DYNAMIC ANALYSIS OF OFFSHORE FLOATING
Spar式风机基础系统水动力性能研究
Spar式风机基础系统水动力性能研究蒙宣伊;阳航【摘要】本文基于三维水动力学软件Aqwa进行了Spar式风机基础系统的水动力性能研究.通过时域方法,研究系统在额定风速工况下的运动响应.计算时考虑风浪联合作用的影响.最后通过傅里叶变换,得到升沉、纵摇、纵荡和锚链拉力响应谱.【期刊名称】《中国设备工程》【年(卷),期】2017(000)023【总页数】4页(P162-164,166)【关键词】Spar式基础;水动力性能;响应谱【作者】蒙宣伊;阳航【作者单位】湘电风能有限公司,湖南湘潭 411100;湘电风能有限公司,湖南湘潭411100【正文语种】中文【中图分类】P752;TK89海上风能被公认为是一种可以用来满足能量增长需求的可再生能源。
相比海洋中其它可再生能源,比如潮汐能和波浪能,风能的开发及相关技术被认为是成熟的,而且建设相当好。
其中大部分已建成并运行的风场主要是以固定式基础形式,而且水深比较浅。
对于每个可能建成的风场来说,其取决于波浪和风特征、海床特性以及社会条件。
在某一水深,选择使用何种基础时,主要考虑成本相关的问题。
相比传统固定式基础,漂浮式基础整体系统的性能研究是十分必要的,主要原因如下。
(1)它们的固有频率非常低,通常会影响气动阻尼和稳定性。
(2)对于半潜式和Spar来说,它们的位移和旋转运动会与机舱、叶轮的运动相互耦合。
(3)它们锚固在海床上的锚链系统必须包含在整体分析中。
Nielsen等对Spar基础整体动力分析进行了研究。
他们对Hywind的基础进行仿真,并将结果与缩比模型的试验结果进行对比。
Matsukuma和Utsunimiya采用多体动力学理论对一种漂浮式基础在恒定风速下考虑叶轮旋转时的运动响应。
Jokman等在OC3项目中对固定式和漂浮式基础的结构动态响应进行了验证。
Karmirad和Moan采用混合 aero-hydro-elastic时域方法进行了一种Spar式基础在极限情况下的结构响应研究。
Offshore floating oil recovery processing ship
专利名称:Offshore floating oil recovery processingship发明人:施向 明憲申请号:JP実願平9-1393申请日:19970130公开号:JP第3040085号U公开日:19970805专利内容由知识产权出版社提供专利附图:摘要: (57) [summary] [challenge] and shorten the arrival time to the sea oil spill accident site, A floating oil recovery process in simple sea, you get a separation of the water and oil in a simple equipment. A can respond immediately to the oil spill in the landtransportation for the decomposition storage of the large container. Is sucked up the floating oil, also, by pumping, shipboard at can in a simple separation of seawater and oil, sea water into the sea, also, the oil at sea release after bagging process, a constant of the shipboard loading load you can do thing, it can ensure safety.申请人:施向 明憲地址:広島市中区光南4丁目1番8号 ダイアパレス光南902号室国籍:JP更多信息请下载全文后查看。
风浪夹角变化对海上浮式风机系泊的影响
风浪夹角变化对海上浮式风机系泊的影响邓露;吴松熊;钟文杰;宋晓萍【摘要】Conventionally,the aligned wind and waves is considered the worst load case in designing an offshore wind turbine. However, the dynamic characteristics of floating offshore wind turbines (FOWT) differ from fixed wind turbines and the effects of the wind-wave loads on the FOWTs still require further investigation. In order to study the effects of misaligned wind and waves on the performance of mooring system of the FOWTs, FOWT models were adopted and the time domain simulations using the FAST-Orcaflex software were conducted accounting for variable wind-wave intersection angles. In the study, multiple sea states and different operational conditions were considered and results of tensions in selected mooring line and the platform motion responses were obtained from the simulation. Furthermore, detailed analysis of the results were performed. It is revealed that under aligned wind and waves,the largest tension in mooring line occur,along with the greatest platform motions(in five degrees of freedom except yaw). However,the misaligned wind and waves may cause greater fatigue damage in the mooring line in the moderate sea states when the wind turbine is parked. Therefore, it is suggested that two wind-wave intersection angles should be accounted for, i.e. 0° and 90°, when assessing the fatigue damage of the mooring lines under moderate sea states. For the long-term fatigue analysis of the mooring lines, misaligned wind and waves should be considered withreference to the wind and wave direction distribution scatter diagram.