DDBD低温等离子体废气处理技术

合集下载

低温等离子体技术在废气净化中的应用

低温等离子体技术在废气净化中的应用

低温等离子体技术在废气净化中的应用废气是指各种工业生产过程中产生排放的气体,其中包括大量的有害气体。

如何控制和净化废气成为了一个亟待解决的问题。

传统的废气净化方法依靠化学氧化、吸附等方式处理,但这些方法存在着处理效率低、设备大、耗能高等缺点。

近年来,低温等离子体技术逐渐被人们所重视,该技术不仅可以有效净化废气,还可以降低环保成本,被广泛应用于环保行业。

一、低温等离子体技术的概述等离子体是由电离气体中带正电荷离子和带负电荷电子组成的气体。

根据等离子体的温度区别,可以将其分为高温等离子、室温等离子和低温等离子。

低温等离子体是处于室温下的等离子体,与传统的等离子体相比,低温等离子体具有成本低、消耗小、处理效率高、适应性强等优势。

低温等离子体技术是指将废气作为介质,通过高压电场、微波等方式将废气中的气体电离成等离子体,通过等离子体中产生的等离子体反应,使废气中的有害气体被分解和转化成无害气体,从而达到净化目的。

二、低温等离子体技术在废气净化中的应用近年来,低温等离子体技术在废气处理中得到了广泛的应用。

常见的废气净化技术包括有机废气净化、重金属废气净化、焊接废气净化等。

1. 有机废气净化有机废气是指加工或生产有机物质所产生的废气,常见的有机废气有苯、甲苯、二甲苯、苯酚等有机物,这些有机物对人体具有很大的危害。

低温等离子技术可以将有机废气中的有害物质分解成水和二氧化碳等无害物质,减少有机废气的排放和对环境的影响。

2. 重金属废气净化重金属废气常见的有铬、镍、铜、锌等元素,这些重金属对环境和人体健康产生很大的危害。

低温等离子技术可以将重金属离子还原为元素形态,在成为普通废物排放,或者在处理完重金属废气后,在引入水中进行沉降处理。

3. 焊接废气净化焊接废气是指焊接所产生的废气,常见的焊接废气有氮氧化物、氧气化合物、氟气等有害气体。

低温等离子技术可以将焊接废气中的有害气体分解,减少氮氧化物和氧气化合物的排放,同时又不会对环境和人体健康产生不良影响。

低温等离子体技术处理挥发性有机废气的研究进展

低温等离子体技术处理挥发性有机废气的研究进展

低温等离子体技术处理挥发性有机废气的研究进展近年来,低温等离子体技术在处理挥发性有机废气方面取得了一系列的研究进展。

首先,在反应机理方面,研究人员发现低温等离子体技术主要通过两种方式降解有机废气:一个是直接将有机物质氧化为CO2和H2O,另一个是将有机物质通过裂解氧化为较小的分子。

这些研究对于进一步改进低温等离子体技术的效率和稳定性具有重要意义。

其次,在反应条件方面,研究人员发现低温等离子体技术的反应条件会对处理效果产生重要影响。

如气体温度、压力和气体流速等因素都会对反应速率和废气处理效率产生一定的影响。

因此,研究人员通过优化反应条件,提高了废气处理效果。

此外,研究人员还发现在低温等离子体技术中添加催化材料可以提高废气处理效率。

催化剂的引入可以加速有机物质的氧化反应,提高反应速率。

研究人员通过不断优化催化剂的种类和添加量,提高了废气处理效率。

此外,研究人员还研究发现废气成分、湿度和废气浓度等因素对低温等离子体技术的处理效果也存在一定影响。

这些研究成果为进一步改进低温等离子体技术提供了重要的理论依据。

然而,低温等离子体技术在挥发性有机废气处理方面还存在一些挑战。

首先,低温等离子体技术在处理复杂废气时的效果有限,需要对不同组分和污染物进行更加深入的研究。

其次,低温等离子体技术的能耗较高,需要进一步研究开发更加高效的能耗优化技术。

此外,低温等离子体技术对系统的稳定性和可持续性的要求较高,需要对系统结构和运行参数进行改进。

综上所述,低温等离子体技术在处理挥发性有机废气方面取得了一定的研究进展。

然而,仍需要进一步研究和创新,以进一步提高废气处理效率和能耗优化,并实现低温等离子体技术的规模应用。

同时,还需要加强对废气组分、湿度和浓度等因素的研究,以更好地适应实际废气处理需求。

低温等离子用于废气治理课件(PPT 41页)

