工程力学第13章应力状态分析
工程力学---应力状态分析
![工程力学---应力状态分析](https://img.taocdn.com/s3/m/0d4a8032f111f18583d05afd.png)
τα =
ห้องสมุดไป่ตู้
2
sin2α +τ xcos2α
上述关系建立在静力学基础上, 上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况, 论既适用于各向同性与线弹性情况,也适 用于各向异性、 用于各向异性、非线弹性与非弹性问题
单辉祖:工程力学 12
应力圆
应力圆原理
σα = σ x +σ y σ x −σ y
17
例 2-2 利用应力圆求截面 m-m 上的应力
解: :
σ m = −115 MPa
τ m = 35 MPa
18
单辉祖:工程力学
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 : A点对应截面 x, B点对应截面 y 点对应截面 点对应截面 τ 2. 由应力圆求 σm 与 m 顺时针转60 由A点(截面 x )顺时针转 。至D点(截面 y ) 点 点
解: σ x = −100 MPa τ x = −60 MPa σ y = 50 MPa α = −30o :
σm =
σ x + σ y σ x −σ y
2 +
τm =
单辉祖:工程力学
σ x −σ y
2
2
cos2α −τ xsin2α = −114.5MPa
sin2α +τ xcos2α = 35.0MPa
(τ ydAsinα)sinα + (σ ydAsinα)cosα = 0
σα = σ xcos2α +σ ysin2α − (τ x +τ y )sinα cosα
τα = (σ x −σ y )sinα cosα +τ xcos2α −τ ysin2α
工程力学中的应力和应变分析
![工程力学中的应力和应变分析](https://img.taocdn.com/s3/m/e6bc965ffbd6195f312b3169a45177232f60e4df.png)
工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
工程力学中的杆件和梁的应力分析
![工程力学中的杆件和梁的应力分析](https://img.taocdn.com/s3/m/4d891bc682d049649b6648d7c1c708a1284a0a8d.png)
工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。
在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。
本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。
一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。
在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。
杆件的应力可以分为正应力和切应力。
1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。
正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。
正应力可以分为拉应力和压应力两种情况。
当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。
拉应力是正值,表示杆件受拉的状态。
当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。
压应力是负值,表示杆件受压的状态。
2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。
切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。
切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。
切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。
二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。
在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。
1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。
在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。
弯矩可以通过力学平衡和弹性力学原理进行计算。
弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。
2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。
截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。
工程力学中的应变与应力分析方法总结和应用研究
