最全面LTE物理层总结
LTE-物理层介绍
下行
上行
DwPTS
GP
UpPTS
12
概述(续)——资源网格(Resource Grid)
• • • •
用来描述每个时隙中传输的信号 每个网格中有 NRBNscRB 个子载波(频域)和 Nsymb个符号(时域) NRB由传输带宽决定,并满足 6 ≤ NRB ≤ 110 资源网格中的每一个元素就叫做资源元素(Resource Element),它是 上下行传输中的最小资源单位
one s
lot, N symb
ol 个
符号
RB N sc 个子载波, 1
E-UTRAN概述
下行信道 上行信道 硬件实现架构
• • • • • • 下行的时隙结构 同步信号 参考信号 下行物理信道的基本处理过程 各个信道的具体处理过程 OFDM基带信号的生成
15
• 三种下行参考信号
• 小区专用参考信号 • MBSFN参考信号 • UE专用参考信号
• 一个下行天线端口上只能传一个参考信号
• 小区专用参考信号,支持配置1,2,4个天线端口 • MBSFN参考信号,在天线口4上发送 • UE专用参考信号,在天线口5上发送
19
下行传输(续)——参考信号2
• 小区专用参考信号
下行传输
• 物理信号
• LTE的下行传输是基于OFDMA的
• Reference signal • Synchronization signal
• 物理信道
• Physical Downlink Shared Channel, PDSCH • Physical Broadcast Channel, PBCH • Physical Multicast Channel, PMCH
LTE 物理层解析
Extended cyclic prefix DwPTS GP UpPTS
0
3
10
3
8
“D”代表此子帧用于 下行传输,“U” 代表
此子帧用于上行传输, “S”是由DwPTS、GP 和UpPTS组成的特殊 子帧。
1
9
4
8
3 1 OFDM
2
10
3
1 OFDM symbols
9
2 symbols
3
11
2
10
LTE物理信道
下行物理信道
信道类型 PDSCH(Physical Downlink Shared Channel ) PBCH (Physical Broadcast Channel)
功能 承载下行业务数据 承载广播信息
下行Unicast/MBSFN子帧,控制区 域与数据区域进行时分;
下行MBSFN专用载波子帧中不存在 控制区域,即控制区域OFDM符号数 目为0;
上行常规子帧中控制区域与数据区域 进行频分
控制区域
数据区域
下行Unicast/MBSFN子帧
控制区域与数据区域进行 时分
控制区域OFDM符号数目可 配置
PHY
逻辑信道和传输信道的映射功能 HARQ 传输格式选择 UE内部逻辑信道之间优先级调度功能 UE间根据优先级动态调度功能
S1接口
协议栈
用户平面接口位于E-NodeB 和S-GW之间,传输网络层 建立在IP传输之上, UDP/IP之上的GTP-U用来 携带用户平面的PDU。
S1控制平面接口位于ENodeB和MME之间,传输 网络层是利用IP传输,这点 类似于用户平面;为了可靠 的传输信令消息,在IP曾之 上添加了SCTP;应用层的 信令协议为S1-AP。
LTE物理层关键技术及物理层传输方案汇总
LTE物理层关键技术及物理层传输方案汇总LTE(Long Term Evolution)是一种高速无线通信技术,它的物理层关键技术和传输方案为实现高速的无线通信提供了支持。
1. MIMO(Multiple Input Multiple Output)技术:MIMO技术是LTE物理层的核心技术之一,它利用多个天线在发送和接收端同时传输和接收多个数据流,从而提高了系统的容量和数据传输速率。
LTE中使用了2x2 MIMO或4x4 MIMO技术,分别表示在发送和接收端使用2个或4个天线。
2. OFDM(Orthogonal Frequency Division Multiplexing)技术:OFDM技术是LTE物理层的另一个重要技术,它将频域上的数据划分为多个子载波,每个子载波上都可以传输不同的数据。
这种分频复用的方式可以提高频谱效率和抗干扰能力。
3. RB(Resource Block)分配:在LTE中,物理资源被划分为一组资源块,每个资源块占据12个子载波和一个时隙。
