21米跨度钢结构课程设计

合集下载

钢结构课程设计21米

钢结构课程设计21米

钢结构课程设计21米一、课程目标知识目标:1. 让学生理解并掌握钢结构的基本概念、分类及特性;2. 使学生掌握21米钢结构的设计原理、计算方法和施工要点;3. 帮助学生了解钢结构在建筑领域的应用及其优势。

技能目标:1. 培养学生运用力学原理进行钢结构计算和分析的能力;2. 提高学生根据设计要求,独立完成21米钢结构设计图绘制的能力;3. 培养学生针对不同工程案例,提出合理钢结构解决方案的能力。

情感态度价值观目标:1. 激发学生对钢结构工程的兴趣,培养其探究精神;2. 引导学生关注建筑行业的发展,提高其对工程质量的意识;3. 培养学生的团队合作精神,使其在项目实施中具有良好的沟通与协作能力。

分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够阐述钢结构的基本概念、分类及特性,并了解其在建筑领域的应用;2. 学生能够运用力学原理进行钢结构计算和分析,完成21米钢结构的设计计算;3. 学生能够根据设计要求,独立绘制21米钢结构的设计图;4. 学生能够针对不同工程案例,提出合理的钢结构解决方案,并进行评估;5. 学生在课程学习过程中,展现出良好的团队合作精神和沟通能力,关注建筑行业的发展。

二、教学内容根据课程目标,本章节教学内容包括以下部分:1. 钢结构基本概念与分类- 教材章节:第一章 钢结构基本概念- 内容:钢结构定义、分类及特性;国内外钢结构发展概况。

2. 钢结构设计原理- 教材章节:第二章 钢结构设计原理- 内容:钢结构设计基本原理;设计规范及标准;21米钢结构设计要求。

3. 钢结构计算方法- 教材章节:第三章 钢结构计算方法- 内容:力学原理在钢结构计算中的应用;21米钢结构计算步骤及方法。

4. 钢结构施工技术- 教材章节:第四章 钢结构施工技术- 内容:21米钢结构施工要点;焊接、螺栓连接等施工工艺;施工质量控制。

5. 钢结构设计实例分析- 教材章节:第五章 钢结构设计实例- 内容:分析21米钢结构设计案例;探讨不同工程背景下钢结构设计的优化方案。

21跨度钢结构课程设计

21跨度钢结构课程设计

21跨度钢结构课程设计一、课程目标知识目标:1. 让学生理解21跨度钢结构的定义、分类及在建筑中的应用;2. 掌握21跨度钢结构的基本原理、受力特点及计算方法;3. 了解钢结构材料的选择、连接方式及施工技术。

技能目标:1. 培养学生运用力学原理对21跨度钢结构进行受力分析的能力;2. 提高学生根据实际情况选择合适材料、连接方式及施工工艺的能力;3. 培养学生运用专业软件进行21跨度钢结构设计和计算的能力。

情感态度价值观目标:1. 培养学生对钢结构工程建设的兴趣,激发学生的学习热情;2. 增强学生的团队合作意识,培养学生在工程设计中严谨、负责的态度;3. 引导学生关注钢结构工程在环保、可持续发展方面的优势,培养学生的社会责任感。

课程性质:本课程为实践性较强的课程,旨在培养学生的实际操作能力和工程意识。

学生特点:高中生具备一定的力学基础和空间想象力,对实际工程有较高的兴趣。

教学要求:结合学生特点,注重理论联系实际,提高学生的动手能力和创新能力。

通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程的学习打下坚实基础。

二、教学内容1. 钢结构基本概念:介绍钢结构定义、分类及在建筑中的应用,参照教材第二章第一、二节内容。

- 钢结构材料特性- 钢结构连接方式2. 21跨度钢结构受力分析:- 钢结构基本受力原理,参照教材第二章第三节;- 21跨度钢结构的受力特点及计算方法,参照教材第三章第一、二节。

3. 钢结构材料与连接:- 钢材种类及性能要求,参照教材第四章第一节;- 钢结构连接方式及施工技术,参照教材第四章第二节。

4. 21跨度钢结构设计:- 设计原理及步骤,参照教材第五章第一节;- 结构稳定性分析,参照教材第五章第二节;- 设计软件应用,结合教材第五章第三节及实际操作。

5. 实践环节:- 案例分析,结合教材及相关实例,分析21跨度钢结构在实际工程中的应用;- 设计练习,要求学生运用所学知识进行21跨度钢结构的设计计算。

钢结构课程设计21m跨径简支梯形钢屋架设计

钢结构课程设计21m跨径简支梯形钢屋架设计

钢结构课程设计一、设计资料说明:21m 跨径简支梯形钢屋架设计厂房跨径为 21m,长度为 108m,柱距为 12m,简支于钢筋混凝土柱上,屋面材料为长 尺压型钢板,屋面坡度为 i=1/10 采用热轧 H 型钢,雪载荷为 s0  0.25kN / mm 2 。

钢材采用 Q235B,焊条采用 E43 型 二、屋架形式及几何尺寸平面图:三、支撑布置:四、荷载计算 1、永久载荷计算: 压型钢板0.15  10 10  0.1 5 1kN m2檩条0.238 kN m2屋架支撑自重12 1.1 21  35.1 kg m2  0.351 kN m2、活动载荷计算雪载0.25  10 10  0.2 5 1kN m2总载荷:Q  0.151 0.238 0.3511.2  0.2511.412 2.1  31.2kN m2五、杆件内力计算及组合:通过用有限元软件 PATRAN 计算后列出了单元的受力大小,利用的是 Rod 单元,计算 结果如下表所示:位置 上弦杆下弦杆 斜杆竖杆杆件编号B C D E F L M N O PH I K A G J内力计算表轴线长度(mm)2110 2111 2110 2111 2110 1950 2100 2100 2910 30133327 3327 3662 1950 2370 2790荷载内力(KN)0 -185 -185 -235 -235 114 222 228 -163 101-60 200 12.8 -13 -26 -26六、杆件截面选择及验算: 1、上弦杆截面选择: 上弦杆采用相同截面,以最大的压力设计;N max  235 KN在屋架平面内的计算长度为 lox  2.11m ,在平面外的计算长度为 loy  4.22m 。

