案一、单项选择题(每题2分,共10分)1. 偏微分方程的一般形式是什么?A. \( \frac{\partial u}{\partial x} + \frac{\partialu}{\partial y} = 0 \)B. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \)C. \( \frac{\partial u}{\partial x} + \frac{\partial^2u}{\partial y^2} = 0 \)D. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partialu}{\partial y} = 0 \)答案:B2. 以下哪个方程不是线性偏微分方程?A. \( \frac{\partial^2 u}{\partial x^2} + 3u = 0 \)B. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1 \)C. \( \frac{\partial^2 u}{\partial x^2} + 2\frac{\partial u}{\partial y} = 0 \)D. \( u^2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} = 0 \)答案:D3. 波动方程的解通常表示为两个函数的和,这两个函数分别是?A. \( f(x+ct) \) 和 \( g(x-ct) \)B. \( f(x+ct) \) 和 \( g(x+ct) \)C. \( f(x-ct) \) 和 \( g(x+ct) \)D. \( f(x+ct) \) 和 \( h(x-ct) \)答案:A4. 拉普拉斯方程的解是调和函数,以下哪个条件不是调和函数必须满足的?A. \( \Delta u = 0 \)B. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} = 0 \)C. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 \) D. \( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2u}{\partial y^2} = 1 \)答案:D5. 以下哪个条件不是偏微分方程解的存在性和唯一性定理所要求的?A. 初始条件B. 边界条件C. 系数的连续性D. 变量的离散性答案:D二、填空题(每题3分,共15分)1. 偏微分方程 \( \frac{\partial^2 u}{\partial x^2} -\frac{\partial^2 u}{\partial y^2} = 0 \) 是一个 ________ 方程。
偏微分方程数值习题解答
李微分方程数值解习题解答 1-1 如果0)0('=ϕ,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解证明:由)(λϕ的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλϕ+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλϕ+-=必要性:由0)0('=ϕ,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλϕx Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的广义导数几乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意)()(0I C x ∞∈ϕ,有⎰⎰-=ba ba dx x x f dx x x g )()()()('1ϕϕ ⎰⎰-=ba ba dx x x f dx x x g )()()()('2ϕϕ 两式相减,得到)(0)()(021I C x g g ba ∞∈∀=-⎰ϕϕ 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.补充:证明),(v u a 的连续性条件证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=⎰11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈ϕ,有 ⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰00'''|||||||||)())()((|ϕϕf f dx x x g x f n ba n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba ba n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=b a nba ndxxxfdxxxf)()()()(''ϕϕ取极限得到dxxxfdxxxg baba⎰⎰-=)()()()('ϕϕ即')(fxg=,即)(1IHf∈,且||||||||||||''1→-+-=-ffffffnnn故)(1IH中的基本列是收敛的,)(1IH是完全的.3.证明非齐次两点边值问题证明:边界条件齐次化令)()(axxu-+=βα,则0uuw-=满足齐次边界条件.w满足的方程为LufLuLuLw-=-=,即w对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题()建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dxdv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),(( 还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i j i i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ 于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题和基函数),...,2,1()()(n i a x x i i =-=ϕ,写出Galerkin Ritz -方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§ 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。
