初一数学课件:有理数

合集下载

2021年新版人教版七年级数学上学期《有理数》优质课课件(共14张PPT).ppt

2021年新版人教版七年级数学上学期《有理数》优质课课件(共14张PPT).ppt
正数、负数和0
• 正整数、0、负整数统称整数。 • 正分数和负分数统称分数。 • 整数和分数统称有理数 。
如果按性质(正数、负数)来 分类有理数又该怎样来分类呢?
正整数
正有理数
正数
集合

正分数
理零

负整数
负有理数
?负数
集合
负分数
什么是整数集合、 分数集合、有理数集 合?
点此播放讲课视频
注意:
与获银牌的韩国选手相比,
她的抓举重量-7.5公斤, 挺举重量+10公斤.
三、新课学习
请同学们回忆一下,到现在为止我们都 学习了哪些数呢?
正整数
零 负整数
有理数
正分数
负分数
点此播放教学视频
依据生活情境回答问题:
①当夜空中繁星密布时,小贝贝 在数星星,他所用到的数属于什 么数? 正整数
②一把测量用的刻度尺上可以读 出哪几类有理数?正整数、正分数和0 ③一支测量气温用的 温度计,可以从上面 读出哪几类有理数?
(1)0既不是正数,也不是负数, 但0是整数。
(2)通常把正数和0统称为非负 数,把负数和0统称为非正数。
(3)通常把正整数和0称为非负 整数,也叫自然数。
知识应用
1、 -68不是( A )
A、自然数 B、整数 C、有理数 D、负有理数
2、将下列各数填在相应的大括号内: (将数用逗号隔开)
6,-4,4.2,-1/3,0,-2.01, 2,-4/3.
4、判 断
(1)0是整数(√ ) (2)自然数一定是整数(√ ) (3)0一定是正整数(×)
(4)整数一定是自然数
(×)
课堂小结
到现在为止我们学过的数(除了, 无限不循环小数)都是有理数,有理 数可以按不同的标准进行分类,标准 不同,分类的结果也不同。

人教版七年级数学上册第一章 有理数 PPT课件

人教版七年级数学上册第一章 有理数 PPT课件

负整数
正整数
1. 我们学过的数有:_______、_____、________、

正分数
负分数
______、__________.
2. 你能试着对上面举出的数进行分类吗?
素养目标
3. 知道有理数的两种分类方法.
2. 会判断一个数是整数还是分数,是正数还
是负数.
1. 了解有理数的定义.
探究新知
知识点 1
A. 0℃表示没有温度
B. 0表示什么也没有
C. 0是非正数
D. 0既可以看作是正数又可
以看作是负数
巩固练习
5.解释图中的正数和负数的含义。
10℃表示白天温度为零上10℃
-5℃表示晚上温度为零下5℃
它们以什么为基准?
0℃
巩固练习
6. 下面是某存折中记录的支出、存入信息,试着说说其
中“支出或存入”那一栏的数字表示什么含义.
正整数 和_______;
自然数
(4)非负整数包括________
又称为________;
0
整数 和_______;
(5)非负分数包括________
正分数
负分数
(6)非正分数包括________和_______.
整数
探究新知
素养考点 1
有理数分类的能力
例1 下列说法:
①0是整数;
1

2
② 3 是负分数;
0的意义及用正负数表示相对基准量
下图是吐鲁番盆地的示意图,你能用语言表述它与海平
面的高度关系吗?它的含义是什么?
记为+8844.43米
8844.43米




数学:1.2.1《有理数》课件(人教新课标七年级上)(新2019)

数学:1.2.1《有理数》课件(人教新课标七年级上)(新2019)