RB分配是根据用户的需求和系统的负载情况进行动态分配,以最大化系统资源的利用效率。
4. HARQ(Hybrid Automatic Repeat Request)技术:HARQ技术是一种自动重传技术,用于提高数据传输的可靠性。
当接收端收到有错误的数据时,它可以向发送端发送一个重传请求,从而实现数据的可靠传输。
5. CQI(Channel Quality Indicator)反馈:CQI反馈是在LTE中用于评估信道质量的指标,它通过接收端测量信道的质量,并将评估结果发送给发送端。
根据CQI反馈,发送端可以选择适当的调制和编码方案,以最大化数据传输速率和系统容量。
6. TDD(Time Division Duplexing)和FDD(Frequency Division Duplexing):TDD和FDD是两种不同的LTE物理层传输方案。
LTE物理层协议总结——LTE36系列协议总结
终端一致性系列规范
TS36.508
UE一致性测试的通用测试环境
主要描述终端一致性测试公共测试环境的配置,包含小区参数配置以及基本空口消息定义等
23-Sep-2010
TS36.509
UE的特殊一致性测试功能
主要描述了终端为满足一致性测试而支持的特殊功能定义,包括数据回环测试功能等
SPECIFICATION WITHDRAWN
TR36.804
E-UTRA;基站(BS)无线电传输和接收
SPECIFICATION WITHDRAWN
TR36.805
E-UTRA;下一代网络的最小化驱动测试
36.805协议主要用于捕捉在下一代网络驱车测试的最小化可行性研究的内容
21-Dec-2009
复用和信道编码
主要描述了传输信道和控制信道数据的处理,主要包括:复用技术,信道编码方案,第一层/第二层控制信息的编码、交织和速率匹配过程
17-Sep-2010
TS36.213
物理信道过程
定义了FDD和TDD E-UTRA系统的物理过程的特性,主要包括:同步过程(包括小区搜索和定时同步);功率控制过程;随机接入过程;物理下行共享信道相关过程(CQI报告和MIMO反馈);物理上行共享信道相关过程(UE探测和HARQ ACK/NACK检测);物理下行共享控制信道过程(包括共享信道分配);物理多点传送相关过程
主要是M3接口的M3应用协议控制平面信令,包括M3AP业务、功能、过程以及消息描述
27-Sep-2010
TS36.445
M1数据传输
主要是M1接口的用户平面传输承载,用户平面协议栈及功能
14-Jun-2010
TS36.446
LTE物理层介绍
Page11
AMC的基本原理
• 基于信道质量的信 息反馈,选择最合 适的调制方式,数 据块大小和数据速 率
– 好的信道条件 – 减少 冗余编码,甚至不需 要冗余编码
– 坏的信道条件 – 增加 更多冗余编码
Page12
空口速率提升最后一招-增大带宽
制式
GSM EDGE
上下行 时隙配比
/
调制 方式
8PSK
多天线技术
/
TD HSDPA
WCDMA HSPA
WCDMA HSPA+
TD - LTE
2:4
16QAM 智能天线
/
16QAM
/
/
64QAM 2×2MIMO
2:2
64QAM 2×2MIMO
TD - LTE LTE - A (4G)
时隙级 快速调度
OFDMA
调制 解调
射频 收发
空口速率提升技术之一: 高阶调制和AMC(自适应调制编码)
Page9
调制的用途
• 用途1:把需要传递的信息送上射频信道 • 用途2:提高空中接口数据业务能力
Page10
空口速率提升技术-高阶调制
• 高阶调制的优点:TD - LTE可以采用64QAM调制方式,比TD - SCDMA 采用的16QAM速率提升50%
结合复用和智能天线技术,进行多路波束赋形发送,既提 高用户信号强度,又提高用户的峰值和均值速率
应用场景
无法布放双通道室分系统 的室内站 信道质量不好时,如小区 边缘 信道质量高且空间独立性 强时 信道质量高且空间独立性 强时。终端静止时性能好
LTE的物理层技术-OFDM
LTE的关键物理层技术LTE的关键物理层技术主要有:正交频分的多载波传输(OFDM)、多入多出(MIMO)、高阶调制(LTE最高64QAM)。
OFDM的特点正交频分传输是一种多载波传输技术,整个传输信号由很多子载波组成,各子载波之间互为正交(而传统的频分复用技术的各载波是不正交),来避免子载波之间的互相干扰。