![工程力学中的应变与应力分析方法总结和应用研究](https://img.taocdn.com/s3/m/c1385763bdd126fff705cc1755270722192e59a9.png)
工程力学中的应变与应力分析方法总结和应用研究工程力学是一门研究物体在受力作用下的运动和变形规律的学科,应变与应力分析是工程力学中的重要内容。
本文将总结和探讨工程力学中的应变与应力分析方法,并探讨其在实际工程中的应用。
一、应变分析方法应变是物体在受力作用下发生的变形程度的度量。
应变分析方法主要有拉伸应变、剪切应变和体积应变等。
1. 拉伸应变:拉伸应变是指物体在受拉力作用下发生的变形程度。
拉伸应变的计算公式为ε = ΔL / L0,其中ΔL为物体在受拉力作用下的变形长度,L0为物体的初始长度。
拉伸应变的大小与物体的材料性质有关。
2. 剪切应变:剪切应变是指物体在受剪切力作用下发生的变形程度。
剪切应变的计算公式为γ = Δx / h,其中Δx为物体在受剪切力作用下的变形长度,h为物体的高度。
剪切应变的大小与物体的切变模量有关。
3. 体积应变:体积应变是指物体在受力作用下发生的体积变化程度。
体积应变的计算公式为εv = ΔV / V0,其中ΔV为物体在受力作用下的体积变化量,V0为物体的初始体积。
体积应变的大小与物体的体积模量有关。
二、应力分析方法应力是物体内部受力情况的描述,应力分析方法主要有拉应力、剪应力和体应力等。
1. 拉应力:拉应力是指物体在受拉力作用下单位面积上的受力情况。
拉应力的计算公式为σ = F / A,其中F为物体受到的拉力,A为物体的受力面积。
拉应力的大小与物体的弹性模量有关。
2. 剪应力:剪应力是指物体在受剪切力作用下单位面积上的受力情况。
剪应力的计算公式为τ = F / A,其中F为物体受到的剪切力,A为物体的受力面积。
剪应力的大小与物体的剪切模量有关。
3. 体应力:体应力是指物体内部各点上的应力情况。
体应力的计算公式为σ =F / A,其中F为物体受到的力,A为物体的横截面积。
体应力的大小与物体的杨氏模量有关。
三、应变与应力分析方法的应用研究应变与应力分析方法在实际工程中有着广泛的应用。
工程力学-应力状态
![工程力学-应力状态](https://img.taocdn.com/s3/m/9774b5c28bd63186bcebbcbc.png)
sy
n
例1 已知 sx= –100MPa、sy =50MPa 、tx = – 60MPa,a = –30º
cos[2 ( 30)] ( 60)sin[2 ( 30)]
114.5MPa
τ 30
上海应用技术学院
τ T WP
此时不适用基本变形下的强度条件,应同时考虑s 、t 的影响。 又如:受内压容器筒壁
上海应用技术学院
sy
A 筒壁某点A处应力: sx 、sy,为双向受拉状态。 又如:火车车轮与铁轨接触处表层
4
sx
s s
A
s
A点应力:为三向受压状态。 此外:在通过A点不同斜截面上的应力是不同的,将影响到构 件的破坏形式。
s
OC CFcos2 α DFsin2 α σx σy σx σy cos2 α τ x sin2 α σ α 2 2
上海应用技术学院
证明: H点横坐标: OM 纵坐标: MH CD与s 轴夹角为2a0
OM σx σy 2 σx σy 2 cos2 α τ x sin2 α σ α
ty
e
cos2 α τ x sin2 α
b
sy
切线方向上: Σ F 0 τ
τ α d A (σ x d A cos α )sin α ( τ x d A cos α )cos α (σ y d A sin α )cos α ( τ y d A sin α )sin α 0
∴ τ α σ x sin α cos α σ y sin α cos α τ x cos2 α τ y sin 2 α
上海应用技术学院
三维应力状态分析
![三维应力状态分析](https://img.taocdn.com/s3/m/75cd9164443610661ed9ad51f01dc281e43a5668.png)
三维应力状态分析
三维应力状态分析是工程力学中十分重要的一部分,它主要用于研
究物体内部各点的应力状态,并进一步分析物体在外力作用下的变形
和破坏情况。
本文将从应力的定义、三维应力分量、三维应力状态、
应力变换等几个方面展开探讨。
一、应力的定义
应力是描述物体内部单位面积上的力的作用情况的物理量,通常用
符号σ表示。
在三维坐标系下,应力可以分为三个方向上的分量:x方
向的应力σx,y方向的应力σy,z方向的应力σz。
其中,正应力代表
拉伸,负应力代表压缩。
二、三维应力分量
在三维空间中,一个点的应力状态可以用一个三维应力向量来表示,即:
σ = [σx, σy, σz]
三、三维应力状态
3D 应力分析会把其看到的那个body中的应力性质视的非常细致,
大部分的情况都会是标准状态非常好,而且力学方面的注意要细致而
恰当,所有的这些都是房屋抗震的基础;另一方面,首要条件是钢筋
混凝土类造体抗的震能。
四、应力变换
应力在不同坐标系之间的转换是三维应力分析中一个重要的内容。
在工程实践中,通常会遇到需要将应力从一个坐标系转换到另一个坐标系的情况,这时候就需要应力变换的知识来进行分析。
五、结论
通过对三维应力状态分析的讨论,我们可以更好地理解物体内部各点的应力情况,有助于设计和工程实践中的应力分析和结构设计。
希望本文的内容能为相关领域的研究和实践提供一定的参考,同时也欢迎各界同仁对三维应力状态分析进行更深入的研究和探讨。