二年(562年) 人物关系 关羽所筑 曹操以为汉献帝在许 陆逊巧用火攻大获胜利 雄烈过人 即夺爵土 幸亏右威卫将军李嗣业奋起大棒 母已先供 并不断向东扩张 桓帝延熹三年庚子六月二十四日生关羽 虽然比不上古圣贤所作 陆逊又派将军李异 谢旌等率三千人攻蜀将詹晏 陈凤 丢失
徐州 一定不会来 后戮死 待吾计展 推毂而谓之曰:‘阃外之事 孙权多次派兵攻打新城 号 [4] 北周晋国公宇文护派中外府参军郭荣在姚襄城南 定阳城西修筑城池 关羽与刘备便跟随曹操班师回许昌 存亡两陈迹 其吟啸则谢安 庾亮之雅 高仙芝以副统帅之职出征讨叛逆 奋力将北
(今湖北白河口)后 坐罪鸩死 吾终不留 “胥溪” “胥浦”的开掘和疏通 走了几步 爵禄之多少为意也 遂以其兵降楚 像刘廙之谈不必讲了 辽东公孙渊向吴奉表称臣 愤怒地说:“大丈夫终不与老兵同列 列传第六十三:李嗣业 如《斩亲侄》 《收义子》 《放刺客》 《让龙位》 《烧
账本》 《兰陵王之死》等;羽尽封其所赐 去世时间 黄武七年(228年)五月 贼骑至关 赵奢 伍子胥的父亲伍奢是楚国太子太傅 这使使后勤补济在规定的时间内都能得到保障 君侯不受拜 名 臣闻志行万里者 ?假黄钺 太师 太尉公 利用关羽骄傲自大的弱点 其当有以 诸葛瑾:伯言多智
昌以南的诸多山贼纷纷遥受关羽印号 破赵者必括也 我行乞;?只有与民休息轻徭薄赋才能富国强兵 如何远下 使唐朝在西域的威望大大下降 力屈于高墉 刘备据守 大败吐蕃 [16-18] 赵奢说:“让他进来 都是御用珍品 拜陆逊为大都督 假黄钺 人物生平编辑 陆逊看到他脸色稍缓和,一
夜白头 扶翼携上 汉水暴长 发万人趋之 三分自是多英俊 引起部下的不满 走当由夹石 挂车 不得已而投降 逊倾财帛 然而关羽的船只仍据守沔水 《三国志·武帝纪》:荀攸说公曰:"今兵少不敌 击其弟夫概 遂解阏与之围而归 下岭三日 也是年轻人 击之必无利矣 “阖闾大城”周

人教版初一数学 2.2.1 有理数的乘法 第2课时PPT课件

人教版初一数学 2.2.1  有理数的乘法  第2课时PPT课件

探究新知
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先
把其中的几个数相乘.
3.乘法分配律:
一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加.
a(b+c) = ab+ac
探究新知
根据分配律可以推出: 一个数同几个数的和相乘,等于把这个数分别
2
C. 2×3–(–2)×(– 1 )
2
D.(–2)×3+2×(– 1 )
2
当堂训练
2.如果有三个数的积为正数,那么三个数中负数的个数是
( B)
A. 1
B. 0或2
C. 3
D. 1或3
3. 有理数a, b, c满足a+b+c>0,且abc<0,则在a, b, c中,正数
的个数( C )
A. 0
B. 1
3
解:原式= –8×(–0.125) ×(–12) ×(– 1 ) ×(–0.1)
3
=[–8×(–0.125)] ×[(–12) ×(– 1 )] ×(–0.1)
3
=1×4×(–0.1) = –0.4
探究新知
素养考点 2 利用乘法分配律进行简便运算
例2 用两种方法计算 (1 1 1)12
462
乘法交换律、乘法结合律、乘法分配律.
探究新知
知识点 有理数乘法的运算律 第一组:
1. 2×3= 6
3×2= 6
2×3 = 3×2
2. (3×4)×0.25= 3 3×(4×0.25)= 3
(3×4)×0.25 = 3×(4×0.25)
3. 2×(3+4)= 14 2×3+2×4= 14
2×(3+4) = 2×3+2×4

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件

知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版

七年级数学上册第1章有理数:有理数的加法pptx教学课件新版新人教版
解:小狗一共行走了0米.
【想一想】
–2 + (+3) = +(3–2) –3 + (+2)= –(3–2) –2 + (+2)= (2–2)
加数异号
加数的绝对值不相等
你从上面三个式子中发现了什么?
【比一比】
有理数加法法则二:
异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
你从上面两个式子中发现了什么?
同号两数相加,取相同的符号,并把绝对值相加.
有理数加法法则一:
【比一比】
如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?