面积和特性(长支水平角钢组成 T 型截面节点板根据最大应力选用板厚 8mm):(上述选用两个不等支角钢 2L10080 6mm ,长支水平。

21m钢结构屋架课程设计

21m钢结构屋架课程设计

21m钢结构屋架课程设计一、课程目标知识目标:1. 学生能理解21m钢结构屋架的基本概念,掌握其结构类型及特点;2. 学生能掌握钢结构屋架设计的基本原理,包括受力分析、材料选择和连接方式;3. 学生了解钢结构屋架施工过程中的注意事项,如防锈、防火等。

技能目标:1. 学生能够运用所学知识,对21m钢结构屋架进行简单的受力分析;2. 学生能够根据实际情况,选择合适的材料和连接方式,完成钢结构屋架的设计;3. 学生能够运用绘图软件,绘制出清晰、准确的钢结构屋架施工图。

情感态度价值观目标:1. 学生培养对建筑结构工程的兴趣,提高对工程设计的热情;2. 学生树立安全意识,关注钢结构屋架施工过程中的安全问题;3. 学生培养团队合作精神,学会与他人共同完成设计任务。

课程性质分析:本课程为工程专业课程,旨在培养学生对钢结构屋架设计的基本知识和技能,提高学生在实际工程中的应用能力。

学生特点分析:高二年级学生,具有一定的物理和数学基础,具备一定的空间想象能力和动手能力。

教学要求:1. 教师应注重理论与实践相结合,提高学生的实际操作能力;2. 教师应关注学生的个体差异,因材施教,提高学生的自信心;3. 教师应注重培养学生的团队合作精神,提高学生的沟通与协作能力。

二、教学内容1. 钢结构屋架基本概念:- 钢结构屋架的定义、分类及特点;- 钢结构屋架在我国建筑行业中的应用。

2. 钢结构屋架设计原理:- 受力分析:了解钢结构屋架的受力特点,学习如何进行受力分析;- 材料选择:掌握常用钢材的种类、性能及选用原则;- 连接方式:了解钢结构屋架的连接方法及其适用场合。

3. 钢结构屋架施工技术:- 施工准备:熟悉施工前的准备工作,如材料验收、施工图纸审核等;- 施工过程:了解钢结构屋架的施工流程,包括焊接、拼装、吊装等;- 注意事项:学习施工过程中的安全防护、防锈、防火等技术要求。

4. 钢结构屋架设计实例:- 结合21m钢结构屋架,进行设计实践;- 运用绘图软件,绘制钢结构屋架施工图。

21m跨度钢结构课程设计(完整版

21m跨度钢结构课程设计(完整版

21m跨度钢结构课程设计(完整版
21m跨度钢结构课程设计(完整版)是中国科学院大学为学生提供的一套有关21m跨度钢结构的完整课程。

该课程分为三大部分:基础理论、设计理论及应用技术,旨在帮助学生掌握21m跨度钢结构的基本知识、设计原理及其应用技术。

首先,21m跨度钢结构课程从基础理论开始,重点讲授了钢材材料特性、热处理工艺、焊接工艺、工程力学和结构力学,以及钢结构几何形体、计算方法和设计原则等相关内容,使学生能够掌握钢结构基础知识。

其次,21m跨度钢结构课程讲授设计理论,该部分共包括五章:钢结构抗压设计、钢结构抗弯设计、钢结构抗剪设计、钢结构抗扭设计、钢结构稳定性设计。

每一章都从钢结构抗力分析、设计准则以及实例设计出发,详细介绍了21m跨度钢结构的抗力设计原理,使学生能够正确理解并正确运用各种设计原则,以此保证钢结构的结构安全性。

最后,21m跨度钢结构课程讲授应用技术,主要内容包括接头设计、抗震设计、耐久性能设计及实际施工等,使学生掌握21m跨度钢结构的应用知识,能够根据钢结构
设计要求进行实际施工,从而保证21m跨度钢结构的合理性和安全性。

总之,21m跨度钢结构课程设计(完整版)是为学生提供的一套完整的21m跨度钢结构课程,全面深入地讲授了21m跨度钢结构的基础理论、设计理论及应用技术,使学生掌握21m跨度钢结构的基本知识、设计原理及其应用技术,从而为21m跨度钢结构的安全设计提供可靠的依据。

21米跨钢屋架课程设计

21米跨钢屋架课程设计

钢结构课程设计设计任务书北京地区某金工车间,采用无檩屋盖体系,梯形钢屋架。

跨度21米,柱距6米,厂房高度为15.7米,车间内设有两台200/50KN中级工作制吊车,计算温度高于-20C。

采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,厚泡沫混凝土保温层,1.5mx6m预应力混凝土大型屋面板。

屋面积灰荷载0.7 KN/m2,屋面活荷载0.45 KN/m2,雪荷载0.4KN/m2,风荷载0.45 KN/m2。

屋架铰支在钢筋混凝土柱上,上柱截面为400mmx400mm,混凝土标号为C20。

要求设计钢屋架并绘制施工图。

一、设计条件1、钢材采用Q235B级,焊条采用E43型。

2、屋架计算跨度 Lo=21000-2×150=20700mm3、跨中及端部高度设计条件为无檩条屋盖方案,屋架端部高度h=1990mm,屋架的中间高度h=3040mm,屋面坡度i=1/10。