%海上风机结构的设计中通常只考虑共线风浪.然而浮式风机的动力特性与传统的固定式风机有显著不同,风浪荷载对其结构的影响仍需进行深入研究.为探究风浪夹角变化对浮式风机系泊的影响,采用FAST-Orcaflex软件建立了浮式风机的耦合模型并进行了时域分析,得到了多种代表海况及不同风机运转状态下系泊的张力和平台的运动响应,并对模拟结果进行了分析.结果表明:共线风浪会造成最大的系泊张力以及除艏摇外最大的平台运动响应;但在温和海况下,风机停机时,不共线风浪会造成更大的系泊疲劳损伤.因此建议:在评估温和海况下系泊的疲劳损伤时,至少考虑风机停机状态下风浪夹角为0°和90°的工况;在系泊的疲劳寿命评估中,应结合风浪作用方向散布图,考虑温和海况下的风浪不共线工况.【期刊名称】《土木工程与管理学报》【年(卷),期】2018(035)001【总页数】6页(P1-6)【关键词】海上风机;荷载分析;风浪联合作用;系泊疲劳;FAST-Orcaflex耦合【作者】邓露;吴松熊;钟文杰;宋晓萍【作者单位】湖南大学土木工程学院,湖南长沙 410082;湖南大学土木工程学院,湖南长沙 410082;湖南大学土木工程学院,湖南长沙 410082;湘电风能有限公司,湖南湘潭 411102【正文语种】中文【中图分类】P75;TK89为了更好地开发深水海域丰富的风能资源,近年来,研究人员对海上浮式风机进行了大量研究[1,2]。
基于流体脉动理论的漂浮式风力机平台纵摇运动控制策略
基于流体脉动理论的漂浮式风力机平台纵摇运动控制策略侯小琴;高健;谢双义【摘要】在流体脉动理论作用下,对张力腿式漂浮式风力机平台的纵摇运动进行分析,提出一种通过给变桨动作施加主动阻尼的控制策略,设计在不影响电功率输出的情况下的反馈控制系统,利用FAST软件对NREL提供的5 MW张力腿式漂浮式风力机进行建模,并与MATLAB/Simulink软件进行联合仿真.仿真结果表明,在流体脉动理论下设计的反馈控制系统不仅能降低塔顶的纵摇位移、叶轮转速和电功率输出波动,也能在一定程度上降低塔基处的纵摇力矩,对延长塔筒的寿命起到一定的作用.%The pitching motion of floating wind turbine platform with tension-leg is analyzed based on the fluid-impulse theory, and a feedback control strategy is proposed to apply the active damping to the pitch motion.The feedback control system is designed in the case of the electrical output is not affected.The 5 MW wind turbine with tension-leg platform provided by NREL was modeled using FAST software and is co-simulated with MATLAB/Simulink software.The simulation results show that the designed feedback control system can not only reduce the fore-aft displacement of the tower top, the fluctuation of the rotor speed and the electrical power output, but also reduce the tower base rolling moment to a certain extent by using the FAST and MATLAB/Simulink software and is helpful to improve the life of the tower.【期刊名称】《西华大学学报(自然科学版)》【年(卷),期】2017(036)006【总页数】6页(P30-35)【关键词】流体脉动;纵摇运动;漂浮式风力机;反馈控制;张力腿式漂浮式风力机平台;漂浮式风力机平台【作者】侯小琴;高健;谢双义【作者单位】重庆公共运输职业学院,重庆 400030;北京精密机电控制设备研究所,北京 100076;重庆大学机械传动国家重点实验室,重庆 400030【正文语种】中文【中图分类】TM614随着对能源需求的逐步增长,海上风电行业正在快速发展。
基于FTA方法的浮式风机叶片系统风险评估
第34卷第2期 2019年04月中国海洋平台C H IN A O FFSHO RE P L A T F O R MVol. 34 No. 2A p r.,2019文章编号:1◦◦ 1 -45〇〇(2〇 19) 〇2-〇〇39-〇8基于F T A方法的浮式风机叶片系统风险评估肖昌水,刘利琴,金伟晨(天津大学水利工程仿真与安全国家重点实验室,天津300350)摘要:对海上浮式风机叶片系统进行可靠性风险评估,以〇C4-DeepC wind浮式风机系统为计算模型,参考相关文献中的风机叶片系统故障树模型,结合数值模拟与概率统计,计算浮式/固定式风机叶片系统的结构风险概率。
使用M A T L A B编写时域动态故障树分析程序,进行浮式/固定式风机叶片系统在生命周期内的故障风险定量计算。
结果表明:在额定工况下浮式风机叶片系统的叶根应力疲劳风险概率更大,在全生命周期内浮式风机叶片系统失效风险概率更大。