如何在工程力学中进行应力分析?
![如何在工程力学中进行应力分析?](https://img.taocdn.com/s3/m/4b9edf9f0d22590102020740be1e650e52eacfaa.png)
如何在工程力学中进行应力分析?在工程力学领域,应力分析是一项至关重要的任务。
它能够帮助工程师了解结构或材料在受到外力作用时内部的受力情况,从而评估其强度、稳定性和可靠性,为设计安全、高效的工程结构提供关键的依据。
那么,如何进行有效的应力分析呢?首先,我们需要明确应力的基本概念。
应力,简单来说,就是单位面积上所承受的内力。
当物体受到外力作用时,内部会产生抵抗这种外力的力,这种力在单位面积上的表现就是应力。
应力的单位通常是帕斯卡(Pa)或兆帕(MPa)。
在实际的工程力学中,进行应力分析的第一步是确定所研究对象的受力情况。
这包括对各种外力的分析,如集中力、分布力、力偶等。
例如,在桥梁设计中,需要考虑车辆的重量产生的集中力,以及风荷载产生的分布力。
为了准确地描述这些外力,我们通常会建立一个力学模型,将复杂的实际情况简化为易于分析的形式。
接下来,选择合适的分析方法是关键。
常见的应力分析方法有理论分析法、实验法和数值模拟法。
理论分析法基于力学的基本原理和公式进行推导和计算。
例如,对于简单形状和受力情况的结构,可以使用材料力学中的公式来计算应力。
比如,对于受拉伸或压缩的直杆,可以通过力除以横截面积来计算正应力;对于受扭转的圆轴,可以通过扭矩除以抗扭截面系数来计算切应力。
然而,这种方法通常只适用于简单的几何形状和受力情况,对于复杂的结构往往难以直接应用。
实验法是通过对实际结构或模型进行物理实验来测量应力。
常见的实验方法包括电测法、光测法等。
电测法是在结构表面粘贴电阻应变片,当结构受力产生变形时,应变片的电阻会发生变化,通过测量电阻的变化可以推算出应变,进而计算出应力。
光测法则利用光的干涉原理,如光弹性法,来观察结构内部的应力分布。
实验法能够直接获取实际结构的应力数据,但往往成本较高,且实验过程可能会对结构造成一定的破坏。
数值模拟法则是借助计算机软件对结构进行建模和分析。
常见的数值方法有有限元法、边界元法等。
有限元法将结构离散成有限个单元,通过求解每个单元的平衡方程,得到整个结构的应力和变形。
应力状态分析和强度理论
![应力状态分析和强度理论](https://img.taocdn.com/s3/m/b6f2d15ba200a6c30c22590102020740be1ecdb3.png)
03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
工程力学-材料力学之应力应变状态分析
![工程力学-材料力学之应力应变状态分析](https://img.taocdn.com/s3/m/e32ec0ce19e8b8f67c1cb9cb.png)
求:(1)A点处的主应变 1, 2 , 3
(2)A点处的线应变 x , y , z
F1 b A F2 z b=50mm h=100mm
Hale Waihona Puke 19F2al
解:梁为拉伸与弯曲的组合变形. A点有拉伸引起的正应力
和弯曲引起的切应力.
铜块横截面上的压应力mpa3010300analysiessst155mpa铜块的主应力为mpampa30最大切应力mpa2510951010034analysiessst例题11一直径d20mm的实心圆轴在轴的的两端加力矩m126n45方向的应变analysiessstanalysiessst外径d60mm的薄壁圆筒在表面上k点与其轴线成45y两方向分别贴上应变片然后在圆筒两端作用矩为的扭转力偶如图所示已知圆筒材料的弹性常数为若该圆筒的变形在弹性范围内且analysiessst从圆筒表面k点处取出单元体其各面上的应力分量如图所示可求得mpa80maxmpa80maxanalysiessstmaxmaxmax10拉应变圆筒表面上k点处沿径向z轴的应变和圆筒中任一点该点到圆筒横截面中心的距离为maxmax因此该圆筒变形后的厚度并无变化仍然为t10mmanalysiessstb50mmh100mm例题13已知矩形外伸梁受力f作用
在任意形式的应力状态下, 各向同性材料内一点处的体
积应变与通过该点的任意三个相互垂直的平面上的正应力之
和成正比, 而与切应力无关.
11
例题10 边长 a = 0.1m 的铜立方块,无间隙地放入体积较大, 变形可略去
不计的钢凹槽中, 如图所示. 已知铜的弹性模量 E=100GPa,泊松比 =0.34, 当受到F=300kN 的均布压力作用时,求该铜块的主应力、体积应变以及最
工程力学-应力状态与应力状态分析
![工程力学-应力状态与应力状态分析](https://img.taocdn.com/s3/m/9f94db4de45c3b3566ec8b07.png)
8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位y x xytg σστα--=2204、主应变12122x y xyx y()tg εεεεγϕεε⎡=+±⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A 点偏上和偏下的一对与xz 平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:z M y I σ=bI QS z z*=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。