二、结构形式1、屋架形式如下图2、屋架支撑布置厂房长度(168m>60m)、跨度及荷载情况,设置上下弦横向水平支撑4道,下弦纵向水平支撑沿两侧柱列布置。

如下图(修改图,变为4道支撑)三、荷载与内力计算 1、荷载计算屋面活荷载与雪荷载不会同时发生,计算时,取较大的荷载标准值进行计算。

故取屋面活荷载0.45 kN/㎡进行计算。

屋架沿水平投影面积分布的自重(包括支撑)按照经验公式()20.120.011/k g l kN m =+=(0.12+0.011*21)=0.351计算,跨度单位为米。

永久荷载设计值取系数1.35,屋面活荷载设计值取系数1.4 荷 载 计 算 表2、荷载组合设计屋架时,应考虑以下三种组合: (1)全跨永久荷载+全跨可变荷载全跨节点永久荷载及可变荷载:F=(4.254+1.68)×1.5×6=53.406kN (2)全跨永久荷载+半跨可变荷载全跨节点永久荷载: F1=4.254×1.5×6=38.286 kN半跨节点可变荷载: F2=1.68×1.5×6=15.12kN(3)全跨屋架及支撑自重+半跨大型屋面板重+半跨屋面活荷载全跨节点屋架及支撑自重: F3 =0.474×1.5×6=4.266kN半跨大型屋面板重及活荷载: F4=(1.89+0.63)×1.5×6=22.68kN(1)、(2)为使用节点荷载情况,(3)为施工阶段荷载情况。

钢结构钢屋架课程设计_跨度21m_长度102完整版

钢结构钢屋架课程设计_跨度21m_长度102完整版

一、设计资料1、题号53的已知条件:梯形钢屋架跨度21m,长度102m,柱距6m。

该车间内设有两台200/50 kN中级工作制吊车,轨顶标高为8.000 m。

冬季最低温度为-20℃,地震设计烈度为7度,设计基本地震加速度为0.1g。

采用1.5m×6m预应力混凝土大型屋面板,80mm 厚泡沫混凝土保温层,卷材屋面,屋面坡度i=1/10。

屋面活荷载标准值为0.7 kN/m2,雪荷载标准值为0.2 kN/m2,积灰荷载标准值为0.6 kN/m2,风荷载标准值0.55 kN/m2。

屋架铰支在钢筋混凝土柱上,上柱截面为400 mm×400 mm,混凝土标号为C20。

钢材采用Q235B级,焊条采用E43型。

2、屋架计算跨度:l= 21m - 2×0.15m = 20.7 m3、跨中及端部高度:该屋架为无檩体系屋盖方案,屋面材料为大型屋面板,故采用平坡梯形屋架;由于L<24m,不考虑起拱,端部高度取H0=1990mm,屋架的中间高度h = 3.040m (约l/6.8)。

二、结构形式与布置屋架几何尺寸如图(1)所示。

19901350229025902890304026132864312425302864312433901507.51507.51507.51507.51507.51507.51507.5150A aceghBC D F G H 15007=10500×图(1):21米跨钢屋架型式和几何尺寸根据厂房长度(102m>60m )、跨度及荷载情况,设置三道上、下弦横向水平支撑。

因柱网采用封闭结合,厂房两端的横向水平支撑设在第一柱间,该水平支撑的规格与中间支撑的规格有所不同。

在上弦平面设置了刚性系杆与柔性系杆,以保证安装时上弦杆的稳定,在各柱间下弦平面的跨中及端部设置了柔性系杆,以传递山墙风荷载。

在设置横向水平支撑的柱间,于屋架跨中和两端各设一道垂直支撑。

21米跨钢结构课程设计

21米跨钢结构课程设计

21米跨钢结构课程设计一、课程目标知识目标:1. 学生能够理解并掌握21米跨钢结构的基本概念,包括其设计原理、材料选择和结构特点。

2. 学生能够运用相关公式和理论知识,进行21米跨钢结构的受力分析和计算。

3. 学生能够了解21米跨钢结构在工程中的应用,并掌握其施工工艺和注意事项。

技能目标:1. 学生能够运用专业软件或手工绘图方法,完成21米跨钢结构的设计图纸。

2. 学生能够运用计算工具和软件,进行21米跨钢结构的受力分析和计算,并提出合理的优化方案。

3. 学生能够通过团队协作,进行21米跨钢结构的模型制作和试验,提高实践操作能力。

情感态度价值观目标:1. 学生培养对建筑结构工程的兴趣,提高对工程质量和安全的责任感。

2. 学生通过课程学习,增强团队合作意识,培养沟通协调和解决问题的能力。

3. 学生能够认识到21米跨钢结构在现代化建设中的重要性,激发对建筑行业的热爱和为国家建设做贡献的意愿。

课程性质:本课程为专业核心课程,以理论教学与实践操作相结合的方式进行。

学生特点:学生具备一定的物理、数学基础,对建筑结构有一定了解,但缺乏实际操作经验。

教学要求:注重理论与实践相结合,强调学生动手能力和创新意识的培养。

通过本课程的学习,使学生能够达到上述课程目标,为未来从事建筑结构设计和施工工作打下坚实基础。

二、教学内容本课程依据课程目标,科学系统地选择以下教学内容:1. 21米跨钢结构基本原理:包括钢结构概述、材料性能、设计原则等,对应教材第2章。

2. 21米跨钢结构受力分析:涉及静力学基本知识、受力元件计算、稳定性分析等,对应教材第3章。

3. 21米跨钢结构设计与计算:包括结构布置、截面选择、连接方式、计算方法等,对应教材第4章。

4. 21米跨钢结构施工技术:涵盖施工准备、工艺流程、质量控制、安全措施等,对应教材第5章。

5. 21米跨钢结构案例分析与模型制作:结合实际工程案例,进行结构分析、设计及模型制作,对应教材第6章。

21m跨度钢结构课程设计

21m跨度钢结构课程设计

21m跨度钢结构课程设计(完整版)1000字21m跨度钢结构课程设计设计要求:- 设计一座21m跨度的钢结构,包括梁和柱- 结构应能承受设计荷载- 结构应符合设计规范和法规- 结构应美观、实用、耐久设计思路:首先,我们需要确定设计荷载。