低温等离子用于废气治理课件(PPT 41页)
定义:等离子体
等离子体是继固、液、气三态后被列为物质的第四态。由正 离子、负离子、电子和中性粒子组成。在这个体系中因其总 的正、负电荷数相等,故称为等离子体。
霓虹灯
日光灯
等离子电视
闪电
DDBD异味气体治理技术简介
低温等离子体产生的方法
直流辉光放电
气体放电
脉冲辉光放电 常压辉光放电
微波诱导放电
磁控管放电
第一代 DDBD技术处理 工业废气的试验 装置现场鉴定会。 图中前上海市副 市长蒋以任亲临 现场,给予高度 评价
第一代
艰难的研发历程
第二代
艰难的研发历程
第三代DDBD等离子装置
第三代DDBD等离子试验装置 第三代
小型中试设备 中试车
艰难的研发历程
组合式中试设备
组合式中试设备
荣誉资质
荣誉资质
废气Байду номын сангаас理部分成功案例解析
山东瑞阳制药有限公司异味处理工程
山东瑞阳制药有限公司污水处理站异味处理工程一角
处理风量:3500Nm³/h; 电耗:0.003KW/Nm³; 采用DDBD等离子体工业废气处理技术, 主要污染物质有硫化氢、硫醇、硫醚、 氨等,工程采用PVC恶臭气体收集罩专 利技术。
废气治理部分成功案例解析
将有臭味的气体通过烟囱高空排放,或用无臭气体稀释
适用范围:适用于处理中低浓度的有组织排放废气 优点:费用低,设备简单 缺点:易受气象条件限制,污染物质依然存在
掩蔽法
采用更强烈的芳香气体与臭气参合,以掩蔽臭气
适用范围:适用于须立即或暂时消除的低浓度恶臭气体影响的场合 优点:可尽快消除恶臭污染影响、灵活性大、单次使用费用低 缺点:不可长期使用,污染成分没有被去除

低温等离子废气处理方案

低温等离子废气处理方案

低温等离子废气处理方案引言:随着工业化的快速发展,大量的废气排放成为了环境污染和资源浪费的主要问题之一、特别是一些高温等离子废气,由于其高温和有害成分的存在,对环境和人类健康造成了严重威胁。

因此,低温等离子废气处理成为了一种重要的解决方案。

本文将介绍低温等离子废气处理的原理和具体方案。

一、低温等离子废气处理的原理低温等离子废气处理是一种利用等离子技术对废气进行除污处理的方法。

其主要原理是通过产生低温等离子体,将废气中的有害物质转化为无害物质或固体颗粒,并最终将其尽可能地净化和排放。

低温等离子废气处理的优点是能够对废气中的多种有害物质进行同时处理,从而达到高效、节能和环保的效果。

二、低温等离子废气处理的具体方案1.利用等离子体壁效应等离子体壁效应是指等离子体与壁面接触时发生的物理和化学反应。

在低温等离子废气处理中,可以通过调节等离子体与壁面的接触方式和温度,使得废气中的有害物质与等离子体发生反应,从而达到除污的目的。

2.利用等离子体的化学反应低温等离子废气处理过程中,等离子体中的电子、离子和分子之间会发生多种化学反应,从而使得废气中的有害物质得到转化或分解。

例如,通过等离子体的氧化作用,废气中的有机物可以被氧化为二氧化碳和水,同时产生一定量的能量。

3.利用等离子体的电磁场效应等离子体中存在电场和磁场效应,可以利用这些效应对废气进行处理。

通过利用电场和磁场对废气中的粒子进行加速和定位,可以使得废气中的颗粒物和有害物质被有效地去除。

4.利用等离子体的辐射效应5.利用等离子体的产热效应低温等离子废气处理中,等离子体会产生一定的热量,这个热量可以被利用来提高废气的温度,从而对废气中的有害物质进行分解和转化。

例如,通过调节等离子体的热量和温度,可以使得废气中的有机物被分解为无害的气体或固体颗粒。

总之,低温等离子废气处理是一种有效的处理方法,其原理是通过利用等离子体的物理、化学和电磁等效应对废气进行净化和除污。

PLD—DBD低温等离子处理技术简介

PLD—DBD低温等离子处理技术简介

PLD—DBD低温等离子处理技术简介低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分了被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

等离子除臭——低温等离子体专利技术PLD—DBD低温等离子体(介质阻挡放电)废气治理装置简介PLD—DBD低温等离子体(介质阻挡放电)废气治理装置是派力迪环保工程有限公司与复旦大学共同研制开发的工业废气净化技术产品,采用的放电形式为双介质阻挡放电(dielectric Barrier discharge,简称DBD)。

该产品拥有国家独立知识产权,并获得十余项国家发明专利,在工业化应用方面,走在了其他国家前面,领先于世界先进水平,属于真正的中国创造。

上海化纤一厂利用等离子方法处理废气装置,处理量:8000Nm3/h 流速:10m/s 电耗:0.003KW/Nm3 H2S和CS2去除率>95%技术简介低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分了被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的同的。

PLD—DBD低温等离子体处理恶臭气体的作用原理(已H2S和CS2为例)活性粒子的化学反应:CS2*+CS2→2CS + S2CS2*+O2→CS + SO2CS + O2→CO + SOnCS→(CS)n (聚合物)SO + O2→OSOOSO + OSOO→2SO2CO + O→CO2···其总的反应为:3CS2 + 8O2→CO2 +2CO + 6SO22H2S + 3O2→2H2O + 2SO2PLD—DBD低温等离子体技术的特点与目前国内常用的异味气体治理方法相比较本装置具有如下优点:- 技术高端,工艺简洁:开机后,即自行运转,受工况限制非常少,无需专人操作。