关键词:浮式风机;结构风险;故障树分析;概率计算中图分类号:TM315 文献标志码:ARisk Assessment of Floating Wind Turbine Blade SystemBased on FTA MethodXIAO Changshui,LIU Liqin,JIN Weichen(State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University, Tianjin 300350, China)Abstract :In order to evaluate the reliability of offshore floating wind turbine blade system, OC4-DeepCwind floating wind turbine system is used as the calculation model. Referringto the fault tree model of the wind turbine blade system in related literatures and combiningthe numerical simulation with probability statistics, the structural risk probability of the floating and stationary wind turbine blade systems is calculated. Based on M A TLA B, time domaindynamic fault tree analysis (F T A) program is coded. The fault risks of the floating and stationary wind turbine blade systems in the life cycle are quantitatively calculated, respectively.It turns out that the floating wind turbine blade system has higher probability of blade rootstress fatigue risk under rated working condition, and the failure risk probability is higher inthe whole life cycle.Key words:floating wind turbine;structural failure;Fault Tree Analysis (F T A) ;probability calculation〇引言海上风能因其优势受到广泛关注。
录井钻井词汇英汉对照.doc
专业录井、钻井词汇英汉对照1. DRILLING ENGINEERING 钻井工程1.1 THE COMPENTS OF THE ROTARY DRILLING RIG钻机系统的组成1.1.1 Hoisting System 提升系统sub structure 井架底座,底部结构derrick (mask) 井架crown block 天车traveling block 游动滑车wire line (drill line) 钢丝绳,钻井大绳deadline死绳air hoist气压提升机,气压提升绞车drilling rig (drilling machine) 钻机drawwork绞车drum滚筒brake crank (handle, bar) 刹把hydraulic brake水刹车electric brake 电磁刹车mechanical friction device 机械磨擦装置cathead猫头elevator吊卡slip type casing elevator卡瓦型套管吊卡pipe elevator 钻杆吊卡 slip卡瓦safety slip 安全卡瓦collar rotary slip 环形钻铤转盘卡瓦drill pipe rotary slips 环形钻杆转盘卡瓦links连杆hook大钩hook load 大钩负荷 hook speed 大钩速度hook weight大钩悬重DF (drill floor) 钻台monkey board 二层台1.1.2 Circulating & Solids Control System 循环及固控系统drilling mud (drilling fluid) 钻井泥浆,钻井液water mud 淡水泥浆 water-base mud水基泥浆salt mud 盐水泥浆salt-base mud盐水基泥浆oil-base mud 油基泥浆oilemuision 油包水泥浆,石油乳浊液mud property 泥浆性能 mud weight out/in 泥浆密度进/出mud density out/in 泥浆密度进/出mud viscosity 泥浆粘度 mud conductivity 泥浆电导率mud resistivity 泥浆电阻 PH-value PH值water loss 失水 sand content 含砂量 gel strength 静切力mud cake 泥饼mud cake effect泥饼效应mud filtrate 泥浆滤液mud loss 泥浆漏失mud column 泥浆液柱mud sample 泥浆试样mud stability泥浆稳定性mud pump (pump) 泥浆泵pump body 泵体 pump capacity (discharge) 泵排量(泵容量) pump displacement泵排量pump output 泵排量pump efficiency 泵效率pump stroke 泵冲程pump cylinder 缸套mud pump rod 泥浆泵拉杆piston活塞mud room泵房mud lin浆管线choke line 地面管汇high pressure line 高压管线standpipe立管standpipe valve 立管闸门hose水龙带swivel水龙头swivel bail 水龙头吊环 swivel sub (joint) 水龙头接头swivel stem 水龙头中心管goosenec颈管wash pipe冲管wash pipe swivel 冲管旋转接头kelly方钻杆kelly cock 方钻杆上旋塞kelly dog nut 方钻杆下旋塞HWDP height weight drillpipe 加重钻杆DP drillpipe 钻杆DC drill collar 钻铤spiral collar螺旋钻铤pony DC (collar) 短钻铤NMDC non-monel collar 无磁钻铤tool join头sub (joint) 接头tool joint box 接头母扣tool joint pin 接头公扣X-O (crossover) subs 配合接头(转换接头)shock sub 减震接头bumper sub 缓冲器接头bit sub钻头接头flex sub 柔性短接string stabilizer (pin ×box) 钻具扶正器(公扣对母扣)near bit stabilizer (box ×box) 扶正器(母扣对母扣) centrallizer 扶正器bumpers (shock absorber) 减震器drilling junk basket 随钻打捞杯drilling jar 随钻震击器jar震击器BHA bottomhole assembly 下部钻具总成HDRT high data rate tool 高速数据传输钻具(M WD用)drill stem (drill string) 钻柱bit钻头drag bit (blade bit) 刮刀钻头cone bit (roller bit) 牙轮钻头 tri-cone bit 三牙轮钻头jet bit 喷射式牙轮钻头core drilling bit 取心钻头 milled tooth bit 铣齿钻头 insert bit 镶齿钻头gauge insert bit 保径镶齿钻头diamond bit 金刚石钻头bit cone 钻头牙轮bit size 钻头尺寸bit cost 钻头成本bit record 钻头记录bit type 钻头类型bit jets 钻头水眼bit nozzle 钻头喷嘴TFA total flow area 钻头水眼总流量面积bit consumption 钻头用量bit footage 钻头进尺 bit factor 钻头因素bit grading 钻头磨损等级bit-tooth dullness 钻头牙齿磨钝程度bit life 钻头寿命bit HHP hydraulic horsepower 钻头水马力hole opener 扩眼器underreamer 管下扩眼器annular 环空wellhead 井口flowline 架空管线shale shaker 震动筛mud tank (mud pits) 泥浆罐suction pit 进口罐setting pit 沉砂罐waste pit 泥浆坑desander 除砂器desilter 除泥器degasser 除气器mud cleaner 清洁器centrifuge 离心机agitator 搅拌机1.1.3 Rotary System 旋转系统prime mover 原动机 diesel engine 柴油机engine 引擎rotary table 转盘rotary base 转盘底座rotary chain 转盘传动链条 KB kelly bushing 方钻杆补心roller type bushing滚子方补心master bushing 转盘补心slip type casing spider 卡瓦型套管卡盘tongs 大钳,吊钳lead tongs 内钳back-up tongs 外钳hydraulic tongs 液压大钳chain tongs 链钳pipe tongs (spanner) 管钳spinning chain 旋链power tongs 动力大钳spanning wrench 旋转扳手1.1.4 Blowout Prevention System 防喷系统kick井涌blowout井喷blowout control 井控blowout control equipment井控设备blowout hookup 防喷装置BOP blowout prevention 防喷器annular ram prevention (万能)环形防喷器pipe rams (半封)闸板防喷器 blind rams 盲板全封式防喷器 shear rams 剪切闸板式全封防喷器blowout plug 防喷塞blowout preventer of three stage packer 三级密封式防喷器control console 控制台remote control console 远程控制台conductor line 导管choke line manifold 节流管线fill line 灌浆管线kill line 压井管线emergency line 紧急压井管线chokes节流阀hydraulic valve 液压阀gas buster 泥气分离器poor boy 泥气分离器choke pressure 节流压力blowout prevention procedure 防喷措施1.1.5 Motion Compensation System 运动补偿系统offshore floating rigs 海上浮式钻机drillstring compensator 钻柱补偿器sea level海平面sea floor海底deck甲板air pressure vessels 空气压力容器hydraulic cylinder assembles 液压缸总成piston rod 活塞杆standard hook assembles标准大钩总成riser隔水导管guideline tensioner 导索拉紧装置control panel 控制盘 guide base 导引底盘marine riser 海中隔水导管 moon pool 月形开口riser tensioner 隔水导管拉紧装置1.2 WELLS & DRILLING CRAFT 井与钻井工艺流程well, drilling well 井,钻井 wildcat well 预探,初探井delineation well 探边井 development well 生产井,开发井 satellite well 丛式井 injection well 注水井 direction well 定向井 deviation well 斜井 COST continental offshore stratigraphic test well(美)大陆近海地层探井to rig up 安装(钻机)to install the equipment 安装设备to get drill pipes in order 排钻具to measure & inspect drillstring仗量,检查钻具to measure the length of drill pipes &drill collars 量钻杆,量钻铤to nipple up BOP 装封井器 to spud in 开钻to turn on the pumps 开泵to circulate, circulation 循环circulate to the bottom up 完全循环reserve circulation 反循环bit break-in procedure 磨合钻头reaming扩眼drilling钻进coring drilling 取心钻进rough drilling (bouncing of drilling tool) 跳钻bit bouncing 蹩钻reverse rotation (running) 打倒车correct drift 纠斜 lost circulation 井漏 slough (cave-in) 井塌 to stop the pump 停泵 PC pipe connection 接单根make a joint 接单根 wire line survey 吊测deviation survey 测斜 to change the shaker screen 换筛布to repair the pump 修泵to break down a joint 卸一个单根to slug the pipe 往钻杆内打重泥浆POOH to pull out of hole 起钻to trip out the hole 起钻touch