根据设计规范,我们假设这座21m 跨度钢结构承受的荷载是:活荷载为3kN/m²,自重荷载为2.5kN/m ²。

同时,为了安全起见,我们还将添加一个附加荷载,假设为1.5kN/m²。

然后,我们需要确定结构类型。

根据跨度大小,我们可以选择合适的结构类型来确保结构的稳定性和承载能力。

在这种情况下,我们选择了双层梁柱结构,因为它具有很高的承载能力和稳定性。

接下来,我们需要进行结构设计。

在这一阶段,我们将通过计算确定必要的尺寸和截面来确保结构满足设计要求。

在选择截面时,我们需要考虑到梁柱在负载下的弯矩和剪力,以及各个部位的应力状态。

最后,我们需要进行结构施工和安装。

在这一阶段,我们需要确保施工工人能够按照设计要求进行施工,并提供必要的工具和材料。

同时,我们需要确保结构能够安全、稳定地安装到所需位置。

设计结果:通过上述过程,我们得到以下21m跨度钢结构的设计方案:1. 双层梁柱结构,梁和柱的材质均为Q345B钢,符合中国钢结构设计规范。

2. 设计荷载:活荷载为3kN/m²,自重荷载为2.5kN/m²,附加荷载为1.5kN/m²。

3. 梁的尺寸为400mm×800mm,截面采用H形钢,剖面系数为1.7,梁的长度为21m。

梁的承载能力为77.4kN/m,能够满足设计荷载要求。

4. 柱的尺寸为600mm×800mm,截面采用H形钢,剖面系数为2.94,柱的长度为21m。

柱的承载能力为232kN/m,能够满足设计荷载要求。

5. 结构连接采用焊接和螺栓连接,确保结构的牢固和稳定。

6. 按照施工图和设计要求进行结构施工和安装。

钢结构课程设计21m梯形屋架

钢结构课程设计21m梯形屋架

钢结构课程设计21m梯形屋架
钢结构课程设计21m梯形屋架
设计概述:
本设计为一座21m梯形屋架的钢结构课程设计。

屋架采用梯形结构形式,主要由主梁、次梁、剪力墙和支撑系统组成。

设计要求满足屋顶承受风、雪、自重等荷载的要求,并确保结构的稳定性和安全性。

设计步骤:
1. 确定屋架结构形式:本设计采用梯形结构形式,其中主梁跨度为21m,次梁根据需求进行设置。

2. 计算屋架荷载:根据工程要求和设计标准,计算风、雪和自重等荷载,并确定设计荷载。

3. 选取钢材和连接方式:根据荷载计算结果,选取适当的钢材规格和连接方式,保证结构的强度和刚度。

4. 进行结构模型分析:利用结构分析软件,建立屋架的三维模型,并进行荷载分析、刚度分析和稳定分析,确保结构的安全性和稳定性。

5. 进行结构设计:根据分析结果,进行结构设计,包括确定材料尺寸、梁柱截面尺寸、连接件尺寸和布置等。

6. 绘制结构施工图:根据设计结果,绘制结构施工图,包括平面布置图、节点图和详图等,用于施工实施。

7. 进行结构检验:对设计结果进行结构检验,确认设计的合理性和安全性。

8. 编写设计报告:整理设计过程和结果,编写设计报告,包括设计说明、结构计算和绘图等内容。

以上为钢结构课程设计21m梯形屋架的主要步骤,具体的设
计过程需要根据实际条件和要求进行调整和细化。

在设计过程中,需要合理应用结构分析软件、设计规范和工程经验,保证设计的科学性和合理性。

同时,还要注意施工工艺和质量控制,确保设计方案的顺利实施和结构的安全可靠。

跨度21米梯形钢屋架课程设计计算书

跨度21米梯形钢屋架课程设计计算书

梯形钢屋架课程设计一、设计资料(1)、某工业厂房,建筑地点在太原市,屋盖拟采用钢结构有檩体系,屋面板采用100mm厚彩钢复合板(外侧基板厚度0.5mm,内侧基板厚度0.4mm,夹芯材料选用玻璃丝棉,屋面板自重标准值按0.20 kN/m2计算),檩条采用冷弯薄壁C型钢。

屋架跨度21m,屋面排水坡度i=1:10,有组织排水。

屋架支承在钢筋混凝土柱(C30)上,柱顶标高9.0m,柱距6m,柱截面尺寸为400×400mm。

厂房纵向长度60m。

基本风压0.40KN/m2,基本雪压0.35KN/m2。

不考虑积灰荷载。

注:屋架、檩条、拉条及支撑自重标准值可按下列数值考虑:0.30kN/m2(6.0m)(2)、屋架计算跨度:L0=21-2×0.15=20.7m(3)跨中及端部高度:屋盖拟采用钢结构有檩体系,屋面排水坡度i=1:10,取屋架在21m轴线处的端部高度h0’=1.99m, 屋架的中间高度h=3.025m,则屋架在20.7m,两端的高度为h o=2.004m。

二、结构形式与布置屋架形式及几何尺寸如图2-1所示根据厂房长度(60m),跨度及荷载情况,设置两道上下横向水平支撑。

因为柱网采用封闭形式,厂房横向水平支撑设在两端第二柱间,图2-1梯形屋架形式和几何尺寸在第一柱间的上弦平面设置了刚性系杆,以保证安装时的稳定。

在第一柱间的下弦平面也设置了刚性系杆,以传递山墙风荷载。

梯形钢屋架支撑布置如图2-2.桁架上弦支撑布置图桁架下弦支撑布置图垂直支撑布置1-1垂直支撑布置2-2SC—上弦支撑XC—下弦支撑CC—垂直支撑GG—刚性系杆LG—柔性系杆图2-1梯形屋架支撑布置图三、荷载计算荷载:屋架的受荷水平投影面积为:22602A>==,故按⨯mm612621m《建筑结构荷载规范》取屋面活荷载(按不上人屋面)标准值为0.5kN/m2,雪荷载为0.35kN/m2,取屋面活荷载与雪荷载中较大值0.5kN/m2。