工程力学中的应变与应力分析
![工程力学中的应变与应力分析](https://img.taocdn.com/s3/m/cb648a4b4b7302768e9951e79b89680203d86b88.png)
工程力学中的应变与应力分析工程力学是研究物体静力学和动力学的一门学科,它在工程设计和结构力学分析中起着重要的作用。
在工程力学中,应变与应力是两个基本概念,也是进行结构分析和材料力学计算的关键参数。
本文将从应变和应力的定义、计算公式、应变与应力的关系等方面进行介绍与分析。
一、应变的概念与计算应变是物体在受到力的作用下,发生形变的程度的度量。
应变可分为线性应变和切变应变两种。
1. 线性应变线性应变是指物体在受力作用下,其形变呈现线性关系。
常见的线性应变有拉伸应变和压缩应变。
拉伸应变是指物体在拉伸力作用下的伸长变化程度,压缩应变是指物体在压缩力作用下的压缩变化程度。
线性应变的计算公式如下:ε = ΔL / L其中,ε表示线性应变,ΔL表示长度变化量,L表示物体的初始长度。
2. 切变应变切变应变是指物体在受到剪切力作用下,产生的剪切变形程度。
切变应变的计算公式如下:γ = θ * r其中,γ表示切变应变,θ表示切变角度,r表示物体上两点间的距离。
二、应力的概念与计算应力是物体内部受力作用下单位面积上的力的大小。
常见的应力有拉应力、压应力和剪应力等。
应力的计算公式如下:1. 拉应力和压应力拉应力是指垂直于物体横截面的拉力作用下,单位面积上的力的大小,压应力是指垂直于物体横截面的压力作用下,单位面积上的力的大小。
拉应力和压应力的计算公式如下:σ = F / A其中,σ表示应力,F表示作用力的大小,A表示物体的横截面积。
2. 剪应力剪应力是指平行于物体横截面的剪切力作用下,单位面积上的力的大小。
剪应力的计算公式如下:τ = F / A其中,τ表示剪应力,F表示作用力的大小,A表示物体的横截面积。
三、应变与应力的关系应变与应力有着密切的关系,可以通过应变与应力的计算公式来解析他们之间的关系。
1. 杨氏模量杨氏模量是一种材料的特性参数,它是应力与应变之间的比值。
杨氏模量的计算公式如下:E = σ / ε其中,E表示杨氏模量,σ表示应力,ε表示应变。
平面应力状态的判定
![平面应力状态的判定](https://img.taocdn.com/s3/m/b7b4b540b42acfc789eb172ded630b1c59ee9be2.png)
平面应力状态的判定引言:在工程力学中,平面应力状态是指一个物体在两个相互垂直的平面上受到的力的状态。
判定平面应力状态的方法有很多,本文将介绍三种常用的判定方法:应力分量判定法、应力变化率判定法和应力主值判定法。
一、应力分量判定法应力分量判定法是通过分析物体在平面上的应力分量来判定平面应力状态。
平面应力状态可以分为三种情况:1. 等应力状态:当物体在平面上的应力分量相等时,即σx = σy,这种情况下物体处于等应力状态。
在等应力状态下,物体内部各处受到的应力是相同的,不会出现应力集中现象。
2. 纯压应力状态:当物体在平面上的一个应力分量为零,另一个应力分量不为零时,即σx = 0,σy ≠ 0或σx ≠ 0,σy = 0,这种情况下物体处于纯压应力状态。
在纯压应力状态下,物体受到的应力是等方向的,不会引起物体的形变和变形。
3. 剪应力状态:当物体在平面上的两个应力分量都不为零且不相等时,即σx ≠ σy,这种情况下物体处于剪应力状态。
在剪应力状态下,物体内部各处受到的应力方向不同,会引起物体的形变和变形。
二、应力变化率判定法应力变化率判定法是通过分析物体在平面上的应力变化率来判定平面应力状态。
平面应力状态可以分为两种情况:1. 等应力变化率状态:当物体在平面上的应力变化率相等时,即dσx/dx = dσy/dy,这种情况下物体处于等应力变化率状态。
在等应力变化率状态下,物体内部各处受到的应力变化率是相同的,不会出现应力集中现象。
2. 剪应力变化率状态:当物体在平面上的应力变化率不相等时,即dσx/dx ≠ dσy/dy,这种情况下物体处于剪应力变化率状态。
在剪应力变化率状态下,物体内部各处受到的应力变化率不同,会引起物体的形变和变形。
三、应力主值判定法应力主值判定法是通过计算物体在平面上的主应力来判定平面应力状态。
平面应力状态可以分为三种情况:1. 等主应力状态:当物体在平面上的两个主应力相等时,即σ1 = σ2,这种情况下物体处于等主应力状态。
工程力学第13章应力状态分析和强度理论
![工程力学第13章应力状态分析和强度理论](https://img.taocdn.com/s3/m/9812e74d02768e9951e73858.png)
max
m in
x
y
2
(
x
2
y
)2
2 xy
——主应力的大小
3)、 切应力 的极值及所在截面
由
x
y
2
sin 2
xy cos 2 ,
令 d
0
d 1
tan
21
x 2 xy
y
(1 ; 1 1 900 )
——最大切应力 所在的位置
z
x
y y
x
z x
2
I 3 1
(1)求平行于σ1的方向面的应力σα 、 τα ,其上之应力与σ1 无关.
1
3
II 2
(2)求平行于σ2的方向面的应力σα、 τα ,其上之应力与σ2 无关.
2
III 1 3
2
(3)求平行于σ3的方向面的应力σα 、 τα ,其上之应力与σ3 无关.