低温等离子废气处理方案

低温等离子废气处理方案

低温等离子废气处理方案废气处理是当前工业生产环境中一个重要的问题,尤其是一些工业冶炼和化工过程中生成的废气,含有有毒有害物质,对环境和健康造成严重的威胁。

低温等离子废气处理技术是一种应对这一问题的有效方法。

本文将介绍低温等离子废气处理技术的原理、应用以及其优势。

低温等离子废气处理技术基于等离子体物理和化学效应,采用低温等离子体来分解废气中的有毒有害物质,从而达到净化废气的目的。

低温等离子体指的是温度低于一定范围的电离气体,通常在1000°C以下。

该技术主要通过两个过程来清除废气中的有害物质:电子对碰撞和自由基的参与。

低温等离子废气处理技术可以广泛应用于钢铁冶炼、化工、煤炭、电子等行业,适用于处理废气中的二氧化硫、氮氧化物、氯化氢、有机废气等多种污染物。

例如,在煤炭工业中,低温等离子废气处理技术可以有效地降低废气中二氧化硫和氮氧化物的浓度,达到国家排放标准。

1.高处理效率:低温等离子废气处理技术可以在较低的温度下实现高效的废气处理,相比于传统的高温燃烧和吸附法,能够更有效地分解废气中的有害物质,提高处理效率。

2.能耗低:低温等离子废气处理技术不需要高温反应器,因此能够节省能源,并且不会造成二次污染。

3.适应性强:低温等离子废气处理技术适用于各种废气处理场景,能够处理复杂多变的废气组分。

4.操作简便:低温等离子废气处理技术无需添加化学药剂,无需复杂的设备操作,更加便捷。

为了更好地应用低温等离子废气处理技术,需要考虑以下几个关键因素:1.温度控制:低温等离子废气处理技术对于温度的控制很敏感,需要根据不同的废气组分和处理要求来控制等离子体的温度,以保证处理效率。