钢结构课程设计汇本21米梯形屋架

钢结构课程设计汇本21米梯形屋架

21m跨径简支梯形钢屋架设计(有檩)一、设计资料厂房跨度为21m,长度为108m,柱距为12m,简支于钢筋混凝土柱上,屋面材料为长尺压型钢板,屋面坡度为i=1/10,采用轧制H型钢檩条,水平间距自定,雪荷载为s0=0.25 KN/m2,不考虑风压。

钢材采用Q235B,焊条采用E43型,混凝土标号为C20。

1、屋面荷载标准值:屋架及支撑自重0.117+0.11L=0.117+0.011*21=0.348 2KN M 压型钢板0.15* =0.1512KN M檩条(约0.5KN/M,间距1.5m)0.333 2KN M恒荷载总和0.832 2KN M雪荷载0.25 2KN M(小于0.5,取屋面活载0.5 2KN M)积灰荷载0.6 2KN M活载总和 1.1 2KN M2、屋架计算跨径:020.152120.1520.7ml L=-⨯=-⨯=。

3、屋架形式及图示如图1:二、荷载与内力计算2.1、荷载计算根据荷载规范,屋面活荷载与雪荷载不会同时出现,取两者较大值计算。

屋面荷载汇总 :表1 屋面荷载汇总2.2、荷载组合节点荷载设计值按可变荷载效应控制的组合(1.20.832 1.40.5 1.40.90.6) 1.51244.1792d F =⨯+⨯+⨯⨯⨯⨯= 2KN M其中永久荷载的分项系数 1.2G γ=,屋面活载或雪荷载载荷分项系数1 1.4Q γ=,组合只设计值1 0.7ϕ=,积灰荷载 1.4Q γ= 20.9ϕ=按永久荷载效应控制的组合(1.350.832 1.40.50.7 1.40.90.6) 1.51242.6456d F =⨯+⨯⨯+⨯⨯⨯⨯=2KN M其中永久荷载的的分项系数 1.35G γ=,活荷载的分项系数1 1.4Q γ=,故节点荷载取44.17922KN M ,支座反力=7309.2544d d R F =2KN M 。

2.3、内力计算屋架在上述荷载组合作用的计算简图4所示,用软件求得在F=44.17922KN M作用下屋架各杆的内力入图4所示。

课程设计梯形钢屋架设计(21m跨)

课程设计梯形钢屋架设计(21m跨)

梯形钢屋架设计(21m跨)一、设计资料某地区某金工车间。

采用无檩屋盖体系,梯形钢屋架。

跨度为21 m,柱距6 m,厂房长度为144 m,厂房高度为15.7 m。

车间内设有两台150/520 kN中级工作制吊车,计算温度高于-20 ℃。

采用三毡四油防水屋面上铺小石子设计荷载标准值0.4 kN/m2,水泥砂浆找平层设计荷载标准值0.4 kN/m2,泡沫混凝土保温层设计荷载标准值0.1 kN/m2,水泥砂浆找平层设计荷载标准值0.5 kN/m2,1.5 m×6.0 m预应力混凝土大型屋面板设计荷载标准值1.4 kN/m2。

屋面积灰荷载0.35 kN/m2,屋面活荷载0.35 kN/m2,雪荷载为0.45 kN/m2,风荷载为0.5 kN/m2。

屋架铰支在钢筋混凝土柱上,柱截面为400 mm×400 mm,砼标号为C20。

二、屋架形式、尺寸、材料选择及支撑布置1、钢材及焊条选择根据建造地区(北京)的计算温度和荷载性质及连接方法,钢材选用Q235-B。

焊条采用E43型,手工焊。

2、屋架形式及尺寸本设计采用无檩屋盖,i=1/10,采用梯形屋架。

屋架跨度为L=21000 mmL=L-300=20700 mm,屋架计算跨度为H=2000 mm ,(1/16 ~ 1/12)L,(通常取为2.0 ~2.5 m)端部高度取H+0.5i L=2000 + 0.1×21000/2=3050 mm,中部高度取H=屋架杆件几何长度见附图1所示,屋架跨中起拱42 mm(f = L/500考虑)。

为使屋架上弦承受节点荷载,配合宽度为1.5 m的屋面板,采用上弦节间长度为3.0 m。

附图1:屋架杆件几何长度(单位:mm)3、屋盖支撑布置根据车间长度、屋架跨度和荷载情况,设置四道上、下弦横向水平支撑。

因柱网采用封闭结合,为统一支撑规格,厂房两端的横向水平支撑设在第二柱间。

在第一柱间的上弦平面设置刚性系杆保证安装时上弦杆的稳定,第一柱间下弦平面也设置刚性系杆以传递山墙风荷载。

21m跨度钢结构课程设计(完整版)

21m跨度钢结构课程设计(完整版)

目录1.0 设计资料 (1)1.1 结构形式与布置 (2)1.1.1 桁架形式及几何尺寸 (2)1.1.2 屋架支撑布置 (2)1.2 荷载计算 (4)1.2.1屋面活荷载选择 (4)1.2.2屋架和支撑自重计算 (4)1.2.3荷载组合 (4)1.3 杆件设计及内力计算 (6)1.3.1 屋架计算简图 (6)1.3.2 杆件内力计算和杆件内力表 (6)1.3.3 杆件设计 (7)(1)上弦杆 (7)(2)下弦杆 (8)(3)腹杆 (9)(4)竖杆 (11)(5)屋架杆件截面选择表 (11)1.4 节点设计 (12)1.4.1 下弦节点“c” (12)1.4.2 上弦节点“B” (13)1.4.3 上弦节点“D” (14)1.4.4 下弦节点“e” (15)1.4.5 上弦节点“F” (16)1.4.6 下弦节点“g” (17)1.4.7 屋脊节点“H” (18)1.4.8竖杆与上弦节点“C,E,G” (19)1.4.9支座节点“A” (19)1.4.10支座节点“a” (21)参考文献 (22)致谢 (22)附录 (22)1.0 设计资料某厂房总长度90m, 跨度21m, 纵向柱距6m 。