sticking 遇卡pulling a piston 拔活塞 to lubricate rig (drawwork) 保养钻机(绞车)to repair rig 维修钻机to cut & slip the drillline 倒大绳to clean the mud tank 清罐well logging, E-log 电测SWC sidewall coring 井壁取心DST drill stem test 钻杆中途测试 to running casing, casing 下套管surface casing 表层套管intermediate casing 技术套管liner尾管to running cementing 固井to squeeze cement 挤水泥 WOC wait on cement 侯凝to nipple up BOP 换装封井器 to install the BOP 装封井器 to test BOP 封井器试压to change bit, bit change 换钻头RIH run in hole 下钻to trip in 下钻 touchdown, touching resistance 遇阻RTO round trip operation 起下钻作业short tripping 短起下钻reaming划眼to cement plug , plug back 打水泥塞side tracking 侧钻to kick off 造斜KOD kick off depth 造斜深度KOP kick off point 造斜点to hang up 意外停机to survey the flowout 监测溢流flow check 溢流检查WOO wait on order 等指令WOW wait on weather等天气WOL wait on logging 等测井WOE wait on equipment 等设备WOFT wait on fishing tools等打捞工具to finish drilling 完钻to running the liner 挂尾管to plug-back 填井 final testing 完井测试to install the Chirstmas tree (production) 装采油树well completion 完井to prevent sticking 防卡to prevent caving 防塌to prevent loss of circulation 防漏to prevent blowout 防喷1.3 SPECIAL ENGINEERING OPERATION 特殊工程施工Coring取心1.3.1.1 Coring Equipment 取心及岩心分析设备coring drill 取心钻具 core drilling bit 取心钻头core bit 取心钻头coring crown 金刚石取心钻头 core cone bit 牙轮取心钻头 core basket 岩心爪 core barrel catcher 岩心抓取器core catcher 岩心爪 core catcher case 岩心爪外套core gripper 岩心爪 core-gripper with slip 卡瓦式岩心爪core-gripper with slipcollar 卡箍式岩心爪core-gripper with slipspring 卡簧式岩心爪core spring 岩心卡簧core barrel 岩心筒 core container 内岩心筒 core chamber 岩心室core barrel head 岩心筒上盖core barrel ring 取心筒垫圈core shoe (压力式)取心筒鞋core plunger 岩心推取杆 core pusher 岩心推取塞 core fisher 井底岩心打捞器core picker 落井岩心打捞器core bag 岩心袋core box 岩心盒core tray 岩心盒core house 岩心存储室core storage 岩心库core library 岩心库core breaker 岩心切断器 core slicer (splitter) 岩心切断器core-drying oven 岩心烘箱core cutter 岩心切片机core distillation apparatus 岩心蒸馏仪core interpreting device 岩心分析仪core laboratory 岩心分析实验室1.3.1.2 Core Drilling Operation 取心钻进作业core hole 取心井core boring 取心钻进core drilling 取心钻进cored-up mould 岩心造型coring depth 取心井深coring footage (run) 取心进尺coring weight 取心钻压 coring formation 取心地层 core grouting 取心被卡core breaking 割断岩心core breaking by hydraulic pressure 投球液压割心core breaking by mechanical loading 机械加压割心1.3.1.3 Core Analysis 岩心分析core-analysis data 岩心分析数据core data 岩心数据core log 岩心录井core graph 岩心图core cross section 岩心横剖面 core-description graph 岩心描述图core sample 岩心样core orientation 岩心方向 core inlet face 岩心入口面core outlet face 岩心出口面core diameter 岩心直径core intervals 取心井段 core footage (run) 取心进尺core recovery 岩心收获率 core porosity 岩心空隙度 core oil saturation 岩心含油饱和度 core permeability 岩心渗透率1.3.2 Directional Well Drilling & Deviation Survey 定向钻井和井斜监测directional well 定向井 directional hole 定向井directional drilling 定向钻井directional drilling contractor定向井承包商directional MWD 定向随钻测量directional drill tool 定向钻井工具 directional orientation tool 定向工具the steering tool 定向工具deflecting tool 造斜工具 directional-survey tool 定向测量工具direction finder 测向仪direction instrument 方向仪directional tool (steering tool) 