与传统的频分复用相比,正交频分复用技术使得子载波可以排列更紧密,频谱效率更高。
(CDMA系统中的各码道之间也是互相正交的。
正交信号之间的互相干扰是可以消除的)OFDM的作用OFDM的引入主要是为了抗信道衰弱。
无线信道由于信号在传输过程中的各种反射、折射、多谱LE频移,使接收到的信号的幅度和相位产生剧烈的变化,就会产生严重的衰弱现象。
在同样的衰弱情况下,较窄的信道带宽,在整个传输带宽内,它的衰弱可能是比较一致的,称为平坦衰落(从时域的角度看,也称为慢衰落);而较宽的信道带宽,在整个传输带宽内,它的衰弱可能是变化的,称为不平坦衰落(从时域的角度看,也称为快衰落)。
平坦衰落由于在传输信道带宽内信号变化是一致的,在产生衰落时可以用较简单的均衡技术来恢复;而不平坦衰落导致的传输失真的恢复比较困难。
由于LTE要求的传输速率相当高,它的信道带宽必然比较宽(20M,而LTE-A 可以达到100M);并且,LTE系统需要支持这种使用环境,最高移动速度达到500公里每小时(LTE -TDD支持的最高速度是300公里)(衰落最严重的情况是市区内高速运动)。
因此,LTE系统的信道衰落比较严重(在高速率的传输系统中,OFDM已成为一种趋势)。
OFDM在抗多径衰落方面有着先天的优势。
OFDM把较宽的带宽分割成很多子载波(LTE中子载波带宽15K),因此,在每个子载波内,衰落是平坦的。
这样,就可以通过简单的均衡技术来达到较好的效果。
OFDM技术的主要特点∙1.高速数据先经过串并转换,再调制到各子载波。
这样子载波上的码速率就很低,可以有效降低码间串扰。
最全面LTE物理层总结
9 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
物理层相关参数
子帧格式:LTE支持两种基本的工作模式,即频分双工(FDD)和时分双工(TDD); 支持两种不同的无线帧结构,即Type1和Type2帧结构,帧长均为10ms。前者适用于 FDD工作模式,后者适用于TDD
Physical Layer Introduction
Zhu Xiaoqiang 2011.3.7
All Rights Reserved © Alcatel-Lucent 2006, #####
目录 LTE的性能需求指标 与LTE物理层相关的协议编号及内容
物理信道的种类
传输信道与物理信道的映射 物理层相关参数 物理信道结构
物理信道结构
16 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
上行共享信道PUSCH 信道功能:物理上行共享信道,即主要传输UE的数据和控制信息的物理信道, 既可以传输数据也可复用传输控制信息包括(CQI and/or PMI), HARQ-ACK 和 RI(rank indication)秩信息 PUSCH系统结构 信道编码:加循环校验冗余CRC、码块分段、加CRC校验、turbo编码、速率 匹配、码块级联、复用、信道交织过程 基带SC-FDMA处理:加扰、调制映射、传输与编码(DFT)、RE映射、SCFDMA信号产生
5 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
LTE物理层介绍_OFDM
主要参数——循环前缀
CP 符号 66.67us 4.6875us 常规CP+常规符号 用于常规小区单播系统 符号 66.67us 16.67us 扩展CP+常规符号 用于大小区单播或MBMS系统 符号 133.33us 超长扩展CP+独立载波MBMS符号 用于独立载波MBMS系统
背景知识——正交
• 以 cos 2t 乘 cos 2t 为例,相乘再在周期内积分, 相当于求下图黄色部分的面积,面积大于0。
背景知识——正交
• 以 cos 2t乘 cos 3t 为例,相乘再在周期内积分, 相当于求下图黄色部分的面积,面积为0。
背景知识——正交
• IQ调制与接调:
• 解调时,I路乘上cos再积分得到a。
主要参数——参数设计
• 4 根据预期达到的比特速率和符号长度计算一个 OFDM符号需传输的比特数: n=Rb×Ts=25×4.8=120bit。 • 5 根据一个OFDM符号需要传输的比特数和给定带宽 确定调制编码方式和子载波数: • ¾编码率、QPSK调制时,1个RE需传输1.5个比特, 传120个比特需80个子载波,占用带宽为 80×250=20MHz,超过了限定带宽18M。 • 1/2编码率、16QAM调制时,1个RE需传输2个比特, 传120个比特需60个子载波,占用带宽为 60×250=15MHz,满足限定带宽18M要求。