1.结构形式:钢筋混凝土柱, 梯形钢屋架。

柱的混凝土强度等级为C30, 屋面坡度i=L/10;L 为屋架跨度。

地区计算温度高于-200C, 无侵蚀性介质, 地震设防烈度为7度, 设计基本地震加速度为0.1g, 二类场地。

屋架下弦标高为18m ;厂房内桥式吊车为2台150/30t (中级工作制), 锻锤为2台5t 。

2.屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如图1.11及下图所示。

21米跨屋架全跨单位荷载作用下各杆件的内力值Aacegg'e'c'a'+3.0100.000-5.310-7.339-6.861-5.319-3.923-2.1620.00-5.641-2.633-0.047+1.913+1.367+1.57+1.848+3.960+1.222-1.039-1.200-1.525-1.776-2.043-1.0-1.0-1.00.000.000.00-0.5+6.663+7.326+5.884+4.636+3.081+1.090BCDE FGHG 'F 'E 'D 'C 'B 'A '0.5 1.01.0 1.01.01.0 1.0 1.021米跨屋架半跨单位荷载作用下各杆件的内力值3.屋盖结构及荷载无檩体系: 采用1.5×6.0m 预应力混凝土屋板(考虑屋面板起系杆作用) 荷载:①屋架及支撑自重: 按经验公式q=0.12+0.011L, L 为屋架跨度, 以m 为单位, q 为屋架及支撑自重, 以KN/m2为单位;②屋面活荷载:施工活荷载标准值为0.7KN/m2, 雪荷载的基本雪压标准值值根据不同学号按附表取。

21米跨度钢结构课程设计

21米跨度钢结构课程设计

1 设计资料梯形屋架,建筑跨度为21m,端部高度为2.00m,跨中高度为3.05m,屋架坡度i=1/10,屋架间距为6m,屋架两端支撑在钢筋混凝土柱上,上柱截面400mm×400mm,混凝土采用20C。

屋架上、下弦布置有水平支撑和竖向支撑(如图1-1所示)。

屋面采用1.5×6m 预应力钢筋混凝土大型屋面板,15mm 厚1:2.5水泥砂浆保护层,SBC120聚乙烯丙纶双面复合防水卷材防水层,水泥与5%107胶粘结层,20mm 厚1:3水泥砂浆基层,塑料袋装珍珠岩80厚,上压一层芦苇的保温层,SBC120聚乙烯丙纶单面复合防水卷材隔气层,20mm 厚1:3水泥砂浆找平层,屋面雪荷载为0.45KN/m 22 荷载计算2.1 永久荷载预应力钢筋混凝土大型屋面板:2/68.14.12.1m kN =⨯ 保护层:2/36.03.02.1m kN =⨯ 防水层:2/007.0006.02.1m kN =⨯ 基层:2/480.040.02.1m kN =⨯ 保温层:2/422.036.02.1m kN =⨯ 隔气层:2/003.00025.02.1m kN =⨯ 找平层:2/480.040.02.1m kN =⨯屋架自重和支撑自重按经验公式(跨度l=21m )2/1.35211.12.11.12.1m kg l P w ≈⨯+=+= 2/4212.0351.02.1m kN =⨯总计:g=3.852/m kN2.2 可变荷载屋面雪荷载:q=2/63.045.04.1m kN =⨯2.3 荷载组合永久荷载可变荷载为主要荷载组合,屋架上弦节点荷载为:kNq g F 32.4065.1)63.085.3(65.1)(=⨯⨯+=⨯⨯+=3 内力计算4 截面选择4.1 上弦杆截面选择上弦杆采用相同截面,以最大轴力G-⑨或H-⑩杆来选择:kN N 767.489max -= 在屋架平面内的计算长度cm l ox 8.150=,屋架平面外的计算长度cm l oy 5.301=。

钢结构课程设计21米梯形屋架

钢结构课程设计21米梯形屋架
42
-194.890286
0.00000000
0.00000000
-194.890286
0.00000000
0.00000000
43
-44.1792000
0.00000000
0.00000000
-44.1792000
0.00000000
0.00000000
44
256.955055
0.00000000
35.4192210
0.00000000
0.00000000
35
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
36
35.4192210
0.00000000
0.00000000
35.4192210
0.00000000
0.00000000
2.3
屋架在上述荷载组合作用的计算简图4所示,用软件求得在F=44.1792KN:M2作用下屋架各杆的内力入图4所示。
内力计算杆端内力值(乘子= 1)
杆端1
21
-332.264738
0.00000000
0.00000000
-332.264738
0.00000000
0.00000000
22
-332.264738
-69.2313881
0.00000000
0.00000000
40
-44.1792000
0.00000000
0.00000000
-44.1792000
0.00000000
0.00000000
41

跨度21米梯形钢屋架课程设计计算书(DOC)

跨度21米梯形钢屋架课程设计计算书(DOC)

梯形钢屋架课程设计一、设计资料(1)、某工业厂房,建筑地点在太原市,屋盖拟采用钢结构有檩体系,屋面板采用100mm厚彩钢复合板(外侧基板厚度0.5mm,内侧基板厚度0.4mm,夹芯材料选用玻璃丝棉,屋面板自重标准值按0.20 kN/m2计算),檩条采用冷弯薄壁C型钢。