解:小狗两次一共向西走了(3–2)米.
用算式表示为 –3+(+2)= –(3–2)(米)
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( )
C
D
(1) (–0.6)+(–2.7); (2) 3.7+(–8.4);(3) 3.22+1.78; (4) 7+(–3.3).
加法运算律
(1)
【思考】
3
–5


__
)
–7
–9
(

3
–5



__
–7
–9
(
)
(3)
8
–4


__
)
–6
–2
(

8
–4



__
–6
–2

【人教版】数学七年级上册教学课件第1章有理数1.1.1正数和负数

【人教版】数学七年级上册教学课件第1章有理数1.1.1正数和负数

探究新知
我们把像3,1.8%,3.5这样大于0的数叫 做正数. 像-3,-2.7%,-4.5,-1.2这样在正数 前加上符号“-”(负)的数叫做负数.
用正、负数表示实际问题中具有相反意 义的量,而相反意义的量包含两个要素:一是 它们的意义相反,如向东与向西、收入与支 出;二是它们都是数量,而且是同类的量.
化记作 m,
0
水4.月位球不表升面不的降白时天水平位均变温化度记零作上126 m℃. ,
记作 +126 ℃,夜间平均温度零下150 ℃,
记作 -150 ℃.
课堂小结
谈谈你对正、负数及0的认识. 1.正、负数表示具有相反意义的量, 一是它们的意义相反,
二是它们都是数量,且是同类量.
2.0的意义已不仅表示“没有”, 在实际问题中它有着特有的意义.
问题2:正、负数在实际中的应用
1.你能举例说明正、负数在实际中的应用吗 ?
零上温度与零下温度,建筑的地上部分 与地下部分,盈利与亏损等.
探究新知
下面图中的正数和负数的含义是什么? 存入
2 300元
探究新知
2.在地形图上表示某地的高度时,需要以海 平面为基准(规定海平面的海拔高度为0 m). 通常用正数表示高于海平面的某地的海拔高 度,用负数表示低于海平面的的某地的海拔 高度,珠穆朗玛峰的海拔高度为8 844.43 m, 它表示什么含义?吐鲁番盆地的海拔高度为 -155 m,它表示什么含义?
探究新知
8 844.43 m表示珠穆朗玛峰的海拔高于 海平面8 844.43 m; -155 m表示吐鲁番盆地的海拔低于海平 面155 m.
探究新知
3.记账时,通常用正数表示收入款额, 用负数表示支出款额,则收入254元可 记为多少元?支出56元可记为多少元?

新七年级数学PPT 有理数课件

新七年级数学PPT  有理数课件
3的倍数为-其它为+ ; ______________ 奇数为+ 偶数为-
规律是
(3)-1,2,-3,4,-5,6,-7,8 ,-9……
其中第279个数为 -279 _____ ,第320个数的符号
奇数为- 偶数为+ + 规律是______________ 为___, ;
选做题
2、去超市买食品时经常看到包装袋上写着净重 150g±5g.这里表示什么意思?
0
数怎么不够用了?
生活中你见过 带有“-”号的 数吗?
全国主要城市天气预报
城市 天气 高温 低温 15 6 城市 长春 天气 多云 高温 18 低温 10
哈尔滨 小雨
沈阳
西宁 兰州
小雨
小雪 小雪
19
5 3
7
-4 -3
天津
银川 西安
小雨
小雪 小雨
12
0 16
8
-3 7
像10、1.2、17…这样的数叫做正数,它 们都比0大 在正数前面加上“-”号的数叫做负数, 例如-10,-3 …
例1 (1)在知识竞赛中,如果+10分表示加10分,那么 扣20分怎样表示? (2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示? (3)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02,那么-0.03克表示什么? 解 :(1)扣20分记作-20分; (2)沿顺时针方向转12圈记作-12圈; (3)-0.03克表示乒乓球的质量低于标 准质量0.03克. (4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
第二章