背景知识——频分复用
• 频分复用(Frequency Division Multiplexing):将用于传输信 道的总带宽划分成若干个子带,每个子带传输一路信号。
LTE 物理层
注 :U表示用于上行传输时隙,S表示包含DwPTS、GP以及UpPTS的特殊子 帧,D表示用于下行传输的时隙。
下行物理信道有:
① PDSCH传输用户数据; ② PDCCH传输与特定PDSCH相关的控制和配置信息 (HARQ信令、功控命令、RB分配、AMC配置); ③ PBCH传输小区广播信息; ④ PMCH传输多媒体广播业务; ⑤ PCFICH传输用于控制信道(PDCCH)的OFDM符号个 数; ⑥ PHICH传输HARQ ACK/NACK
由于最小TTI是1ms,而RB为0.5ms为单位,则映 射的时候,VRB和PRB也是成对映射的。
集中式虚拟资源块 LVRB –> 直接映射到物理资源 块上; 分布式虚拟资源块 DVRB –> 按照函数关系映射到 物理资源块上,在一个子帧中的两个时隙上虚拟到 物理资源块的映射是不同的。 一个时隙里面可以同时进行LVRB和DVRB的传输。 eNode B可以分配多个VRB给一个UE。
在下行方向采用基于循环前缀(Cyclic Prefix,CP) 的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM) 在上行方向上采用基于循环前缀的单载波频分多址 (Single Carrier—Frequency Division Multiplexing Access,SC-FDMA)
主讲人:蔡俊
物理层概述 帧结构 下行物理信道
E-UTRA无线接口协议结构
物理层与层2的媒体接入控制 (Media Access Control,MAC)子层和层3的无线资源控制(Radio Resource Control,RRC)层具有接口。其中的圆 圈表示不同层/子层间的服务接入点(Service Access Point,SAP)。物理层向MAC层提供传输信 道(Transport Channel)。MAC提供不同的逻辑信 道给层2的无线链路控制(Radio Link Control, RLC)子层。
LTE物理层总结一
98407091、物理层综述1.01. 3G标准向4G演进的路线:TD-SCDMA:TD-SCDMA → TD-HSDPA → TD-HSUPA → TD-HSPA+ →LTE TDDWCDMA:GSM → GPRS → EDGE → WCDMA → HSDPA → HSUPA → HSPA+ → LTE FDDCDMA2000:CDMA → CDMA1X → CDMA2000 EV-DO Rev.0 → Rev.A →LTE FDDWIMAX:1.02. 什么是LTE?LTE项目是第三代合作伙伴计划(3rd Generation Partnership Project,3Gpp)对通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术的长期演进(Long Term Evolution,LTE),始于2004年3GPP的多伦多会议。
LTE并非人们普遍误解的4G技术,而是3G与4G技术之间的一个过渡,是3.9G的全球标准,它改进并增强了3G的空中接入技术,采用OFDM和MIMO作为其无线网络演进的唯一标准。
在20MHz频谱带宽下能够提供下行326Mbit/s与上行86Mbit/s的峰值速率。
改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
1.03. LTE的需求指标主要需求指标包括:●支持1.25MHz-20MHz带宽;●峰值数据率:上行50Mbps,下行100Mbps。