随钻测斜仪inclinometer 测斜仪 single shot inclinometer 单点测斜仪syphon inclinometer 虹吸测斜仪continuous inclinometer 连续测斜仪gyroscope 陀螺仪pendulums (plumb bob) 测棰magnetic compass 磁螺盘directional turbodrill 定向涡轮钻具directional bit 定向钻头 directional-type tricone bit定向三牙轮钻头directional clinograph 方位测斜仪deviation replot 井斜图 side track 定向设计剖面图horiz projection 水平投影图 vertical projection 垂直投影图projection on a vertical plane 垂直面上的投影图deviation map 井斜图 perspective view 透视图3 dimensions visualisation三维空间透视图directional diagram 方位图deviation report 井斜报告directional data 井斜数据surveys 井斜数据deviation measurement data 井斜测量数据directional line 方向线main direction 主方向E.W.S.N 东,西,南,北directional control 方位控制directional characteristics 方位特征directional accuracy 方向性精度directional elements 定向要素direction parameter 方位参数horizontal plane 水平面vertical plane 垂直面directional angle 方位角the drift angle 井斜角the azimuth 方位角bearing (north) 方位角angle of projection投影角desired drift angle 设计的造斜角the bottom hole coordinate 井底坐标coarse coordinates 水平位移坐标the vertical depth 垂直深度KOD kick off depth 造斜深度end off deviation vertical depth 稳斜结束时的垂直深度end kick off vertical depth 结束造斜时的垂直深度final re-entry depth 恢复点的深度average angle method 平均角度法radius of curvature method 曲率半径法KOP kick off point 初试造斜点end of kick off 造斜终点end of deviation 斜井段终点re-entry point 返直点dog leg 井斜度,狗腿角dog leg scale 狗腿度比例dog leg severity 狗腿严重程度angle build up 增斜angle drop off 降斜dog leg at kick off point增斜率dog leg at re-entry point 降斜率the actual well path 井眼轨迹1.3.3 Casing 下套管casing套管casing joint 套管单根,一节套管casing starter 入井第一节套管 casing nipple 套管短节casing string 套管柱casing tally 套管记录 casing type 套管类型casing weight 套管重量 casing size 套管尺寸casing diameter 套管直径casing length 套管长度casing volume 套管容积casing grade 套管钢级casing depth 套管深度casing setting depth 套管下入深度casing accessories (hardware) 套管附件casing guide shoe 引鞋casing float shoe 套管鞋casing shoe depth 套管鞋深度casing centralizer 套管扶正器casing collar 套管接箍 casing check valve 回压凡儿casing float (collar) 回压凡儿casing sub 套管异径接头casing head 套管头casinghead spool 套管头四通casing landing 联顶节casing job下套管作业casing running(installation) 下套管casing-bearing formation好套管下入地层casing appliances 下套管工具casing connection套管连接casing elevator 套管吊卡casing slip 套管卡瓦casing spider 套管卡盘式吊卡casing suspender 套管悬挂器casing hanger 套管悬挂器casing screw protector 套管公扣护丝casing screw head 套管母扣护丝casing seal 套管密封件casing annular 套管环空casing-to-hole annular 套管井壁环空casing pressure 套管压力casing head pressure 套管头压力casing pressure test套管试压casingless completion裸眼完井casing inspection 套管探伤casing programme 套管程序casing severing 割套管casing sticking 套管被卡casing wear 套管磨损casing split 套管裂纹casing leak 套管漏casing imperfection套管缺陷casing failure 套管损坏casing damage 套管损伤casing deformation套管变形casing corrosion 套管腐蚀casing collapse 套管挤坏casing buckling 套管弯曲casing bridge plug套管桥塞casing bowl 套管打捞筒casing collar location 套管接箍测定器casing corrosion monitoring 套管腐蚀监测casing knife 套管割刀casing mandrel 胀管器casing mill 套管铣鞋casing packer 套管封隔器casing perforator 套管射孔器casing section mill 套管铣刀casing splitter 套管割刀casing withdrawal 拔套管1.3.4 Well Cementing 固井open hole 裸眼井cased hole 