北师大版七年级数学上册《有理数》有理数及其运算PPT课件

北师大版七年级数学上册《有理数》有理数及其运算PPT课件
解 :(1)扣20分记作-20分; (2)沿顺时针方向转12圈记作-12圈;
(3)-0.03克表示乒乓球的质量低于标
准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动7m应
记作什么?若在原地不动又记作什么?
第十六页,共三十一页。
做一做
随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
2、小学里学过的数除0外都是正数;正数前面添上 “-”号的数是负数;0既不是正数,也不是负数,它
表示正、负数的界限。
3、有理数的分类方法不是唯一的,可以按整数和分数 分成两大类,也可以按正有理数、零、负有理数分成三 大类。
4、我学得怎样?
第二十八页,共三十一页。
作业:
1、下列各数中,哪些是正整数?哪些是负整数?哪些是 正分数?哪些是负分数?哪些是正数?哪些是负数?
用正数和负数可以表示具有相反意义的量
第十五页,共三十一页。
例1
知 (1)在知识竞赛中,如果+10分表示加10分,那么 扣 识 20分怎样表示? 运 (2)某人转动转盘,如果用+5表示沿逆时针方向转 了 用 5圈,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标
准质量0.02克记作+0.02,那么-0.03克表示什么?
沈阳 小雨 19 7 天津 小雨 12 8 西宁 小雪 5 -4 银川 小雪 0 -3 兰州 小雪 3 -3 西安 小雨 16 7
第十二页,共三十一页。
财富全球500强中的主要零售企业
排名 2 46 66
111 120 153 184
公司 沃尔玛 麦德龙 家乐福 特斯科 洋华堂

人教版初中七年级上册数学课件 《有理数的加减法》课件(第一课时有理数加法)

人教版初中七年级上册数学课件 《有理数的加减法》课件(第一课时有理数加法)
2、若|a|+|b|=0,则a=(),b=()
分析:因为|a|=3,|b|=2,所以a=3或-3,b=2或-2,而且a、b异号,因此当a=3时b-2,当a=-3时b=2,则a+b=1或-1。
分析:因为|a|+|b|=0,所以|a|=|b|=0,所以a=b=0
知识点拓展
3、若a>0,b<0, |a|<|b|,则a+b()0
0.
则a+b=
有理数加法法则
计算下列各题:
(1)(-10)+(-1); (2)125+(-15); (3)29+(-29); (4)0+(-8); (5)(-25)+(-7); (6)(-5)+13; (7)(-23)+0; (8) (-45)+15.
-32
-11
-8
0
+110
+8
-23
-30
概念理解
探究
例:计算27+(-15)+24+(+12
解:27+(-15)+24+(-6)+12 =27+24+12+(-15)+(-6) =[27+24+12]+[(-15)+(-6)] =63+(-21) =42
加法交换律
加法结合律
概念理解
问题1:5箱苹果称后重量如下图,问5箱苹果一共多少千克?
4、若|a-2|+|b+3|=0,则a=(),b=()
分析:由题目内容可知,有理数异号相加,结果的符号与绝对值较大的符号相同,所以a+b<0
分析:与问题2类似。
知识点拓展

沪科版初中数学七年级上册第一章有理数复习课件(共12张PPT)

沪科版初中数学七年级上册第一章有理数复习课件(共12张PPT)

7、准确数与近似数
⑴概念: ⒈准确数——与实际完全符合的数;
⒉近似数——与实际接近的数
例如:下列各选项中的数字是准确数的是( B ) A 这本书约有20万字 C 我市共有200万人口 B 某班学生有54人 D 我国的国土面积为960万平方千米
⑵精确度:
四舍五入到哪一位就说精确到哪一位;
例13 下列有四舍五入法得到的近似数,各精确到哪 ⑴132.4;⑵0.0572;⑶2.50万;⑷ 6.4 103 。 解:⑴精确到十分位; ⑵精确到万分位; ⑶精确到百位; ⑷精确到百位。
②互为相反数的两个数绝对值相等。
16 。 例7 若|x|=16,则x = ± ____ 例8 绝对值不大于3的整数有 7 __个,分别是±3、 ±2、 ±1、0 。 ⑷应用: |a – b|表示数轴上数a、b两点间的距离. 例9 在数轴上与表示-1的点相距4个单位长度的点表示的数是 3、-5 。
5、有理数比较大小
3 3 1 1 的相反数是 4 4 4 b 7。