2.气体流动控制:废气在处理过程中需要保持一定的流动性,以确保等离子体和废气充分接触,提高处理效果。

3.废气组分分析:在应用低温等离子废气处理技术前,需要对废气组分进行详细的分析,以确定最佳的处理参数和方法。

总之,低温等离子废气处理技术是一种高效、环保的废气处理方法,具有广泛的应用前景。

低温等离子体技术在工业废气处理中的应用研究

低温等离子体技术在工业废气处理中的应用研究

低温等离子体技术在工业废气处理中的应用研究随着工业化进程的加速,工业废气问题已经成为了一个全球性的难题。

工业废气中含有大量有害物质,如氧化物、硫化物、挥发性有机物等,对环境和人体健康造成了严重的危害。

为了解决这一难题,低温等离子体技术成为了一种非常理想的处理方法。

1.低温等离子体技术的概念和基本原理低温等离子体技术是一种利用等离子体作用将有害气体分解为无害物质的处理技术。

等离子体是一种电离状态的气体,具有极高的能量和反应活性。

低温等离子体处理技术中,通过气体电离将氧气和氮气等气体分离出电离电子和离子等化学活性组分,然后利用这些活性组分的化学反应将废气中的有害物质转化成无害物质。

低温等离子体技术处理工业废气,不需要添加其他化学试剂,具有操作简便、效率高、处理效果好等优点。

2.低温等离子体技术在工业废气处理中的应用现状目前,低温等离子体技术已经在工业废气处理领域得到了广泛应用。

例如,烟气脱硝和脱硫等领域都采用了低温等离子体技术。

同时,低温等离子体技术在有机废气处理、污水处理等领域也获得了良好的应用效果。

3.低温等离子体技术在工业废气处理中的优点低温等离子体技术在工业废气处理中具有以下优点:3.1高处理效率低温等离子体技术可以在常温下对工业废气进行高效处理。

例如,对于含有挥发性有机物(VOCs)的工业废气,低温等离子体技术可以将其中的99.9%以上的有机物转化为CO2和H2O,处理效率非常高。

3.2无二次污染低温等离子体技术在处理工业废气时,没有任何二次污染,不会产生噪音、振动、污水等其他污染。

同时,在处理过程中也不需要添加其他化学试剂,不会在处理后产生任何水、气或固体污染。

3.3节能减排低温等离子体技术可以在常温下高效处理工业废气,存在节能减排的优势。

与传统工艺相比,低温等离子体技术最大程度地保持了有害物质的目标转化,具有废气处理效率高、能量消耗低等特点。

4.低温等离子体技术在工业废气处理中的发展方向随着工业废气问题的日益突出,低温等离子体技术在工业废气处理中的应用和研究也越来越重要。

低温等离子体处理技术在废气处理中的应用研究

低温等离子体处理技术在废气处理中的应用研究

低温等离子体处理技术在废气处理中的应用研究一、引言环保问题是全球性问题,废气排放是众多污染源之一。

随着人们对环保意识的不断提升,废气治理技术也得到了越来越多的关注和研究。

作为一种高效、低污染的废气处理技术,低温等离子体处理技术因其成本低、效果好、安全可控等优点,近年来已成为废气治理技术的研究热点之一。

二、低温等离子体处理技术简介1. 概念及特点等离子体是独立的、带电的气体,具有广泛的应用前景。

低温等离子体处理技术是利用等离子体对有机污染物分解和氧化的一种新兴技术。

与传统的污染物处理技术相比,低温等离子体处理技术具有以下特点:(1)温度低。

处理过程中温度一般在100-1000 ℃之间,不会烧毁有机物的化学键,可实现有机物的高效处理。

(2)分解彻底。

等离子体具有高度活性,能通过一系列的离子反应分解有机物,将其分解为简单的无害物质。

(3)无二次污染。

等离子体处理过程中不需要添加任何化学物质,不存在二次污染问题。

(4)能耗低。

利用高电场强度产生等离子体进行废气处理过程中,能耗一般在10-100 W/m3之间,远低于其他废气处理技术。

2. 处理方法低温等离子体处理技术主要可分为以下几种:(1)光氧催化技术。

该技术利用光催化剂和紫外线辐射产生等离子体,对废气中的有机物进行催化分解。

(2)介质放电技术。

介质放电技术利用放电等离子体分解废气中的有害物质。

(3)非平衡等离子体技术。

该技术是利用电子能级的非平衡性代替传统热力学平衡态,提高化学反应的速率和选择性。

三、低温等离子体处理技术在废气处理中的应用研究1. 废气处理原理废气中的有机物经过各种反应,产生二氧化碳、水和其他无害物质。

低温等离子体处理技术利用高电场强度使气体分子电离,填充离子和电子在电场中受到强烈的加速作用,增加了其能级,形成等离子体体系。

这种体系的化学反应速率快,能清除废气中大部分的有机物。

2. 应用案例低温等离子体处理技术在废气处理领域已有多项成功应用案例。

低温等离子体废气处理技术

低温等离子体废气处理技术

低温等离子体废气处理随着全球经济的发展,环境污染问题日益突出,各种类型的环境污染层出不穷,严重危及了人类的健康与生存。

为了人类自身的安危,治理环境问题迫在眉睫。

近年,全球涌现出许多治理环境问题的高新技术,如超声波、光催化氧化、低温等离子体、反渗透等,其中低温等离子体作为一种高效、低能耗、处理量大、操作简单的环保新技术来处理有毒及难降解物质,是近来研究的热点。

低温等离子体技术应用范围广,气体的流速和浓度对于气态污染物治理技术应用来说是两个非常重要的因素。

生物过滤和燃烧技术能应用于较高浓度范围,但却受气体的流速所限;电子束照射技术仅有一非常窄的气体流速范围。

而低温等离子体技术对气体的流速和浓度都有一个很宽的应用范围,其应用广泛不言而喻。

等离子体技术工艺简单,吸附法要考虑吸附剂的定期更换,脱附时还有可能造成二次污染;燃烧法需要很高的操作温度;联合催化法中,催化剂存在选择性,某些条件(如温度过高)会造成催化剂失活,光催化法只能利用紫外光等;生物法要严格控制pH值、温度和湿度等条件,以适合微生物的生长。

而低温等离子体技术则较好的克服了以上技术的不足,反应条件为常温常压,反应器结构简单,并可同时消除混合污染物(有些情况还具有协同作用),不会产生二次污染等。

就经济可行性来说,低温等离子体反应装置本身系统构成就单一紧凑,在运行费用方面,微观来讲,因放电过程只提高电子温度而离子温度基本保持不变,这样反应体系就得以保持低温,所以不仅能量利用率高,而且使设备维护费用也很低。