套管井pocket口袋the pocket volume 口袋体积normal volume 正常体积extra volume 额外体积hole description 井眼描述string / casing description 钻柱和套管描述surface cement line description 地面水泥管线描述cement 水泥number of sacks 水泥袋数cement factor 水泥系数 volume of the cement 水泥体积cement mark 水泥标号 cement brand 水泥牌号cement filtrate 水泥滤液cement slurry 水泥浆 cement paste 水泥浆cement milk 水泥浆 slurry in string 钻柱内水泥浆cement slurry volume 水泥浆体积(用量)slurry excess 水泥浆余量 slurry density 水泥浆密度 cement column 水泥浆液柱cement consistency 水泥浆稠度cement flow 水泥浆液流cement additive 水泥添加剂additive name 添加剂名称bentonite 膨润土additive volume 添加物体积cementer 粘结剂 cement accelerator 水泥促凝剂cement hardener 水泥速凝剂cement agent 粘结剂 cement concrete 水泥混凝土cement-water ratio 水灰比cement operation (jobs)固井作业cement method 固井方法first stage cementation一级注水泥two stage cementation 二级注水泥multi-stage cementation 多级注水泥liner cementation 衬管注水泥cement equipment (unit)固井设备cementing tool 固井工具 cementing pump 固井泵cementing pump skid 撬装注水泥泵组cementing tank 水泥罐cement blender 水泥搅拌器cement mixer 水泥搅拌器 cement practice 固井施工cement squeeze work 挤水泥作业cementing formulation 注水泥配方cement point 封固段 cementing through 全井封固seal liquid (spacer fluid) injection 注隔离液cementing injection 注水泥浆chasing 替浆cement displacement 替浆cementing reaction 胶结反应cement setting 水泥凝固cement curing time 水泥候凝时间cementing strength 水泥强度cemented up 注完水泥。
2024年英文论文参考文献
2024年英文论文参考文献
英文论文参考文献 1
[1] J.F.Di Marzio.Android A Progammer's Guide.New York Mc-Graw-Hill,2008:105-111P
[2] Thompson T.The Android Mobile Phone Platform.The World of SoftwareDevelopment,2008,33(9):40-47P
[22]Corbett, C., Blackburn, J. and van Wassenhove, L. (1999), “Partnerships to improve supply chains”, MIT Sloan Management Review, Vol. 40 No. 4, pp. 71-82.
[24]Croom, S., Romano, P. and Giannakis, M. (2000), “Supply chain management: an analyticalframework for critical literature review”, European Journal of Purchasing Supply Management, Vol. 6, pp. 67-83.
海上浮式风机平台弱非线性耦合动力响应分析
海上浮式风机平台弱非线性耦合动力响应分析胡天宇;朱仁传;范菊【摘要】为了准确有效地预报海上浮式风力机载荷与运动响应,本文针对系泊平台系统提出一种弱非线性间接时域方法.风力机平台遭遇的入射波作用力和静水恢复力直接在瞬时湿表面上积分计算获得;散射力采用线性势流理论处理;平台系泊力由悬链线方程计算得到.以OC3-Hywind spar风力机平台为对象进行了计算与分析,与线性方法相比,弱非线性方法得到的幅值响应算子(response amplitude operator ,RAO)更大,且能够反映波浪力和恢复力与平台响应的相互影响.由于考虑了瞬时湿表面的影响,弱非线性方法计算结果更为合理,可以更好地反映大波高海况的波浪力特征,因而更加适合高海况下的平台运动性能分析.%To accurately and effectively predict the load and motion responses of a floating offshore wind turbine , a weak nonlinear indirect time-domain method is proposed for the mooring platform system.This method obtains a nonlinear Froude-Krylov force and nonlinear restoring force on an instantaneous wetted surface.Scattering forces are obtained by linear potential flow theory , and mooring force is calculated by the Catenary equation.The computation model is the OC3-Hywind spar pared with linear method , the RAO obtained by weak nonlinear meth-od is larger.In addition, the method can also reflect the interaction between wave force , resilience, and platform response.Considering an instantaneous wetted surface makes the weak nonlinear method more reasonable .This method can better reflect the characteristics of the wave forces under a sea conditionwith large wave amplitude ;therefore, it is more suitable for platform motion performance analysis under a high sea state.