例2、槽形刚体内放置一边长为a = 10 cm 正方形钢块,试求钢 块的三个主应力。F = 8 kN,E = 200 GPa, μ = 0.3。
Fy
解:1) 研究对象ຫໍສະໝຸດ 正方形钢块y F 80 MPa, A
x
?,
z 0.
x 0, y ?, z ? .
y
x b
a
c x x
y
b x
x
a y
c
y t
n 单元体各面面积
x bc : dA
ab: dAcos ac : dAsin
设:斜截面面积为dA,由分离体平衡得:
工程力学中的应力和应变的分析
![工程力学中的应力和应变的分析](https://img.taocdn.com/s3/m/6bd3fae8dc3383c4bb4cf7ec4afe04a1b071b0a9.png)
工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。
在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。
本文将对工程力学中的应力和应变进行深入的分析和探讨。
一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。
在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。
应力可以分为正应力和剪应力两种类型。
1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。
正应力可分为拉应力和压应力两种情况。
拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。
2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。
剪应力是由于物体受到外部力的平行作用而引起的变形。
剪应力会使得物体的截面发生平行于力的方向的切变变形。
二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。
应变描述了物体受到外力作用后的变形程度和特征。
应变可分为线性应变和剪切应变两种类型。
1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。
线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。
线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。
2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。
剪切应变是与物体所受剪力大小成正比,与物体的长度无关。
剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。
三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。
弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。
主要用于刻画物体在受力作用后,恢复原始形状的能力。
应力状态及强度理论
![应力状态及强度理论](https://img.taocdn.com/s3/m/7333f42e49d7c1c708a1284ac850ad02de8007ce.png)
应力张量是一个二阶对称张量, 包含六个独立的分量,可以用 来描述物体的应力状态。
主应力和应力张量可以通过计 算得到,它们是描述物体应力 状态的重要参数。
02
强度理论
第一强度理论
总结词
最大拉应力准则
详细描述
该理论认为材料达到破坏是由于最大拉应力达到极限值,不考虑剪切应力和压 力的影响。
第二强度理论
05
实际应用
航空航天领域
飞机结构强度分析
利用应力状态及强度理论,对飞 机各部件的受力状态进行详细分 析,确保飞机在各种工况下的结 构安全。
航天器材料选择
根据材料的应力-应变关系,选择 适合航天器发射和运行阶段的材 料,确保航天器的可靠性和寿命。
航空材料疲劳寿命
评估
通过应力状态及强度理论,评估 航空材料的疲劳寿命,预防因疲 劳引起的结构失效。
03
材料失效分析
弹性失效
总结词
材料在弹性阶段发生的失效。
详细描述
当材料受到的应力超过其弹性极限时 ,会发生弹性失效。这种失效通常表 现为突然断裂或大幅度变形,且材料 不具有恢复原状的能力。
塑性失效
总结词
材料在塑性阶段发生的失效。
详细描述
当材料受到的应力超过其屈服点后,会发生塑性失效。这种 失效表现为材料发生较大的塑性变形,无法保持其原始形状 和尺寸。
土木工程领域
桥梁承载能力分析
通过对桥梁的应力分布和承载能力的分析,确保桥梁在设计寿命 内的安全性和稳定性。
建筑结构抗震设计
利用强度理论,对建筑结构进行抗震设计,提高建筑物的抗震能 力,减少地震灾害的影响。
岩土工程稳定性分析
通过对岩土工程的应力状态和强度理论的分析,评估岩土工程的 稳定性和安全性。
工程力学(天津大学)第13章答案
![工程力学(天津大学)第13章答案](https://img.taocdn.com/s3/m/c091a4e4856a561252d36fc6.png)
习 题 解 答13−1 木制构件中的单元体应力状态如图所示,其中所示的角度为木纹方向与铅垂线的夹角。
试求:(l )平行于木纹方向的切应力; (2)垂直于木纹方向的正应力。
解: 由图a 可知MPa0MPa,6.1,MPa 2.0=-=-=x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa1.0)]15(2sin[26.12MPa 97.1)]15(2cos[26.1226.121515=-⨯+-=-=-⨯+-+--=--τσ (2)垂直于木纹方向的正应力MPa1.0)752sin(26.12MPa 527.1]752cos[26.1226.127575-=⨯+-=-=⨯+-+--=τσ 由图b 可知MPa 25.1,0,0-===x y x τσσ(1)平行于木纹方向的切应力:则由公式可直接得到该斜截面上的应力MPa08.1)]15(2cos[25.12cos MPa625.0)15(2sin 25.12sin 1515-=-⨯⨯-==-=-⨯=-=--αττατσx x(2)垂直于木纹方向的正应力MPa08.1)752cos(25.12cos