低温等离子体技术在气态污染物治理方面优势显著。

其基本原理是在电场的加速作用下,产生高能电子,当电子平均能量超过目标治理物分子化学键能时,分子键断裂,达到消除气态污染物的目的。

1980年代,日本东京大学S.Masuda 教授提出的高压脉冲电晕放电法是常温常压下得到低温等离子体的最简单、最有效的方法。

它已成为目前的研究前沿,也正越来越多的用于气态污染物的治理。

低温等离子体技术在有机废气处理中的应用

低温等离子体技术在有机废气处理中的应用

低温等离子体技术在有机废气处理中的应用随着现代工业的快速发展,大量有机废气排放给环境带来极大的污染。

这些废气中含有大量的有毒有害物质,例如有机溶剂、氨气、硫化物等,直接排放到大气中将导致严重的环境污染。

因此,对于这些有机废气,必须采取有效的治理措施来保护环境和人类身体健康。

低温等离子体技术就是一种有效的有机废气处理技术。

一、低温等离子体技术的基本原理低温等离子体技术是一种非热等离子体技术,它利用电场的作用使气体分子激发成为等离子体。

在低压、低温下,等离子体与有机物质发生反应,发生一系列物理化学反应,使有机物质得以分解,生成不同的化学物质并释放出能量。

这个过程中产生的大量反应物与有机废气发生反应,生成更稳定的物质,从而达到净化空气富氧的目的。

二、低温等离子体技术在有机废气治理中的应用低温等离子体技术不仅适用于低浓度有机废气的治理,还可以处理高浓度有机废气的排放。

其优点在于除去有机废气污染物的同时,能够保证污染物得到完全分解,同时不增加二次污染物的排放。

1、低温等离子体技术在半导体工业中的应用半导体工业是非常重要的工业,但半导体加工会产生大量有机废气。

这些有机废气如果不能得到有效地处理,将会严重污染环境。

采用低温等离子体技术处理这些有机废气,可以使其分解成为更稳定的气体,减少环境污染。

2、低温等离子体技术在化工行业中的应用化工工业也是产生大量有机废气的行业。

部分废气含有苯、甲苯、醛类物质等,这些物质极易引起人体健康问题,因此需要对其进行有效的处理。

使用低温等离子体技术可以达到高效、经济的处理效果。

3、低温等离子体技术在食品加工行业中的应用食品加工工业排放的废气包含大量的脂肪酸、氨、硫化物等物质,对环境和健康都有一定的影响。

采用低温等离子体技术,可以有效地降低这些有害物质的浓度,减轻其对环境和人体的影响。

三、低温等离子体技术存在的问题及发展方向低温等离子体技术作为一种新兴的有机废气处理技术,还存在一些问题。

低温等离子体在废气处理中的应用_王玲玲

低温等离子体在废气处理中的应用_王玲玲

废气有以下优点: (1)介质阻挡放电产生的低温等离子体,电子能 量高,对污染物的降解无选择性,几乎可以和所有的异 味恶臭气体分子作用。 (2)废气经过低温等离子体氧化反应器处理后的 最终产物为二氧化碳、水等,不对外界环境产生二次 污染。 (3)低温等离子体氧化反应器处理废气的反应快, 在0.01~0.1s内完成,几乎不受气速限制。 (4)低温等离子体氧化反应器采用防腐蚀材料, 且电极不与废气直接接触,从根本上解决了废气对设备 的腐蚀问题。 (5)低温等离子体氧化反应器采用智能远程控制, 操控方便;不受时间限制,即用即开,即关即停,无需 专业技术人员操作监控,节省人工费。 (6)结构简单、占地面积小。
DDBD低温等离子体是继固态、液态、气态之后的物 质第四态。低温等离子体降解污染物是利用高能电子、 自由基等活性粒子和废气中的污染物作用,使污染物分 子在极短的时间内发生分解,并发生后续的各种反应以 达到降解污染物的目的。 2.1 DDBD低温等离子体去除污染物的机理 介质阻挡放电是一种获得高气压下低温等离子体的 放电方法, 这种放电产生于两个电极之间。 介质阻挡放电 可以在0.1×105~10×105Pa下进行, 具有辉光放电的大空间 均匀放电和电晕放电的高气压运行等特点。 整个放电过 程由许多在空间和时间上随机分布的微放电构成, 这些 微放电的持续时间很短, 一般在10ns量级。 见图1所示。
1 常用的废气处理技术
目前国内外用于处理异味恶臭的废气有多种技术, 其中常用的技术为燃烧法、氧化法、吸收法 、吸附法、 生物法[2]、光催化法[3]、等离子体法等。其中吸收法的净 化效率不高,消耗吸收剂,易形成二次污染;低温等离 子体法的适用范围广 、净化效率高,尤其适用于其它
[4] [1]
CHINA ENVIRONMENTAL PROTECTION INDUSTRY 2013.1

低温等离子体技术在废气处理中的应用

低温等离子体技术在废气处理中的应用

低温等离子体技术在废气处理中的应用在现代工业高速发展的进程中,废气排放问题日益严峻,对环境和人类健康构成了严重威胁。

为了有效解决这一问题,各种废气处理技术应运而生,其中低温等离子体技术凭借其独特的优势逐渐受到广泛关注和应用。

低温等离子体技术是一种新兴的、高效的废气处理手段。

它的基本原理是通过外加电场,使气体分子发生电离,形成大量的自由电子、离子和活性基团。

这些带电粒子和活性物质具有极高的化学活性,能够与废气中的污染物发生一系列复杂的物理化学反应,从而将污染物分解转化为无害物质。

低温等离子体技术在废气处理中的应用具有多方面的优势。

首先,它的适用范围非常广泛。

无论是有机废气,如挥发性有机物(VOCs)、苯系物、醛酮类等,还是无机废气,如硫化氢、氨气、氮氧化物等,都能够得到有效的处理。

其次,该技术处理废气的效率高。

在合适的条件下,能够实现对污染物的快速分解和去除,达到较高的净化效果。

再者,低温等离子体技术反应速度快,设备占地面积小,操作灵活方便,能够适应不同规模和类型的废气处理需求。

在实际应用中,低温等离子体技术主要有以下几种常见的形式。

介质阻挡放电是其中一种常见的方式。

在这种放电形式中,电极之间存在绝缘介质,阻止了放电电流的自由流动,从而形成了不均匀的电场。

这种不均匀的电场能够有效地激发气体分子产生等离子体,对废气中的污染物进行处理。

电晕放电也是常用的形式之一。

在这种放电中,电极曲率半径很小,在高电压作用下,电极附近的电场强度极高,导致气体发生电离,形成电晕放电。

电晕放电产生的等离子体能够与废气中的污染物相互作用,实现净化目的。

另外,还有辉光放电等形式。

辉光放电产生的等离子体具有较高的能量密度和活性,能够有效地分解废气中的复杂污染物。

然而,低温等离子体技术在应用过程中也并非完美无缺。

一方面,它的能耗相对较高。

为了产生足够强度的等离子体,需要消耗较多的电能。

另一方面,对于某些高浓度、难降解的废气,单独使用低温等离子体技术可能无法达到理想的处理效果,需要与其他处理技术相结合,如吸附、催化等,以提高整体的处理效率和降低处理成本。