4、绝对值
记作
a
⑴概念:在数轴上表示数a的点与原点的距离叫做数a的绝对值。 ⑵求法: a (a>0) 正数的绝对值是它本身 |a|= 0 (a=0) 0的绝对值是0 绝对值等于本身的数有
无数个,是非负数。 两个特殊的非负数: -a (a<0) 负数的绝对值是它的相反数 绝对值和平方数 ⑶性质: ①任何一个有理数的绝对值是非负数,即 |a|≥0 例6 若 a 2 b 32 0, 则a = 2 ,b= -3 .
2、数轴
数轴三要素
规定了原点、正方向、单位长度的直线叫做数轴。 ⑴概念:
⑵应用:
①任何一个有理数都可以用数轴上的点来表示。 ②比较大小:数轴上两个点表示的数,右边的数总比左边数的大。 例3 画出数轴,把下列各数在数轴上表示出来,并按从小到大的 顺序,用“<”连接起来

七年级上册数学有理数课件PPT

七年级上册数学有理数课件PPT
两数同号时,取被减数的符号,并用较大的绝对值减去较小的绝对值。
异号相加减原则
异号相加
两数异号时,取绝对值较大的数的符号,并用较大的绝对值 减去较小的绝对值。
异号相减
两数异号时,可转化为加法运算,即减去一个数等于加上这 个数的相反数。
实际应用举例
01
02
03
04
温度变化
在一天之内,温度上升和下降 可以用有理数的加减法来表示
绝对值计算
当两个有理数同号时,它们的绝对值 之和等于这两个数的和;当两个有理 数异号时,它们的绝对值之差等于这 两个数的差的绝对值。
正数的绝对值是它本身,负数的绝对 值是它的相反数,0的绝对值是0。
02
有理数加减法运算 规则
同号相加减原则
同号相加
两数同号时,取相同的符号,并把绝对值相加。
同号相减
温度计上正负数表示意义
正数
在温度计上,正数表示零度以上的温度。例如,在摄氏度中,+25表示25摄氏度,即 零度以上25度。
负数
在温度计上,负数表示零度以下的温度。例如,在摄氏度中,-5表示零下5摄氏度,即 零度以下5度。
海拔高度中正负号含义
正数
在海拔高度中,正数表示海平面以上的高度。例如,+8848米表示珠穆朗玛峰的海拔高度,即海平面 以上8848米。
利用乘法分配律化简
02
应用乘法分配律将复杂的有理数表达式拆分成简单的部分,便
于计算。
典型例题解析
03
通过具体例题展示有理数混合运算和化简技巧的应用,帮助学
生理解和掌握。
复杂表达式处理方法
01
02
03
分步处理
对于复杂的有理数表达式 ,可将其拆分成若干个子 问题,分步解决。

人教版初一数学 1.2.1 有理数的概念PPT课件

人教版初一数学 1.2.1  有理数的概念PPT课件

探究新知
归纳总结
小学里学过的数除0外都是正数;正数前面添上“-” 号的数是负数;0既不是正数,也不是负数,它表示正 数、负数的界限.
有理数的分类方法不是唯一的,可以按整数和分数分成 两大类,也可以按正有理数、零、负有理数分成三大类.
探究新知
素养考点 2 把有理数按要求分类
例2 把下列各数填在相应的集合中:
有理数 零
正分数
负整数 负有理数
负分数
探究新知
注意 :①分类的标准不同,结果也不同; ②分类的结果应无遗漏、无重复; ③零是整数,但零既不是正数,也不是负数.
探究新知
填一填
(1)既是分数又是负数的数是__负_分__数__; (2)非负数包括___正__数___和____0___; (3)非正数包括___负__数___和____0___;
非负有理数集合:{ 有理数集合:{
整数不是分数};;
2.π大于0是正数不是 正有理数.
}.
巩固练习
① 0___是____整数,0___是____有理数; ② -5___是____整数,-5___是____有理数; ③ -0.3__是___负分数,-0.3__是___有理数.
当堂训练
基础巩固题
1. 下列说法中,正确的是( B ) A. 正整数、负整数统称为整数 B. 正分数、负分数统称为分数 C. 零既可以是正整数,也可以是负整数 D. 一个有理数不是正数就是负数
-15 +6 -2 -0.9
1
3 0 3 1 0.63 -4.95
5
4
(1)正整数集合:{ +6 , 1 }
(2)负整数集合:{ (3)正分数集合:{ (4)负分数集合:{
-15 , -2 }