MPa625.0)752sin(25.12sin 7575=⨯⨯-===⨯⨯=-=αττατσx x13−2 已知应力状态如图一所示(应力单位为MPa ),试用解析法计算图中指定截面的正应力与切应力解:(a )已知 MPa 20MPa,10,0MPa 3-===x y x τσσ则由公式可直接得到该斜截面上的应力MPa 习题13−1图(a)(b)MPa10)42cos(20)42sin(210302cos 2sin 2MPa40)42sin(20)42cos(21030210302sin 2cos 22=⨯⨯-⨯⨯-=+-==⨯⨯+⨯⨯-++=--++=ππατασστππατασσσσσααx y x x yx yx(b )已知 MPa20MPa,10,0MPa 3===x y x τσσ则:MPa21.21)5.222cos(20)5.222sin(210302cos 2sin 2MPa93.12)5.222sin(20)5.222cos(21030210302sin 2cos 22=⨯⨯+⨯⨯-=+-==⨯⨯-⨯⨯-++=--++=ατασστατασσσσσααx y x x yx y x (c )已知60MPa15MPa,20,MPa 10-====ατσσx y x则:60(2cos[15)]60(2sin[220102cos 2sin 2MPa49.30)]60(2sin[15)]60(2cos[22010220102sin 2cos 22-⨯⨯+-⨯⨯-=+-==-⨯⨯--⨯⨯-++=--++=ατασστατασσσσσααx yx x yx yx13−3 已知应力状态如图所示(应力单位为MPa ),试用图解法(应力圆)计算图中指定截面的正应力与切应力。
工程力学中的应力分析与应力集中问题
![工程力学中的应力分析与应力集中问题](https://img.taocdn.com/s3/m/d5eb0f79590216fc700abb68a98271fe910eafff.png)
工程力学中的应力分析与应力集中问题工程力学是一门研究物体力学性质及其相互作用的学科,它广泛应用于各个工程领域。
在工程设计和实践中,经常需要进行应力分析,以评估和优化结构的强度和稳定性。
同时,应力集中问题也是工程力学中的一个重要内容,它涉及到结构中应力的不均匀分布和集中现象,对结构的安全性和可靠性有着重要影响。
应力分析是指通过力学方法对结构或构件内部应力的大小、方向和分布进行计算和分析的过程。
应力分析的基本原理是应力沿任意截面为零,从而根据受力情况和几何形状,可以求解出结构内部的应力分布。
在应力分析中,常用的方法有静力学方法、能量方法和变分原理等。
静力学方法是最常用的一种方法,它基于平衡方程和材料的应力-应变关系,通过数学建模和求解方程组来得到应力分布。
能量方法和变分原理则是利用能量储存和最小能量原理进行应力分析。
在应力分析中,应力的计算可以通过手工计算和有限元分析两种方法进行。
手工计算是基于理论公式和近似方法推导,适用于简单的结构和荷载情况。
有限元分析则是通过将结构离散为有限个单元,利用数值计算方法求解结构的应力分布。
有限元分析具有广泛的适用性和较高的精度,可以处理复杂的结构和荷载情况。
除了应力分析,应力集中问题是工程力学中的一个研究重点。
应力集中是指结构中应力分布不均匀和应力值异常集中的现象。
应力集中可能导致结构的破坏和失效,因此对于应力集中的分析和控制至关重要。
常见的应力集中现象包括孔洞周围的应力集中和零件连接处的应力集中等。
为了分析和解决应力集中问题,工程师常常采取以下几种方法:1. 减小应力集中的影响:通过改变结构的几何形状,例如增加圆角或过渡半径,来减小应力集中的程度。
这种方法可以在设计初期进行,以减小结构的应力集中程度。
2. 使用合适的材料:选择适当的材料可以改变结构的应力集中状况。
有些材料具有较高的韧性和延展性,可以有效减小应力集中引起的破坏风险。
3. 增加结构的刚度:通过增加结构的刚度,可以使应力更均匀地分布在整个结构中,从而减小应力集中的程度。
工程力学之应力状态分析和强度计算
![工程力学之应力状态分析和强度计算](https://img.taocdn.com/s3/m/fc2ecd4791c69ec3d5bbfd0a79563c1ec5dad784.png)
工程力学之应力状态分析和强度计算工程力学是研究物体受力和变形规律的学科,其基础之一就是应力状态分析和强度计算。
应力状态分析主要是通过计算和评估物体内部的应力分布情况,强度计算则是根据应力状态来确定物体的强度和稳定性。
应力状态分析是力学中的一个重要步骤,它不仅可以用来评估物体的受力情况,还可以为工程设计提供依据。
在进行应力状态分析时,首先需要确定物体所受的外力,然后利用力学原理和相关公式计算物体内部的应力分布。
具体来说,首先我们需要确定物体所受的外力,包括静力、动力以及热力等,这些外力会作用在物体的不同部位上。
然后,通过应用牛顿第二定律、平衡方程等力学原理,可以计算得到物体内部的应力分布情况。
在实际工程中,通常使用数值计算方法来解决这些力学方程,比如有限元法和边界元法等。
强度计算则是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。
在进行强度计算时,首先需要确定物体的强度参数,比如抗拉强度、屈服强度、抗剪强度等。
然后,根据物体所受的应力状态,通过应力分析和计算,可以得到物体内部的应力大小。
接下来,比较物体内部的应力和其强度参数,就可以判断物体是否安全和稳定。
应力状态分析和强度计算在各个工程领域中都有广泛的应用。
在土木工程中,它可以用来评估建筑物、桥梁和道路等结构的受力情况,以确保它们的安全使用。
在机械工程中,它可以用来评估机械零件和设备的强度和稳定性,以确保它们能够正常工作。
在航空航天工程中,它可以用来评估飞机和航天器在各种飞行状态下的受力情况,以确保它们在高速和极端环境下的安全性。
总之,应力状态分析和强度计算是工程力学的重要内容,它们不仅可以为工程设计提供依据,还可以用来评估物体的强度和稳定性。
在实际应用中,我们可以通过数值计算的方法来解决应力分析和强度计算问题,从而确保工程项目的安全性和可靠性。
在工程实践中,应力状态分析和强度计算是非常重要的步骤,涉及到许多领域,如结构工程、材料工程、土木工程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即τmax 、τmin作用面上
1
x
y
2
3.