低温等离子体技术在环保废气处理中的应用

低温等离子体技术在环保废气处理中的应用

低温等离子体技术在环保废气处理中的应用随着环境污染问题不断加剧,社会各界对环保问题的重视程度越来越高。

废气处理是环境保护的重要部分,而低温等离子体技术作为新型的环保技术,已经得到了广泛的应用。

一、低温等离子体技术的概述低温等离子体技术是一种新型的环保技术,它采用的是低温等离子体反应技术。

等离子体是一种高能状态下的物质,具有较强的化学反应性和离子化能力。

低温等离子体技术是通过在低温条件下产生等离子体,将有害物质转化为无害物质。

二、1、VOCs治理VOCs是挥发性有机化合物的简称,是一种非常常见的有机物质。

在生产过程中,往往会有大量VOCs排放,这些有害物质对环境和人体健康都会造成严重的危害。

低温等离子体技术可以将VOCs转化为环境友好型的CO2和H2O,从而达到治理VOCs的目的。

2、废气净化废气是生产过程中产生的一种重要的污染物。

低温等离子体技术可以对废气进行净化处理。

通过低温等离子体技术,可以将废气中的有害物质转化为更为环保的物质,净化废气的同时还可以达到节能的效果。

3、固体废物处理固体废物是生产过程中不可避免的产生物质。

这些废弃物的处理对环境的影响也非常大。

低温等离子体技术可以将固体废物中的有害物质转化为无害物质,从而实现固体废物的无害化处理。

三、低温等离子体技术的优点1、高效率低温等离子体技术可以快速将有害物质转化为无害物质,治理效率非常高。

2、环保低温等离子体技术具有非常高的环保性,可以将有害物质转化为环境友好型的物质,对环境的影响非常小。

3、安全性低温等离子体技术采用的是低温反应,不会产生高温的环境,操作过程中不会造成安全隐患。

四、低温等离子体技术的展望低温等离子体技术作为一种新型的环保技术,具有非常广泛的应用前景。

随着人们对环保问题的重视程度逐渐提高,低温等离子体技术将会得到更广泛的应用。

同时,研究人员还可以对低温等离子体技术进行进一步的研究,改进技术的处理效率和处理效果。

结论:低温等离子体技术是一种非常有效的环保技术。

低温等离子体技术在化工废气处理中的应用

低温等离子体技术在化工废气处理中的应用

低温等离子体技术在化工废气处理中的应用化工行业的发展给环境带来了一定的压力,特别是化工废气的排放问题。

废气中的有害物质对环境和人类健康有潜在的威胁,因此寻找高效、经济、环保的处理方法势在必行。

近年来,低温等离子体技术在化工废气处理中的应用逐渐受到关注。

本文将对低温等离子体技术在化工废气处理中的应用进行探讨。

1. 低温等离子体技术的基本原理低温等离子体技术是一种利用电磁场激励气体产生等离子体的技术。

在低温条件下,通过施加电场或射频电磁波,使气体分子或原子电离,形成含有电子、离子、自由基等活性物种的等离子体。

低温等离子体技术具有非热平衡、高电子温度、高离子反应速率等特点,可以有效降解化工废气中的有机污染物和无机气体。

2. 低温等离子体技术在VOCs处理中的应用挥发性有机化合物(Volatile Organic Compounds, VOCs)是化工废气中的主要污染物之一。

利用低温等离子体技术可以高效降解VOCs,减少其对环境的影响。

在低温等离子体反应器中,通过将VOCs与等离子体接触,VOCs分子会发生碰撞解离、氧化等反应,最终转化为无害的气体。

3. 低温等离子体技术在氮氧化物处理中的应用氮氧化物(Nitrogen Oxides, NOx)是化工废气中的主要污染物之一,对大气环境和人体健康具有较大的危害。

低温等离子体技术可以通过等离子体化学反应和等离子体对氮氧化物的选择性催化还原作用,将氮氧化物转化为无害物质如氮气和水。

4. 低温等离子体技术在硫化物处理中的应用硫化物是化工废气中常见的污染物之一,其排放会导致大气污染和酸雨的生成。

低温等离子体技术通过激活等离子体中的氧化物或以等离子体产生的活性物种氧化反应,可以有效降解硫化物,将其转化为无害的硫酸盐。

该技术具有高效、无需添加剂和无二次污染的优点。

5. 低温等离子体技术在氨氮处理中的应用氨氮是化工废气中的常见污染物之一,其排放会对水体环境产生较大影响。

低温等离子体技术在工业废气治理中的应用

低温等离子体技术在工业废气治理中的应用

低温等离子体技术在工业废气治理中的应用一、引言随着工业化进程的不断加速,工业生产中产生的废气污染问题也日益突出。

废气中的各种有害物质直接损害了人体健康和环境生态平衡,因此治理废气污染已经成为当今社会亟待解决的问题之一。

随着科学技术的不断进步和创新,低温等离子体技术应用于工业废气治理中,已经成为了一种前沿、高效的污染治理手段。

二、低温等离子体技术的基本原理低温等离子体技术(LTP)是一种利用电磁场作用下气态物质在低压腔内产生电离的物理过程,产生大量自由基、等离子体及高能物质的技术。

其主要原理是在真空环境下,通过外加电磁场激励气体分子发生电离反应,使其生成一定浓度的气体等离子体,从而加速化学反应的进行和新化合物的合成。

相较于传统的废气处理技术,低温等离子体技术具有使用简单、无污染、高效、安全等优点。

三、低温等离子体技术在工业废气处理中的应用1、VOCs处理VOCs(挥发性有机物)是工业生产中主要产生的废气之一,同时也是环境污染的主要成分。

由于VOCs易挥发、易蒸发,通过低温等离子体技术可以有效地将VOCs分解为CO2和H2O等无害物质,从而实现废气治理。

低温等离子体技术在VOCs治理中的应用效果显著,不仅能实现高效率的去除VOCs,同时也能大幅度降低CO2和H2O的排放量。

2、NOx去除NOx(氮氧化物)也是工业废气处理中常见的污染物之一,例如汽车尾气、石化工业废气等。

利用低温等离子体技术,NOx可以被分解成氧和氮,从而降低其排放量。

低温等离子体技术除了在工业废气处理中应用广泛,还可以用于传统模拟大气条件下NOx控制。

3、PMs去除PMs(微粒)也是工业废气处理中常见的一种有害物质。

通过低温等离子体技术,PMs可以被快速分解并转化为CO2和H2O等无害物质,从而实现PMs的去除。

当前此项技术还在研究中,但已经取得了一定的实验成果。

四、低温等离子体技术在工业废气处理中存在的问题和展望低温等离子体技术在工业废气治理中具有广泛的应用前景,但仍然存在一定的问题:1、缺乏可实用的低温等离子体装置。

DDBD低温等离子体废气处理技术

DDBD低温等离子体废气处理技术

DDBD低温等离子体废气处理技术■ 技术简介拥有自主知识产权的DDBD技术采用双介质阻挡放电(Double Dielectric Barrier Discharge,简称DDBD)形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,该技术是派力迪公司与复旦大学共同研发成功的。