屋架跨度21m,屋面排水坡度i=1:10,有组织排水。

屋架支承在钢筋混凝土柱(C30)上,柱顶标高9.0m,柱距6m,柱截面尺寸为400×400mm。

厂房纵向长度60m。

基本风压0.40KN/m2,基本雪压0.35KN/m2。

不考虑积灰荷载。

注:屋架、檩条、拉条及支撑自重标准值可按下列数值考虑:0.30kN/m2(6.0m)(2)、屋架计算跨度:L0=21-2×0.15=20.7m(3)跨中及端部高度:屋盖拟采用钢结构有檩体系,屋面排水坡度i=1:10,取屋架在21m轴线处的端部高度h0’=1.99m, 屋架的中间高度h=3.025m,则屋架在20.7m,两端的高度为h o=2.004m。

二、结构形式与布置屋架形式及几何尺寸如图2-1所示根据厂房长度(60m),跨度及荷载情况,设置两道上下横向水平支撑。

因为柱网采用封闭形式,厂房横向水平支撑设在两端第二柱间,图2-1梯形屋架形式和几何尺寸在第一柱间的上弦平面设置了刚性系杆,以保证安装时的稳定。

在第一柱间的下弦平面也设置了刚性系杆,以传递山墙风荷载。

梯形钢屋架支撑布置如图2-2.桁架上弦支撑布置图桁架下弦支撑布置图垂直支撑布置1-1垂直支撑布置2-2SC—上弦支撑XC—下弦支撑CC—垂直支撑GG—刚性系杆LG—柔性系杆图2-1梯形屋架支撑布置图三、荷载计算荷载:屋架的受荷水平投影面积为:22602A>==,故按⨯mm612621m《建筑结构荷载规范》取屋面活荷载(按不上人屋面)标准值为0.5kN/m2,雪荷载为0.35kN/m2,取屋面活荷载与雪荷载中较大值0.5kN/m2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 设计资料屋面采用1.5×6m 预应力钢筋混凝土大型屋面板,15mm 厚1:2.5水泥砂浆保护层,SBC120聚乙烯丙纶双面复合防水卷材防水层,水泥与5%107胶粘结层,20mm 厚1:3水泥砂浆基层,塑料袋装珍珠岩80厚,上压一层芦苇的保温层,SBC120聚乙烯丙纶单面复合防水卷材隔气层,20mm 厚1:3水泥砂浆找平层,屋面雪荷载为0.45KN/m 22 荷载计算2.1 永久荷载预应力钢筋混凝土大型屋面板:2/68.14.12.1m kN =⨯ 保护层:2/36.03.02.1m kN =⨯ 防水层:2/007.0006.02.1m kN =⨯ 基层:2/480.040.02.1m kN =⨯ 保温层:2/422.036.02.1m kN =⨯ 隔气层:2/003.00025.02.1m kN =⨯ 找平层:2/480.040.02.1m kN =⨯屋架自重和支撑自重按经验公式(跨度l=21m )2/1.35211.12.11.12.1m kg l P w ≈⨯+=+= 2/4212.0351.02.1m kN =⨯总计:g=3.852/m kN2.2 可变荷载屋面雪荷载:q=2/63.045.04.1m kN =⨯2.3 荷载组合永久荷载可变荷载为主要荷载组合,屋架上弦节点荷载为:kNq g F 32.4065.1)63.085.3(65.1)(=⨯⨯+=⨯⨯+=3 内力计算4 截面选择4.1 上弦杆截面选择上弦杆采用相同截面,以最大轴力G-⑨或H-⑩杆来选择:kN N 767.489max -= 在屋架平面内的计算长度cm l ox 8.150=,屋架平面外的计算长度cm l oy 5.301=。

选用两个不等肢角钢10801002⨯⨯L ,长肢水平。

截面几何特性(长肢水平双角钢组成T 形截面,节点板根据腹杆最大内力选用板厚10mm ):2334.34cm A = cm i cm i y x 78.4,35.2==15017.6435.28.150<===x ox x i l λ 785.0=x ϕ 15010.6378.48.150<===yoy y i l λ 790.0=y ϕ 截面验算:22min /215/72.1814.34337854.0489767mm N f mm N AN=<=⨯=ϕ大型屋面板与上弦焊牢,起纵横向水平支撑作用,上弦杆其他节间的长细比和稳定验算均未超过上述值。

4.2 下弦杆截面选择下弦杆也采用相同截面,以最大轴力⑧-Q 杆来选择:kN N 260.481max += 在屋架平面内的计算长度:cm l ox 300=,屋架平面外的计算长度:cm l oy 300=。

所需截面面积为:24.2238215481260mm f N A n ===选择两个不等肢角钢8631002⨯⨯∠,长肢水平。

截面几何特点:22384.22168.25cm cm A >=cm i x 77.1= cm i y 97.4=3505.16977.1300<==x λ3504.6097.4300<==y λ 另两个节点的下弦杆内力较小,但cm l oy 600=,故须验算其屋架平面外的长细比:3508.12097.4600<==y λ 4.3 支座竖杆截面选择 杆轴力:kN N 160.20-=计算长度:cm l l oy ox 200==,采用两个等肢角钢5632⨯∠,组成T 型截面 截面几何特性:2286.12cm A =cm i x 94.1=cm i y 96.2=1501.10394.1200<==x λ,535.0=x ϕ1506.6796.2200<==y λ,756.0=y ϕ 截面验算:22min /215/67.306.1228535.020160mm N f mm N AN=<=⨯=ϕ4.4 支座斜杆截面选择杆轴力:kN N 980.309-= 计算长度:cm l l oy ox 8.252== 采用两个不等肢角钢8801002⨯⨯∠,长肢相拼。

截面几何特性:2888.27cm A =cm i x 14.3=cm i y 48.3=1505.8014.38.252<==x λ685.0=x ϕ1506.7248.38.252<==y λ735.0=y ϕ 截面验算:2min /2153.1628.2788685.0248702mm N AN<=⨯=ϕ4.5 斜杆②③截面选择 杆轴力:kN N 775.233+=计算长度:cm l l ox 88.2081.2618.08.0=⨯== cm l oy 1.261= 所需截面:23.1087215233775cm f N A n ===选用两个等肢角钢5632⨯∠,组成T 形截面截面特性:22873.10286.12cm cm A n >=cm i x 94.1=cm i y 96.2=3507.10794.188.208<==x λ3502.8896.21.261<==y λ 4.6 竖杆③④截面选择杆轴力:kN N 320.40-=计算长度:cm l l ox 12.1839.2288.08.0.=⨯==cm l oy 9.228=采用两个等肢角钢5502⨯∠,组成T 形截面。