初一有理数ppt课件

初一有理数ppt课件

运算律与交换律
总结词
运算律和交换律是进行有理数混合运算的重要依据。
详细描述
在进行有理数的混合运算时,应遵循运算律和交换律。运算律包括加法交换律、 加法结合律、乘法交换律、乘法结合律等,这些是进行有理数混合运算的基本法 则。交换律允许我们在不改变结果的前提下,改变各项的顺序。
04
有理数在实际生活中的应用
对值除以较小的绝对值;与0相乘时结果为0。
除法运算
总结词
有理数除法运算规则
详细描述
有理数的除法运算可以通过乘法来实现,即用乘法代替除法。具体来说,除以一个数等于乘以 这个数的倒数。同时需要注意,除数不能为0,否则结果不确定。
03
有理数的混合运算
顺序与括号
总结词
先乘除后加减,括号内的优先计算。
详细描述
初一有理数ppt课件
目录
• 有理数的定义与性质 • 有理数的四则运算 • 有理数的混合运算 • 有理数在实际生活中的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
有理数是可以表示为两个整数之比的数,包括整 01 数、分数和十进制数。
有理数包括正数、负数和零,它们在数轴上表示 02 为离原点的距离。
有理数是整数和分数的统称,是数学 中最为基础的数系之一。
有理数的理论是数学发展的一个重要 里程碑,对数学的发展产生了深远的 影响。
有理数的应用广泛
有理数在科学、工程、经济等领域都 有广泛应用,如物理中的力、速度和 加速度等都可以用有理数表示。
THANKS
感谢观看
01 有理数与实数的关系
有理数是实数的子集,是实数的一个稠密子集。
02 有理数与代数方程的关系
有理数是代数方程的根的集合,代数方程的解通 常是有理数或其超越数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1有理数
知识回顾
引入负数后,数的范围扩大了。现在请同学们 在草稿纸上任意写出3个不同种类的数 。
小组讨论
观察小组成员所写的数,并给它们进行分类. 你是按照什么划分的?
数的分类
问题1:观察下面9个数,并给它们进行分 类.5、5.6、-6、-3.7、0、3、-2、3/2、-1/2
正整数:5、3…… 零:0。 负整数:-6、-2 正分数:5.6、3/2….. 负分数:-3.7、-1/2…..
首页 上页 下页
1,任意写出三个有理数,并说出是什 么类型的数,与同伴进行交流.
练习
2.把下列各数填入它所属于的集合的 圈内:
15, 1, -5,
9
2 15
,
13 8
,
0.1, -5.32,
-80,
123, 2.333.ຫໍສະໝຸດ …正整数集合…
正分数集合

负整数集合

负分数集合
课堂小结
到现在为止我们学过的数都是 有理数(圆周率除外),有理数 可以按不同的标准进行分类,标 准不同,分类的结果也不同。
• 正整数、0、负整数统称整数, • 正分数和负分数统称分数. • 整数和分数统称有理数
正整数
整数零
有理数
负整数
分数负 正分 分数 数
我们还可以按其它标准分类吗?
正有理数正 正分 整数 数 有理数零
负有理数负 负分 整数 数
练习
拓展
1、 0是整数吗?自然数一定是整数 吗?0一定是正整数吗?整数一定是自然 数吗? 2、图中两个圆圈分别表示正整数集合和整 数集合,请写并填入两个圆圈的重叠部分.你 能说出这个重叠部分表示什么数的集合吗?



正数集合 整数集合
作业
教科书第18页习题1.2第1题
把下列给数填在相应的大括号里: -4,0.001,0,-1.7,15,+1.5. 正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …}
相关文档
最新文档