自1994年由复旦大学开始研发,最初用于氟利昂类(Freon)、哈隆类(Halong)物质的分解处理,是国家为了研究保护地球臭氧层而设立的科研项目。

后来与派力迪合作研发拓宽其应用领域,延伸至工业恶臭、异味、有毒有害气体处理。

派力迪开创了DDBD技术大规模化工业应用的先河,该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果,侯立安院士评价说“DDBD 技术的发明,为化工清洁生产奠定基础,是近代化学工业生产的一次技术革命”,该技术世界首创、国际领先,属于真正的中国创造。

DDBD等离子体工业废气处理技术是派力迪公司由复旦大学引进吸收,已研制出标准化废气治理设备,利用所产生的高能电子、自由基等活性粒子激活、电离、裂解工业废气中的各组成份,使之发生分解,氧化等一些列复杂的化学反应,再经过多级净化,从而消除各种污染源排放的异味、臭味污染物,使有毒有害气体达到低毒化、无毒化,保护人类生存环境。

DDBD等离子体工业废气处理技术作为一种新的环境污染治理技术,由于其对污染物分子的高效分解且处理能耗低等特点,为工业废气的处理开辟了一条新的思路。

该技术的应用,具有现代化工业生产里程碑的意义。

■技术作用原理低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DDBD低温等离子体废气处理技术技术简介拥有自主知识产权的DDBD技术采用双介质阻挡放电(Double Dielectric Barrier Discharge,简称DDBD)形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,该技术是派力迪公司与复旦大学共同研发成功的。

自1994年由复旦大学开始研发,最初用于氟利昂类(Freon)、哈隆类(Halong)物质的分解处理,是国家为了研究保护地球臭氧层而设立的科研项目。

后来与派力迪合作研发拓宽其应用领域,延伸至工业恶臭、异味、有毒有害气体处理。

派力迪开创了DDBD技术大规模化工业应用的先河,该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果,侯立安院士评价说:“DDBD技术的发明,为化工清洁生产奠定基础,是近代化学工业生产的一次技术革命”,该技术世界首创、国际领先,属于真正的中国创造。

DDBD等离子体工业废气处理技术是派力迪公司由复旦大学引进吸收,已研制出标准化废气治理设备,利用所产生的高能电子、自由基等活性粒子激活、电离(但化工医药场所一般不推荐使用,存在高压放电容易爆炸的危险)、裂解工业废气中的各组成份,使之发生分解,氧化等一些列复杂的化学反应,再经过多级净化,从而消除各种污染源排放的异味、臭味污染物,使有毒有害气体达到低毒化、无毒化,保护人类生存环境。

DDBD等离子体工业废气处理技术作为一种新的环境污染治理技术,由于其对污染物分子的高效分解且处理能耗低等特点,为工业废气的处理开辟了一条新的思路。

该技术的应用,具有现代化工业生产里程碑的意义。

■技术作用原理低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

(注:低温等离子体相对于高温等离子体而言,属于常温运行。

)DDBD等离子体反应区富含极高的物质,如高能电子、离子、自由基和激发态分子等,废气中的污染物质可与这些具有较高能量的物质发生反应,使污染物质在极短的时间内发生分解,并发生后续的各种反应以达到讲解污染物的目的。

与传统的电晕放电形势产生的低温等离子技术相比较,DDBD等离子体技术放电密度是电晕放电的1500倍,这就是传统低温等离子体技术治理工业废气99%以失败而告终的原因。

等离子体去除污染物的基本过程过程一:高能电子的直接轰击过程二:O原子或臭氧的氧化O2+e→2O过程三:OH自由基的氧化H2O+e→OH+HH2O+O→2OHH+O2→OH+O过程四:分子碎片+氧气的反应■技术特点DDBD等离子体工业废气处理成套设备拥有独立自主知识产权,历经18年,该技术的发明为化工清洁生产奠定了基础,是近代化学工业生产的一次技术革命。

申请二十六项国家专利,在等离子体技术的工业化应用方面走在了世界最前列,国际领先、属于真正的中国创造。

与目前国内常用的异味气体治理方法相比较,DDBD等离子体工业废气处理技术具有以下特点:DDBD低温等离子体技术应用于恶臭气体治理,具有处理效果好,运行费用低廉、无二次污染、运行稳定、操作管理简便、即开即用等优点。