频谱效率达到3GPP R6的2-4倍;●提高小区边缘的比特率;●用户面延时:零负载(单用户、单数据流)、小IP分组条件下单向时延小于5ms;●控制面延时:从驻留状态转换到激活状态的延迟小于1OOms;●每个小区在5MHz带宽下最少支持200个用户;●用户吞吐量:下行每MHz平均用户吞吐量为R6HSDPA的3~4倍,上行每MHz平均用户吞吐量为R6HSDPA的2~3倍●支持与现有3GPP和非3GPP系统的互操作;●支持增强型的广播多播业务;●降低建网成本,实现从R6的低成本演进;●实现合理的终端复杂度、成本和耗电;●支持增强的IMS(IP多媒体子系统)和核心网;●追求后向兼容,但应该仔细考虑性能改进和向后兼容之间的平衡;●取消CS(电路交换)域,CS域业务在PS(包交换)域实现,如采用VoIP;●对低速移动优化系统,同时支持高速移动;●以尽可能相似的技术同时支持成对(paired)和非成对(unpaired)频段;●尽可能支持简单的临频共存。
LTE下行物理层算法详述
LTE下行物理层算法详述LTE(Long Term Evolution)是一种无线通信技术,提供高速数据传输和较低的延迟。
下行物理层算法是LTE中最重要的部分之一,负责将数据从基站传输到终端设备。
下面将详细介绍LTE下行物理层算法。
1.子载波分配:LTE采用了正交频分多址(OFDMA)技术,在频域上将可用带宽划分为多个子载波。
子载波分配算法决定了每个用户被分配哪些子载波以及相应的功率分配。
该算法需要考虑用户需求、信道质量和网络拥塞程度等因素。
通常使用动态资源分配算法,以根据实际需求动态调整子载波分配。
2. 调制和编码:该步骤将待传输的数据进行调制和编码处理,以便在信道中传输。
LTE使用调制技术将数据映射到不同的调制符号上,常用的调制方式有16QAM和64QAM。
编码则通过加入纠错码(如Turbo码和LDPC码)提高数据的可靠性。
3.多址技术:在LTE中,多个用户可以同时在相同的子载波上进行数据传输。
这种多址技术被称为频分多址(FDMA),通过将不同用户的数据分配到不同的子载波上实现。
FDMA技术的优势是可以同时支持多用户数据传输,提高了系统的容量。
4.MIMO技术:LTE采用多输入多输出(MIMO)技术,通过使用多个天线进行无线信号传输和接收,提高了系统的数据传输速率和信号质量。
下行物理层算法中的MIMO技术主要包括天线分集和空间复用两种方式。
天线分集通过接收多个独立的信道来提高信号质量;空间复用将不同用户的信号进行混合,通过空间多路复用进行传输。
5. 增强传输技术:LTE还采用了一些增强传输技术来提高系统的性能。
其中,级联码(Harq)技术通过使用自动重传请求机制和混合自动重传请求/自适应调制和编码(HARQ/AMC)来提高数据的可靠性。
开环与闭环功控技术通过动态调整信号的发射功率来保持用户之间的信号质量一致。
此外,还有上下行数据分集技术、干扰消除技术和波束赋形技术等。
6. 资源分配:资源分配是在物理层中决定每个用户分配的资源(如发送功率、子载波和时域位置等)的算法。
LTE协议学习总结2 - 物理层 (1)
物理层概述_总体描述
物理层过程
小区搜索
功率控制
上行同步和上行定时控制 随机接入相关过程 HARQ相关过程 通过在频域,时域和功率域进行物理资源控制,LTE隐式地支持干扰协调。
物理层测量
UE和eNode-B对无线特性进行测量,并且上报网络中的高层。这些包括,例如用于同频和异 频切换的测量,不同无线接入技术间(RAT)切换的测量,定时测量和无线资源管理(RRM) 的测量并且支持定位。 不同RAT切换的测量用于支持GSM,UTRA FDD,UTRA TDD,CDMA2000 1x RTT 和 CDMA2000 HRPD的系统间切换。
DwPTS 和 UpPTS的长度是可配置的。
支持5ms和10ms上下行切换点,如果和TD同一个频点,就用5ms,避免干扰
帧结构_上下行配比方式
“D”代表此子帧用于下行传输,“U” 代表此子帧用于上行传输,“S”是由DwPTS、 GP和UpPTS组成的特殊子帧。
若与TD使用同一个频段,则应该使用转换周期为5ms的配比方式,以避免系统间干扰; 在转换点周期为10ms的配置里,子帧6仅包含DwPTS;
LTE网络结构协议栈及物理层
LTE网络结构协议栈及物理层LTE(Long Term Evolution)是第四代移动通信技术,为了满足日益增长的数据需求和提供更高的速率、更低的时延,LTE采用了全新的网络结构和协议栈。
本文将介绍LTE网络的结构、协议栈及物理层。
一、LTE网络结构LTE网络结构包括用户终端设备(UE)、基站(eNodeB)、核心网(EPC)和公共网(Internet)四个部分。
UE是移动设备,eNodeB是用于无线接入的基站,EPC则是支持核心网络功能的节点。