偏微分课后习题答案终极版
∂u t sΔxΔt ∂t
cρ
∂u ∂ 2u s Δ x Δ t = k t ∂t ∂x 2
x sΔxΔt
−
4k1 (u − u1 )sΔxΔt l
消去 sΔxΔt ,再令 Δx → 0 , Δt → 0 得精确的关系:
cρ
∂ 2 u 4k ∂u = k 2 − 1 (u − u1 ) l ∂t ∂x
πl 2
4
为 S 。由假设,在任意时刻 t 到 t + Δt 内流入截面坐标为 x 到 x + Δx 一小段细杆的热量为
dQ1 = k
∂u ∂x
x + Δx sΔt − k
∂u ∂x
x sΔt = k
∂ 2u ∂x 2
x sΔxΔt
杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻 t 到 t + Δt 在 截面为 x 到 x + Δx 一小段中产生的热量为
2
代入化简即得 (3) 因
x 2uηη = 0 uηη = 0 ( x ≠ 0)
u xx − 2 cos xu xy − (3 + sin 2 x)u yy − yu y = 0
Δ = cos 2 x + (3 + sin 2 x) = 4 > 0 为双曲型.特征方程为 dy dy ( ) 2 + 2 cos x − (3 + sin 2 x) = 0 dx dx
于是得运动方程
ρ ( x) s( x) ⋅ Δx ⋅ utt ( x, t ) = ESu x ( x + Δx) | x + Δx − ESu x ( x) | x ρ ( x) s( x)u tt =
(完整word版)偏微分方程数值解法答案
1. 课本2p 有证明2. 课本812,p p 有说明3. 课本1520,p p 有说明4. Rit2法,设n u 是u 的n 维子空间,12,...n ϕϕϕ是n u 的一组基底,n u 中的任一元素n u 可表为1nn i i i u c ϕ==∑,则,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ϕϕϕϕ=,令()0n jJ u c ∂=∂,从而得到12,...n c c c 满足1(,)(,),1,2...niji j i a c f j n ϕϕϕ===∑,通过解线性方程组,求的i c ,代入1nn i i i u c ϕ==∑,从而得到近似解n u 的过程称为Rit2法简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1nn i ii u c ϕ==∑,利用,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑确定i c ,求得近似解n u 的过程Galerkin 法:为求得1nn i ii u c ϕ==∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,)n a u V f V =,对任意nV u ∈或(取,1j V j nϕ=≤≤)1(,)(,),1,2...nijij i a cf j n ϕϕϕ===∑的情况下确定i c ,从而得到近似解1nn i i i u c ϕ==∑的过程称Galerkin 法为 Rit2-Galerkin 法方程:1(,)(,)nijij i a cf ϕϕϕ==∑5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。
偏微分方程答案整理第五章
第三章椭圆形方程的有限差分法3.2两点边值问题的差分格式321L用积分插值法导出!1近徴分方程(21)的差分方程.92页Z —汕計煌2 a♦J川/八C ⑴,可遁接积分在3和內任一小区间[X F ⑺]上积分挣 彳一兰5字)女+J;u dx dx"“好理3dx pG )dx (中矩形公式)Vw (X $ W,吗丽必)】勺坷+1严如普其中s乙_ 2一 J 0(x )dxP % +^+l rqu dx= J 小⑴)i (宀+ 乂空 dx+ J dx 汕qudx= J / dx • d" <4^ r 其中W (X )=P£在3 取[X ⑴,X 門为对偶单元[XIF -1w (X 1) -_ w ( X rf r 色 dx+ f qT = J dx X I(X )=Pdxm=dx\ dxui ps4 i p (x )3.2.3p20D 4*J4.构造il近"{pu)+i^u+ru =/ 于((3 , b )的中-!>差分恪式.A解:取M+1金节点,a = Xo <可< <Xj < <心=趴卩為"厂和"12••••••,K 心豳恥X 1==(X H +兀)j=l,2,……,N2 访2也 _「咚 吗+1-如旳-%-】 紅1 闵切+1 +鸟%+1%.d dL 、 . d d^u.[群苕L 厂乔L 扌JW ------------- -------------- V饥1+闵2AA-d u. - d u Jp 乔kF 乔d^u dx * *4 dx q2ft#{P+】[年如A +如1饥2出+i_旳]"XT-Pi [如旳(^1+2 +力")如紅1%-%丿%一1——___ p.[如H 如]-沟)如 纭】%-务-1"V"2 ["宀・】如i+M 沟 Z 沟如-1 -%-2TT"3.3二阶椭圆型方程的差分格式P210*'1.用积分插值法构造逼近君程初(3. 31)一N m =— [2(疋—)+2(上更)]=了时第一辺值问题的五点差空卽 卽分格式,这里k = k (X' y ) 血刈43.3.1100页i ・l于Q 上积分(3.21)式,4-JJ V y\ dxdy = JJ f dxdy^ J G 科■p 请(碟)+鲁a 詈皿®=n 'T*r由G M M 第—公式得5 ♦■・.综上有S a=叭小其中y dxQy □九广力1力2 ff*T1)非正则内点3解. zTJ 1 •1)正则内点心j+1\/ L4L3J-1duflGfj^+k ds =— — k dn dy^kds = ^k dn BxJ1 -2 +^kds = ^k dn dy ..I 纸= d.\M 尹—22*52+^方2^kds = ^k dfi dx,斗严=%J 纸叫厂吗J 叶讥诂丁 —V —丸Mj *1 — "i 12" 2 2 +上—JJ.・补充题£用积分插值法构造11近方程(久21)冊第二边值间题的五点差分格式.341CL I■"+ ) — k ds Jj f dxdy aA 9冲Axic上一 AB^h 加f 咛L 詈上£ Q (2)上心0拠jt 尹。