①DDBD介质阻挡放电产生电子能量高,低温等离子体密度大,达到常用等离子技术(电晕放电)的1500倍,几乎可以和所有的恶臭气体分子作用;②DDBD技术反应速度快,气体通过反应区的速度达到3-15米/秒,即达到很好的处理效果,其他技术气体通过反应区的速度0.01米/秒都很难达到DDBD的处理效果;③气体通过部分,全部采用陶瓷、石英、不锈钢等防腐蚀材料,电极与废气不直接接触,根本上解决了低温等离子体技术设备腐蚀问题;其他技术是气体与电极直接接触,电极在3个月或1年内会造成严重腐蚀,即使通过的气体没有腐蚀性,自身所产生的臭氧也会把电极造成腐蚀;④DDBD主机为成套工业废气处理装置,前面配有DDBD专用塔,能有效去除废气中的粉尘和水分,操作简单;⑤自动化程度高,设备启动、停止十分迅速,随用随开,对于部分化工生产的不连续性,可以在生产时开启,不生产的间隙停止运行,大量的节约能源;⑥运行成本较低,比常用的蓄热式燃烧炉RTO节约运行费用5-8倍,每立方米气量运行费用仅为0.3~0.9分钱,部分高浓度废气可以通过空气稀释后用DDBD技术处理;⑦应用范围广阔,基本不受气温和污染物成分的影响,对恶臭异味的臭气浓度有良好的分解作用,恶臭异味的去除率达80-98%,处理后的气体臭气浓度达到国家标准;⑧DDBD技术处理工业废气技术不是水洗技术,是通过高能量等离子体对污染物的直接击穿和直接轰击,使分子链断裂,并非污染物的转移;⑨重要特点:以非甲烷总烃为例,用色谱法检测,非甲烷总烃去除率也许只有45%,但恶臭异味的去除率达93%。

这是因为非甲烷总烃经过处理后,部分分子变成小分子,用色谱法检测时,依然表现为非甲烷总烃;恶臭异味的去除率高,表明实际已经分解了93%以上的污染物质,因为分解后的物质也有部分有异味;⑩DDBD技术是真正的中国创造,欧美及亚洲国家正在引进我国技术,解决二恶英污染问题,DDBD技术对二恶英这个世界难题,已经是成熟工艺,因为二恶英类物质含有氯,多数是亲电子基团,更容易被电子轰击。

■低温等离子体技术工艺[1]异味气体从气体收集系统收集后,一部分废气需要进行预处理,除水后进入等离子体反应区,在高能电子的作用下,使异味分子受激发,带电粒子或分子间的化学键被打断,同时空气中的水和氧气在高能电子轰击下也会产生OH自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。

净化后的气体经排气筒高空排放。

低温等离子体废气处理技术简介低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

介质阻挡放电示意图介质阻挡放电是一种获得高气压下低温等离子体的放电方法,这种放电产生于两个电极之间。

介质阻挡放电可以在0.1~的气压下进行,具有辉光放电的大空间均匀放电和电晕放电的高气压运行的特点。

整个放电是由许多在空间和时间上随机分布的微放电构成,这些微放电的持续时间很短,一般在10ns 量级。

介质层对此类放电有两个主要作用:一是限制微放电中带电粒子的运动,使微放电成为一个个短促的脉冲;二是让微放电均匀稳定地分布在整个面状电极之间,防止火花放电。

介质阻挡放电由于电极不直接与放电气体发生接触,从而避免了电极的腐蚀问题(SO2腐蚀性强)。

低温等离子体能量的传递图介质阻挡放电过程中,电子从电场中获得能量,通过碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、臭氧和羟基氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。

从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。

废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。

低温等离子体化学反应过程大致如下:低温等离子体化学反应过程解析图从以上反应过程可以看出,电子先从电场获得能量,通过激发或电离将能量转移到污染物分子中去,那些获得能量的污染物分子被激发,同时有部分分子被电离,从而成为活性基团。

然后这些活性基团与氧气、活性基团与活性基团之间相互碰撞后生成稳定产物和热。

另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。

这类负离子具有很好的化学活性,在化学反应中起着重要的作用。

低温等离子体介质阻挡放电管低温等离子体恶臭气体处理的作用原理(已H2S和CS2为例)活性粒子的化学反应:CS2* +CS2 → 2CS + S2CS2* +O2 → CS + SO2CS + O2 → CO + SOnCS → (CS)n (聚合物)SO + O2 → OSOOSO + OSOO → 2SO2CO + O → CO2···其总的反应为:CS2 + 3O2 → CO2 + CO + 2SO22H2S + 3O2 → 2H2O + 2SO2低温等离子体技术的特点与目前国内常用的异味气体治理方法相比较本装置具有如下优点:■ 技术高端,工艺简洁:开机后,即自行运转,受工况限制非常少,无需专人操作。

■ 节能:无机械设备,空气阻力小,耗电量约为0.003kw/m3废气。

■ 适应工况范围宽:设备启动、停止十分迅速,随用随开,不受气温的影响。

在250℃以下和在雾态工况环境中均可正常运转。

在-50℃至+50℃的环境温度仍可正常运转。

■ 设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料组成,抗氧化,采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。

■ 结构简单:只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。

无机械设备,故障率低,维修容易。

■ 应用范围广:介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以将所有的异味气体分子降解。

低温等离子体技术工艺路线示意图■ 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异昧分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。

同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。

净化后的气体经排气筒高空排放。

低温等离子体技术的应用范围■ 低温等离子体降解污染物是利用高能电子、自由基等活性粒子与废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

该技术能够应用于污水处理厂、石油化工、制药、污水处理、涂料、皮革加工、感光材料、汽车制造、食品加工厂、印染厂、垃圾处理厂、公厕、屠宰场、牲畜饲养场、鱼类加工厂、饲料加工厂等诸多能够产生恶臭异味的场所。

相关文档
最新文档