UE与eNodeB之间通过无线接口建立连接,提供无线接入服务。
eNodeB负责对无线资源进行管理和调度,以及用户数据的传输。
而EPC则是核心网络,包括MME(Mobility Management Entity)、SGW (Serving Gateway)和PGW(Packet Data Network Gateway)等网络节点,负责用户移动性管理、用户数据传输和连接到公共网。
二、LTE协议栈LTE协议栈分为两个层次:控制面协议栈(CP)和用户面协议栈(UP)。
CP负责控制信令的传输和处理,UP处理用户数据的传输。
协议栈分为PHY(物理层)、MAC(介质访问控制层)、RLC(无线链路控制层)、PDCP(包隧道协议层)和RRC(无线资源控制层)五个层次。
- 物理层(PHY):是协议栈的最底层,负责将用户数据以比特流的形式传输到空中介质中,并接收从空中介质中接收到的数据。
物理层对数据进行编码、调制和解调,实现无线传输。
- 介质访问控制层(MAC):负责管理无线资源,包括分配资源、管理调度和处理数据的传输。
MAC层通过无线帧的分配来实现用户数据的传输控制。
- 无线链路控制层(RLC):负责对用户数据进行分段、确认和相关的传输协议。
RLC层提供不同的服务质量,如可靠传输和非可靠传输。
- 包隧道协议层(PDCP):负责对用户数据进行压缩和解压缩,以减小无线传输时的带宽占用。
LTE物理层总结(强悍推荐)
LTE物理层总结目录1、物理层综述 ................................................................................................................. 错误!未定义书签。
1.01. 3G标准向4G演进的路线:............................................................................................................... 错误!未定义书签。
1.02. 什么是LONG TERM?..................................................................................................................... 错误!未定义书签。
1.03. LONG TERM的需求指标 ................................................................................................................ 错误!未定义书签。
1.04 .与LONG TERM物理层相关的协议编号及内容....................................................................................... 错误!未定义书签。
1.05 LONG TERM一共有几层?各自的功能是什么?.................................................................................... 错误!未定义书签。
LTE移动通信技术任务1 物理层
LTE移动通信技术任务1 物理层在现代通信领域,LTE(Long Term Evolution,长期演进)移动通信技术无疑是一项具有重要意义的技术革新。
而物理层作为 LTE 技术的基础和关键组成部分,承担着数据传输的核心任务,对于整个通信系统的性能和效率起着至关重要的作用。
要理解 LTE 物理层,首先得明白它的基本功能。
简单来说,物理层就像是通信系统中的“运输管道”,负责将上层的数据进行编码、调制等处理,然后通过无线信道发送出去,同时也负责接收来自无线信道的信号,并进行解调、解码等操作,将数据还原并传递给上层。
在发送端,物理层首先要对数据进行编码。
这可不是随便的编码,而是采用了一系列复杂而高效的编码方式,比如Turbo 码、卷积码等,目的是为了增加数据的可靠性,减少传输过程中的错误。
编码完成后,就轮到调制上场了。
LTE 中常用的调制方式有 QPSK(四相相移键控)、16QAM(16 正交幅度调制)和 64QAM 等。