偏微分方程数值解例题答案
二、改进的Euler 方法梯形方法的迭代公式(1.10)比Euler 方法精度高,但其计算较复杂,在应用公式(1.10)进行计算时,每迭代一次,都要重新计算函数),(y x f 的值,且还要判断何时可以终止或转下一步计算.为了控制计算量和简化计算法,通常只迭代一次就转入下一步计算.具体地说,我们先用Euler 公式求得一个初步的近似值1+n y ,称之为预测值,然后用公式(1.10)作一次迭代得1+n y ,即将1+n y 校正一次.这样建立的预测-校正方法称为改进的Euler 方法:预测: ),,(1n n n n y x hf y y +=+ 校正:)].,(),([2111+++++=n n n n n n y x f y x f hy y(1.15)这个计算公式也可以表示为11(,),(,),1().2p n n nc n n p n p cy y hf x y y y hf x y y y y ++⎧=+⎪⎪=+⎪⎨⎪=+⎪⎪⎩例1 取步长0.1h =,分别用Euler 方法及改进的Euler 方法求解初值问题d (1),01,d (0) 1.yy xy x xy ⎧=-+≤≤⎪⎨⎪=⎩ 解 这个初值问题的准确解为()1(21)xy x e x =--. 根据题设知).1(),(xy y y x f +-=(1) Euler 方法的计算式为)],1([1.01n n n n n y x y y y +⨯-=+由1)0(0==y y , 得,9.0)]101(1[1.011=⨯+⨯⨯-=y,8019.0)]9.01.01(9.0[1.09.02=⨯+⨯⨯-=y这样继续计算下去,其结果列于表9.1.(2) 改进的Euler 方法的计算式为110.1[(1)],0.1[(1)],1(),2p n n n n c n p n p n p c y y y x y y y y x y y y y ++⎧=-⨯+⎪=-⨯+⎪⎪⎨⎪=+⎪⎪⎩由1)0(0==y y ,得110.1[1(101)]0.9,10.1[0.9(10.10.9)]0.9019,1(0.90.9019)0.900952p c y y y ⎧=-⨯⨯+⨯=⎪⎪=-⨯⨯+⨯=⎨⎪⎪=+=⎩ 20.900950.1[0.90095(10.10.90095)]0.80274,0.900950.1[0.80274(10.20.80274)]0.80779,1(0.802740.80779)0.805262p c y y y ⎧=-⨯⨯+⨯=⎪⎪=-⨯⨯+⨯=⎨⎪⎪=+=⎩ 这样继续计算下去,其结果列于表9.1.从表9.1可以看出,Euler 方法的计算结果只有2位有效数字,而改进的Euler 方法确有3位有效数字,这表明改进的Euler 方法的精度比Euler 方法高.例2 试用Euler 方法、改进的Euler 方法及四阶经典R-K 方法在不同步长下计算初值问题⎪⎩⎪⎨⎧=≤≤+-=1)0(,10),1(d d y x xy y xy在0.2、0.4、0.8、1.0处的近似值,并比较它们的数值结果.解 对上述三种方法,每执行一步所需计算)1(),(xy y y x f +-=的次数分别为1、2、4。
最新偏微分方程数值解试题参考答案
偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。
解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。
偏微分方程(周蜀林)习题参考答案补充
偏微分方程(周蜀林)
习题参考解答补充Writer:Dreaming Rainbow 本人仅上传至百度文库,其它人或其它地方发布的均为盗版!
关于剩下十个题的一些说明
3.16按提示,先将ϕ作周期为2的偶延拓得ϕ~
,之后作为热方程初值求解得u ,然后证明在0+→t 时,()t x u ,一致收敛于()x ϕ~(证明需用到ϕ~
的一致连续性)。
这些都很顺利,但
是到用多项式逼近K 的时候就不知道怎么办了......
3.22首先说边界条件正确的是书后的提示(正文缺负号)。
当你把所有式子都代入3.19式就会发现你根本不知道怎么解()t g ......3.23、3.24数学分析好的人进[byebye]。
4.12、4.13Fourier 变换法最难的就是逆变换,你可以去查从来没有逆变换()t a λcos 的!网上确实有文章用Fourier 变换求二维三维波动方程,不过我赌你看不懂。
4.36自古多元不好做,教科书都是避嫌不写。
4.48目测需要参考定理4.8过程,不容易。
4.49、4.50看到广义解基本就可以跳过了,想做的自己看吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题参考答案与提示
第一章
1.1 22()u x y x y ψ=-(ψ为任意函数); 1.2
Φ(2,)u x z x y =-+(Φ为任意的二元函数)
; 1.3 0
()((),)d t
u x a t f x a t ϕξξξ=-+
--⎰
;
1.4 (e ,e )e
z z z u x y ϕ---=; 1.5 211
(1)(1)e 22
t u x t x t -=-++++。
第二章
2.1 (略).
2.2 (略). 2.3 (略).