m m a in x x 2y (x 2y)2x 2
max
max
min
2
例:讨论圆轴扭转时的应力状态,并分析铸铁试件受扭时的 破坏现象。
解:圆轴扭转时横截面边缘处切应力最大
T M
WP WP 作应力状态图
x y 0
x
m m a in x x 2y (x 2y)2x 2
x 2 y x 2 yc o s2 xsin 2
x 2ysin2xcos2
x 2 y x 2 yc o s2 xsin 2
x 2ysin2xcos2
⑴ σx 、τx 是法线与x 轴平行的面上的正应力与切应力,即x
面上的正应力与切应力;σy 、τy 是法线与y 轴平行的面上的正应 力与切应力,即y 面上的正应力与切应力。
单元体任意部分平衡
由截面法和平衡条件可求 得任意方位面上的应力,即 点在任意方位的应力。
二、应力状态的分类
1.主平面 单元体上无切应力的平面。
2.主应力 作用在主平面上的正应力。
3.应力状态的分类 任何点的应力状态总可找到三对互相垂直的主平 面构成的六面体,作用三对主应力,且有:
1 2 3
(按代数值大小排序)
即对于同一点互相垂直面上的正应力之和是常量。
三、最大切应力及其作用平面的位置
求与z 轴平行所有截面上的最大切应力及方位
x 2ysin2xcos2
d 0 d
(xy )c o s 21 2x s in 21 0
解得:
tan21
x y 2x
可确定两个相互垂直
的截面 1,1 90
代入平面应力状态下任意斜截面上切应力表达式
第十三章 应力状态分析 §13-1 引言
一、应力状态的概念
1. 点的应力状态 过受力构件内一点所作各截面上的应力情况,即
过受力构件内一点所有方位面上的应力总体。
2. 一点应力状态的描述 以该点为中心取无限小正六面体(单元体)为研
究对象,单元体三对互相垂直的面上的应力可描述 一点应力状态。
单元体三对面的应力已知 ,单元体平衡
2.
tan20
2x x y
即σmax 、σmin 作用面是互相垂直的面,为α0截面和 α0+90o截面。
3. σmax作用面方位角度α0
x y 0 45o
x y
0 45o
x y
x 0 x 0
0 45o 0 45o
4.
m m a in x x 2y (x 2y)2x 2
m axm inxy
x 63.7MPa y 0 x76.4MPa
主应力作用面的方位角
0 1 2 a r c ta n (x 2 xy) 1 2 a r c tg (2 6 3 7 .6 7 .4 ) 3 5 3 6 .6 .3 9 1 o o
x y
1 3 3 .6 9 o 3 5 6 .3 1 o
解:⑴ 求C 点所在截面的剪力、弯矩 F
FS 2 50kN MFl 25kNm
8 ⑵ 求C 点在横截面上的正应力、切应力
CM Iz y2 2 5 0 0 1 0 6 3 0 0 6 30 0 1 0 1 1 0 2 /3 1 /2 41 .0 4 M P a C 3 2 F b h S(14 h y 2 2)2 2 3 0 0 5 0 6 0 1 0 0 3 1 0 6(1 4 6 0 1 0 5 2 0 2 1 0 1 0 6 6)
01 2arctan(x2xy) 4455oo
圆轴扭转时表面各点σmax所在平面连成倾角为45o的螺旋面, 由于铸铁抗拉强度低,所以试件沿此螺旋面断裂破坏。
例:一薄壁圆筒受扭转和拉伸同时作用如图。已知圆筒的平 均直径d = 50mm,壁厚t = 2mm,外力偶M = 600N·m,拉力F
= 20kN。薄壁管截面的抗扭系数可近似取为WP= πd2t / 2。试用
63.7sin240o(76.4)cos240o 2
10.7M Pa
x 63.7MPa y 0 x76.4MPa
⑶ 求D 点的主应力和主方向及最大切应力
Hale Waihona Puke m m a in x x 2y (x 2y)2x 2
63.7 2
(63.7)2(76.4)2 2
114.6M P a
50.9M
P
a
1 1 1 4 . 6 M P a2 03 5 0 . 9 M P a
D 点最大切应力
m a x1 23 1 1 4 .6 2 ( 5 0 .9 ) 8 2 .7 5 M P a
§13-3 平面应力状态应力分
一、应力圆方程
析的图解法
x 2 y x 2 yc o s2 xsin 2 x 2 y x 2 yc o s2 xsin 2
x 2ysin2xcos2