截面几何特性:2606.9cm A =cm i x 53.1=cm i y 45.2=1507.11953.112.183<==x λ438.0=x ϕ1504.9345.299.228<==cm y λ580.0=y ϕ 截面验算:2min /21583.956.960438.040320mm N AN<=⨯=ϕ4.7 斜杆④⑤截面选择 杆轴力:kN N 247.117-=计算长度:cm l l ox 2.2295.2868.08.0=⨯== cm l oy 5.286= 采用两个等肢角钢5752⨯∠,组成T 形型截面截面几何特性:2824.14cm A = cm i x 33.2= cm i y 43.3=1504.9833.22.229<==x λ 565.0=x ϕ 1505.8343.35.286<==y λ 664.0=y ϕ 截面验算:22min /215/6.2114.1482565.0177247mm N f mm N AN=<=⨯=ϕ4.8 斜杆⑤⑥截面选择杆轴力:kN N 247.177--=计算长度:cm l l ox 2.2295.2868.08.0=⨯== cm l oy 5.286= 所需截面:26.520215177247mm f N A n ===采用两个等肢角钢5502⨯∠,组成T 形型截面截面几何特性:22206.5606.9cm cm A >= cm i x 53.1= cm i y 45.2=3508.14953.12.229<==x λ 3509.11645.24.286<==y λ 4.9 竖杆⑥⑦截面选择 杆轴力:kN N 320.40-=计算长度:cm l l ox 44.2073.2598.08.0=⨯== cm l oy 3.259= 采用两个等肢角钢5502⨯∠,组成T 形截面截面几何特性:22352.3606.9cm cm A >= cm i x 53.1= cm i y 45.2=1506.13553.14.207<==x λ 363.0=x ϕ 1508.10545.2259<==y λ518.0=y ϕ截面验算:22min /215/6.1156.960363.040320mm N f mm N AN=<=⨯=ϕ4.10 斜杆⑦⑧截面选择 杆轴力:kN N 778.62-=计算长度:cm l l ox 32.2509.3128.08.0=⨯== cm l oy 9.312= 采用两个等肢角钢5632⨯∠,组成T 形截面截面几何特性:2286.12cm A = cm i x 94.1= cm i y 96.2=1500.12994.132.250<==x λ 392.0=x ϕ 1508.10596.29.312<==y λ518.0=y ϕ 截面验算:22min /215/3.1306.1228392.062778mm N f mm N AN=<=⨯=ϕ4.11 斜杆⑧⑨截面选择 杆轴力:kN N 580.12+=计算长度:cm l l ox 32.2509.3128.08.0=⨯== cm l oy 9.312= 所需截面面积为:25.5821512580mm f N A n ===选择两个等肢角钢5502⨯∠,组成T 形截面。

截面几何特点:22585.0606.9cm cm A >=cm i x 53.1= cm i y 45.2=3506.16353.132.250<==x λ3507.12745.2300<==y λ 4.12 竖杆⑨⑩截面选择杆轴力:kN N 320.40-=计算长度:cm l l ox 84.2318.2898.08.0=⨯== cm l oy 8.289= 采用两个等肢角钢5562⨯∠,组成T 形截面截面几何特性:2830.10cm A = cm i x 72.1= cm i y 69.2=1504.13872.184.231<==x λ 366.0=x ϕ 1507.10769.28.289<==y λ507.0=y ϕ 截面验算:22min /215/8.1100.1083366.040320mm N f mm N AN=<=⨯=ϕ4.11 斜杆⑩○11截面选择 杆轴力:kN N 579.32+=计算长度:cm l l ox 92.2719.3398.08.0=⨯== cm l oy 9.339=所需截面面积为:25.15121532579mm f N A n ===选择两个等肢角钢5562⨯∠,组成T 形截面。

截面几何特点:22515.1830.10cm cm A >=cm i x 72.1= cm i y 69.2=3501.15872.132579<==x λ3504.12669.29.339<==y λ5 节点设计各节点的节点板厚一律取10mm ,各杆内力如图5-1所示。

5.1 下弦节点j 设计(如图所示)首先,计算腹杆与节点板连接焊缝尺寸,然后按比例绘出节点板形状和尺寸,最后验算下弦与节点板的连接焊缝。

已知焊缝的抗拉、抗压和抗剪的强度设计值:2/160mm N ffw =设杆②③的肢背和肢尖焊缝分别是mm h f 6=,则所需焊缝长度为:肢背:mm hef N l wfw 8.12116067.022337757.027.0/=⨯⨯⨯⨯==取135mm 肢尖:mm hef N l w f w 2.5216067.022337757.027.0//=⨯⨯⨯⨯==取80mm 设杆④⑤的肢背和肢尖焊缝分别是mm h f 6=,则所需焊缝长度为肢背:mm hef N l wfw 3.9216067.021772477.027.0/=⨯⨯⨯⨯==取110mm 肢尖:mm hef N l w f w 6.3916067.021772477.027.0//=⨯⨯⨯⨯==取80mm设杆③④的肢背和肢尖焊缝均为mm h f 5=,则所需焊缝长度为肢背:mm hef N l wfw 2.2516057.02403207.027.0/=⨯⨯⨯⨯==取180mm 肢尖:mm hef N l wfw 8.1016057.02403207.027.0//=⨯⨯⨯⨯==取180mm 根据上述腹杆焊缝长度,并考虑杆件之间应留有间隙,按比例绘出节点大祥图,从而确定节点板尺寸为mm 10280345⨯⨯。

相关文档
最新文档