2.4 提示:直接代人验证满足方程和初始条件、边界条件即可。
第三章 3.1 (1)2
2
3221cos cos ,(2)33
u x at x t a t u x a xt xt =++
=++。
3.2 (1)sin ,u t x = (2)2
(2).u x t =+。
3.3 (1)22223,0,
7,0.
x y xy x y u xy x y ⎧++-≥=⎨-<⎩
(2)(,,,)2.u x y z t xyt = 3.4 2
22
()(3)u x x y x y a t =+++。
第四章
4.1 4
14(,)c o s (2
)s i n (2)[1(1)]s i n ()s i n ()
()n
n u x t at x n at n x n a
πππππ∞
==+--∑。
4.2 233
32(21)(21)233(,)cos sin sin sin .(21)2222n l n ax n x l at x
u x t n l l a l l ππππππ∞
=++=-++∑ 4.3 (1)、2(
),cos ,(0,1,2,).n n n n X x n l l
ππλ=== (2)、2
,c o s ()s i n (),(0,12,)
n n n X A n B n n λθθ==+=
4.4 (1)、2()222
2
1(1)(,)cos().1
n na t
n u x t e nx n ππ+∞
-=+-=--∑
(2)、1
(,)c o s s i n .2
uxt
t x ππ= 4.5 220220110,(0),(,)(),(02).u u u
r r r r r r u r f θθθθπ⎧∂∂∂++=<<⎪
∂∂∂⎨⎪=≤≤⎩,
22
200220
001
(,)(),().22cos()
r r u r f d r r r r r r π
θϕϕπ
θϕ-=
<+--⎰
4.6 221(,)(sin sin )cos
()Al at a x
u x t t a a l l l l
πππωωππω=
--。
4.7 1(,)()s i n ;n
n n x
u x t u t l π∞
==
∑其中 2(
)()
02()()d , ()(,)sin d .n a t t
l l
n n n n x
u t f e
f t f x t x l l
πξπξξ--=
=
⎰
⎰ 4.8 2221
(,)()cos sin .22n n A Al B n at n x
u x t x x c a a l l l ππ∞
==-+++∑
4.9
11
(,,)(cos sin )mn
mn m n u x y t A
B ∞
∞
===
++∑∑
()sin )d )sin
sin ,l
mn m n f t x y l l
ππ
ξξξ-⎰
2
00
4
(,)sin
sin d d ,l l
mn m n A l l l
ππ
ϕξηξηξη=
⎰⎰
其中
00
(,)sin
sin d d ,l
l
mn m n B l l
ππ
ψξηξηξη=
⎰ 2
00
4
()(,,)sin
sin d d l l
mn m n f t f t l l l
ππ
ξηξηξη=
⎰⎰
.
第五章
5.1 (1)2sin []A
F f λλ
=
,(2)0000sin()sin()[](
)a a
F f i λλλλλλλλ
+-=-+-。
5.2 (1
)[]L f =
(2) 22
[]s
L f s k =
+。
5.3 (1)1
()(cos cos 2)3
f t t t =
-, (2) 2()e e t t f t =-。
5.4 (1)22(,)12; (2) (,)sin u x t x a t u x t t x =++=.
5.5(1)0, ,(,)(), .x t a u x t x x f t t a a ⎧<⎪⎪=⎨⎪-≥⎪⎩
(2)222221, ,112
(,)()()1122, .
22t t x u x t t t x H t x x t x ⎧
<⎪⎪=---=⎨⎪>⎪⎩
5.6 当x at ≥时,(,)0 u x t =;当0x at ≤<时,(,)sin ()x u x t A t a
ω=-。
第六章
6.1 证明 (略). 6.2
22
200003
2
22
2
0(,,)sin d d .
4(2cos )R r R
u r R
r Rr ππ
πθϕθθϕπ
α-=
+-⎰⎰
,
220000011(,0,))2R r u r r R r ϕ-=-+
,220000011(,,)(2R r u r r R r πϕ-=-.
6.3 ,1,1,1,,00,,(12)(),(1,2,,1;0,1,2,.),
sin ,(1,2,,1),0,(0,1,2,).
i j i j i j i j i j m j U U U U i m j i U i m m U U j ωωπ++-=-++=-=⎧⎪
⎪
==-⎨⎪
===⎪⎩ ,12ω≤.
6.4
22,1,1,1,,1,0,10,,2(1)(),(1,2,,1;1,2,.),(1),(1,2,,),
0,(0,1,2,).
i j i j i j i j i j i i j
m j U U U U U i m j U U i x x i m U U j ωω++--⎧=-++-=-=⎪
==∆-∆=⎨⎪===⎩ 1ω≤.
6.5 1,,11,,1,,11(),,1,2,,1;40,0,0,1,2,,;1,2,,1,0;sin .ij
i j i j i j i j ij i n i n U U U U U i j n U i j n i n j U U n n ππ++---⎧=+++=-⎪⎪⎪
====-=⎨⎪
⎪-=⎪⎩
第七章
7.1 证明 (略). 7.2 证明 (略). 7.3 证明 (略).
第八章
8.1 1tx
u t x
-=
+.
8.2 224(0u t t --+=. 8.3 证明 (略).
8.4 ((),)((0)),()(((0))(0).x t t x x t f x t x ρϕϕ=
⎧⎨=+⎩
8.5 (,)t h [()]
2x t a x at ρμ
=-.。