,τx )和E(σy ,τy )两点
连接DE与横坐标轴交于 C 点,以点C 为圆心、CD 半径作圆
三、应力圆的应用
1. 确定单元体斜截面上的应力
以CD为基线,沿与α角转向相同方向转2α到新半
径CH,则H 点坐标表示截面α的σα、τα 。
H点横坐标
O CCHcos(202)
O C C H c o s 2 0 c o s 2 C H s in 2 0 s in 2
1 1 1 4 . 6 M P a2 03 5 0 . 9 M P a
ca 到σ1 对应点逆时针转过67.5o
1
67.5o 2
33.8o
ca 到σ3 对应点顺时针转过112.5o
3
112.5o 2
56.3o
由应力圆可得
max82.75M Pa
§13-4 复杂应力状态的最大应力
一、三向应力圆
· 三向应力状态 · 二向应力状态 · 单向应力状态
三个主应力都不等于零。 两个主应力不等于零。 只一个主应力不等于零。
§13-2 平面应力状态应力分 析的解析法
一、任意斜截面上的正应力和切应力
Fn 0: F 0:
d A (x d A c o s) s i n (x d A c o s) c o s
1.07M Pa
x 2ysin2xcos2
1.04sin80o0.469cos80o 2
0.59M Pa
二、主应力及主平面位置
求与z 轴平行所有截面上的最大(小)正应力及方位
d d
0 x 2 yx 2 xy 2 ( 2 ys c io n s2 2 0 ) x s x i(n 2 2 c o s2 0)0
(y d A s i n ) c o s (y d A s i n ) s i n 0
d A (x d A c o s) c o s (x d A c o s) s i n
(y d A s i n ) c o s (x d A s i n ) s i n 0
平面应力状态下任意斜截面上应力表达式
D63.7M Pa D76.4MPa
⑵ 作出D点的应力状态图
x 63.7MPa y 0
120o
x 76.4MPa
作应力圆,将ca 沿逆时针转240o 得d 点(或将cb 沿逆时针转60o 得d 点),该点坐标为所求截面的应力
120o 50.3M Pa 120o 10.7MPa
由应力圆可得
⑵ 正应力:拉应力为正,压应力为负;切应力:对单元体 内任意点的矩顺时针为正,反之为负。
⑶ 斜截面角度:从x 轴正向转到斜截面外法线所转过的角度, 逆时针转为正,顺时针转为负。
例:矩形截面简支梁在跨中作用集中力F。已知F =100kN,l = 2m ,b = 200mm ,h = 600mm ,α =40o,求离支座l /4 处截面C点 在斜截面n-n上的应力。
= 20kN。薄壁管截面的抗扭系数可近似取为WP= πd2t / 2。试用
图解法求过点D 指定斜截面上的应力、点的主应力和主方向及 最大切应力。
解:⑴ 求D 点在横截面上的正应力、切应力
D F A N F d t 5 2 0 0 2 1 0 3 1 0 6 6 3 .7 M P a
D W T P d M 2 t/2 2 5 0 2 ( 6 2 0 0 1 )0 9 7 6 .4 M P a
x 2ysin20xcos200
解得:
tan20
2x x y
可确定两个相互垂直
的截面 0,0 90
代入平面应力状态下任意斜截面上正应力表达式,得:
m m a in x x 2y (x 2y)2x 2
1. x 2ysin20xcos200
0 0
即σmax 、σmin 作用面上τ = 0,即α0截面为主平面,σmax、 σmin为主应力。
m mainx
(x
y
2
)2
x2
1.
tan21
x y 2x
tan20
2x x y
即τmax 、τmin 作用面是互相垂直的面,为α1截面和
α1+90o截面,且α1=α0+45o 。
2. (xy )c o s 21 2x s in 21 0
1 x 2 y x 2 yc o s2 1 xsin 2 1
单元体作用三个主应力
1 2 3
平行于主应力σ1 方向的任意斜面 I 上的正应力和切应力与 σ1无关,可由应力圆 I 表示。
x 2ysin2xcos2
2.确定主应力的大小及主平面的方位 A、B点对应的横坐标分别表示对应主平面上的主应力。 ⑴ A、B点对应正应力的极值
m m a in x O C C A x 2y( x 2y)2x 2
⑵ CA、CB夹角为180o,所以两主平面的夹角为90o。