调制的作用是把编码后的数字信号转换成适合在无线信道中传输的模拟信号。
接下来,这些经过编码和调制的信号会被映射到不同的资源元素上。
资源元素可以理解为无线信道中的一个个小格子,每个格子都承载着一定的信息。
LTE 物理层通过巧妙地安排这些资源元素,实现了高效的数据传输。
而且,为了适应不同的信道条件和用户需求,LTE 还支持灵活的资源分配方式,比如动态资源分配和半静态资源分配。
再来说说接收端。
当无线信号到达接收端时,首先要经过滤波、放大等处理,去除噪声和干扰。
然后进行解调,把模拟信号还原为数字信号。
接着是解码,纠正传输过程中可能出现的错误。
这个过程就像是一个解谜的过程,要从接收到的纷繁复杂的信号中准确地还原出原始的数据。
LTE 物理层还涉及到多天线技术,这也是提升通信性能的一个重要手段。
多天线技术包括 MIMO(多输入多输出)和波束赋形等。
MIMO 可以通过多个天线同时发送和接收数据,大大提高了信道容量和传输速率。
第八课:LTE系统物理层
第八课:LTE系统物理层LTE物理层概述LTE物理层在技术上实现了重大革新与性能增强。
关键的技术创新主要体现在以下几方面:以OFDMA为基本多址技术实现时频资源的灵活配置;通过采用MIMO技术实现了频谱效率的大幅度提升;通过采用AMC、功率控制、HARQ等自适应技术以及多种传输模式的配置进一步提高了对不同应用环境的支持和传输性能优化;通过采用灵活的上下行控制信道涉及为充分优化资源管理提供了可能。
1. 协议结构物理层周围的LTE 无线接口协议结构如图1 所示。
物理层与层2 的MAC 子层和层3 的无线资源控制RRC 子层具有接口,其中的圆圈表示不同层/子层间的服务接入点SAP。
物理层向MAC 层提供传输信道。
MAC 层提供不同的逻辑信道给层2 的无线链路控制RLC 子层。
图1 物理层周围的无线接口协议结构2. 物理层功能物理层通过传输信道给高层提供数据传输服务,物理层提供的功能包括:1)传输信道的错误检测并向高层提供指示;2)传输信道的前向纠错(FEC)编解码;3)混合自动重传请求(HARQ)软合并;4)编码的传输信道与物理信道之间的速度匹配;5)编码的传输信道与物理信道之间的映射;6)物理信道的功率加权;7)物理信道的调制和解调;8)频率和时间同步;9)射频特性测量并向高层提供指示;10)多输入多输出(MIMO)天线处理;11)传输分集;12)波束形成;13)射频处理;3. LTE无线传输帧结构(1) 无线传输帧结构LTE 在空中接口上支持两种帧结构:Type1 和Type2,其中Type1 用于FDD 模式;Type2 用于TDD 模式,两种无线帧长度均为10ms。
在FDD 模式下,10ms 的无线帧分为10 个长度为1ms 的子帧(Subframe),每个子帧由两个长度为0.5ms 的时隙(slot)组成,如图2 所示。
图2 帧结构类型1在TDD 模式下,10ms 的无线帧包含两个长度为5ms 的半帧(Half Frame),每个半帧由5 个长度为1ms 的子帧组成,其中有4 个普通子帧和1 个特殊子帧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每个小区在5MHz带宽下最少支持200个用户
实现合理的终端复杂度、成本和耗电 对低速移动优化系统,同时支持高速移动 以尽可能相似的技术同时支持成对(paired)和非成对(unpaired)频段
2 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
5 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
传输信道与物理信道的映射
上行传输信道与物理层信道的映射关系
传信道信道/ 控制信息 上行共享信道 UL-SCH
物理信道 物理上行共享信道 PUSCH
随机接入信道 RACH
上行控制信息 UCI
物理随机接入信道PRACH
PUCCH、PUSCH
6 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
物理层相关参数
基本传输和多址技术:上行单载波频分多址SC-FDMA,下行正交频分多址OFDMA 双工方式:TDD,FDD(全双工和半双工FDD)
4 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
传输信道与物理信道的映射
下行传输信道与物理层信道的映射关系 传输信道 下行共享信道 DL-SCH 寻呼信道PCH 广播信道 BCH 多播信道MCH 控制信息 控制格式指示CFI HARQ指示 HI 下行控制信息 DCI 物理信道 物理下行共享信道PDSCH 物理下行共享信道PDSCH 物理广播信道PBCH 物理多播信道PMCH 物理信道 物理控制格式指示信道PCFICH 物理HARQ指示信道 PHICH 物理下行控制信息信道PDCCH
目录 LTE的性能需求指标 与LTE物理层相关的协议编号及内容
物理信道的种类
传输信道与物理信道的映射 物理层相关参数 物理信道结构
参考信号和信道估计功能
LTE物理层过程
1 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
与LTE物理层相关的协议编号及内容 TS 36.201――LTE物理层―总体描述 TS 36.211――物理信道、参考信号、帧结构
TS 36.212――信道编码、交织、速率匹配、复用
TS 36.213――随机接入等物理层的工作过程 TS 36.214――物理层的测量技术 TS 36.302――物理层向高层提供的数据传输服务
PDCCH:下行物理控制信道RQ信 息,位于子帧的前n个OFDM符号,n<=3
上行物理信道 PUSCH:物理上行共享信道 PRACH:物理随机接入信道,获取小区接入的必要信息进行时间同步和小区搜索等 PUCCH:物理上行控制信道,UE用于发送ACK/NAK,CQI,SR,RI信息
7 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
物理层相关参数
CP的长度是由所要求的系统容量、信道相关时间和FFT复杂度(限制OFDM符号周期)共同 决定的。 常规小区的单播系统采用 CP 4.6875us和66.67us的符号,在一个子帧的7个符 号中,前6个符号的CP均为4.6875us,最后一个符号的CP为5.208us 大小区的单播系统或单播/MBMS混合载波的E-MBMS系统采用扩展CP 16.67us和符 号66.75us DC-MBMS系统采用33.33CP和133.33us的符号 调制方式及AMC 下行 BPSK QPSK 16QAM 64QAM, 上行 QPSK,16QAM,64QAM 信道编码:Turbo 、卷积码 多天线技术 下行 预编码SU-MIMO、预编码MU-MIMO、波束赋形、发射分集 上行 MU-MIMO、天线选择
3 | UMTS_Trans_Intro | Oct 2007
All Rights Reserved © Alcatel-Lucent 2007, #####
物理信道的种类
下行物理信道 PDSCH:下行物理共享信道,承载下行数据传输、SIB和寻呼信息 PBCH:物理广播信道,传递UE接入系统所必需的系统信息,如带宽、天线数目和小区 ID等 PMCH:物理多播信道,传递MBMS(单频网多播和广播)相关的数据 PCFICH:物理控制格式指示信道,表示一个子帧中用于PDCCH的OFDM符号的数量 PHICH:物理HARQ指示信道, 用于eNodB向UE反馈和PUSCH相关的ACK/NACK信息
帧结构:无线帧长10ms,分10个子帧,长1ms,每个子帧分为两个时隙(TDD方式中包含3个 特殊时隙,共1ms)
子载波间隔:15KHz或7.5KHz。取决于频谱效率和抗频偏能力的折中,主要考虑多普勒频移 。在单播系统中采用15kHZ的子载波间隔,相应的符号长度为66.75us(不包括CP),在载波 MBMS(Dedicated Carrier MBMS,DC-MBMS)中,由于是低速移动,故为7.5kHz 的子载波,相应符号长度为133.33us(不包括CP),一个1ms子帧包含六个O FDM符号 资源分配方式:基本资源块RB大小为12个宽度15KHz或24个宽度为7.5KHz的子载波,180KHz ,下行支持集中和分散分配,上行只支持集中分配。
LTE的需求指标 支持1.4MHz-20MHz带宽 峰值数据率:上行50Mbps,下行100Mbps。频谱效率达到3GPP R6的2-4倍
提高小区边界的比特率,保证业务的一致性
用户面延时:零负载(单用户、单数据流)、小IP分组条件下单向时延小于 5ms 控制面延时:从驻留状态转换到激活状态的延迟小于1OOms