【期刊名称】《哈尔滨工程大学学报》【年(卷),期】2018(039)007【总页数】6页(P1132-1137)【关键词】瞬时湿表面;弱非线性;浮式风力机平台;间接时域法;脉动源格林函数;弱散射【作者】胡天宇;朱仁传;范菊【作者单位】上海交通大学船舶海洋与建筑工程学院,高新船舶与深海开发装备协同创新中心,上海200240;上海交通大学船舶海洋与建筑工程学院,高新船舶与深海开发装备协同创新中心,上海200240;上海交通大学船舶海洋与建筑工程学院,高新船舶与深海开发装备协同创新中心,上海200240【正文语种】中文【中图分类】U661.32随着经济社会的发展,人类对能源的需求越来越大,风能作为一种清洁和可再生的能源极具开采价值。
ABS船级社入级符号释意
本次培训的目的及意义
本次培训目的旨在使设计部及营销部各级 人员对入级符号有一简单的理解,能识别入级 符号;能大致判断该入级符号对公司建造船舶 的影响;能根据ABS规范快速查询入级符号具 体要求(该能力自学,本课程不做展开)。使 质检部人员对入级符号有一个大致的认识。
4-7-1/3 of the Guide for Building and Classing High-Speed Craft
21
90M 以下的大户型散货船、铝合金船、玻璃钢 船和电动游艇也可以申请无人机舱。
22
对 Annual Survey 的解释
该符号是对船舶年检的一个要求,与船厂关联 不大,在今后看到该标志仅作理解即可。
24
对于小于90M的海上移动平台、内河及近岸铝合 金船、玻璃钢船、电动游艇也可以申请该标志。
25
对 AT(hull girder component + additional thickness) 的解 释
AT: Additional Thickness 的缩写。适用于所 有船舶,表明船舶的某个部位需要比常规要 加厚一定的厚度。船舶各部位的简写如下:
南通润邦海洋工程装备有限公司我们努力成为全球一流的海工制造基地我们努力成为全球一流的海工制造基地秉承专业成就价值励精图治共赢未来秉承专业成就价值励精图治共赢未来本次培训的目的及意义本次培训目的旨在使设计部及营销部各级人员对入级符号有一简单的理解能识别入级符号
南通润邦海洋工程装备有限公司
——我们努力成为全球一流的海工 制造基地
15
对于 十A1 (geographical limitations) 的解释
十 A 1 后的附加标志表示,该类船舶仅在该 限制区域工作,并且该船是在ABS现场验船师 的建造下完成的,其符合ABS的规范。具体章 节见:1-1-3/7 of the Rules for Conditions of Classification (Part 1)
海上风电设备安装过程中的材料选用及质量控制
海上风电设备安装过程中的材料选用及质量控制随着全球对可再生能源的需求不断增长,海上风电发电设备成为了新兴的清洁能源选择。
海上风电设备的安装过程中,材料选用和质量控制是至关重要的。
本文将就海上风电设备安装过程中的材料选用和质量控制进行详细探讨。
首先,海上风电设备的材料选用对安装的成功与否起着重要作用。
海上环境的恶劣性要求我们选用耐腐蚀和耐海水侵蚀的材料。
例如,对于浮标平台和塔筒的建设,材料应具有良好的抗海洋腐蚀性能,如不锈钢、铝合金和高强度钢等。
这些材料能够经受长时间海上风暴和海水侵蚀的考验,确保设备的安全与稳定。
其次,海上风电设备的材料选择还需要考虑其机械性能和耐久性。
由于设备在海上操作过程中会受到海浪、风力和潮汐等外部力的作用,因此需要选用具有良好耐久性和高强度的材料。
结构件如液压缸、飞轮、传动轴等,应选择高品质的钢材,以确保设备能够承受高强度的工作负荷。
此外,高强度塑料也被广泛应用于海上风电设备的零部件制造,如塑料管道、接头等,在适应海洋环境的同时,具备较低的重量和较好的绝缘性能。
同时,材料的质量控制也是确保海上风电设备安装质量的重要环节。
在材料选用之前,应该对供应商的资质进行严格审核,确保其生产的材料符合相关的标准和要求。
供应商的质量管理体系应该具备合格的认证,并且能够提供相关的质量控制文件。
此外,材料的质量控制还需要通过严格的检测和测试来保证。
应该制定相应的质量检验计划,对每批进货的材料进行检测,确保其符合设计和要求。
常见的检测方法包括物理性能测试、化学成分分析、金相显微镜检测等。
值得注意的是,海上风电设备的材料选用和质量控制过程中需要遵循相关的标准和规范。
国际电工委员会(IEC)发布了一系列与海上风电有关的标准,如IEC 61400系列和IEC 61427系列,这些标准规定了设备的材料、设计和生产要求,有助于确保设备的性能和安全性。
此外,国家标准和地方规范也需要遵循,以确保设备的可靠性和安全性。
海上风机半潜式基础概念设计与水动力性能分析
海上风机半潜式基础概念设计与水动力性能分析唐友刚;桂龙;曹菡;秦尧【摘要】The semi-submersible floating foundation was conceptually designed to support a generic 5 MW wind turbine that has a large response to hydrodynamics.The motion responses and survivability of the floating foundation were ana-lyzed under different wind and wave environments.The structure system of wind turbine and the hydrodynamic model were established using loads of blade aerodynamics, loads of wind and wave, and coupled floating foundation and moor-ing system.The blade aerodynamic load was obtained by the blade element momentum theory and the load transfer func-tion was calculated in the frequency domain.The dynamic responses in the time domain was calculated under different wind and wave circumstances for the wind turbine of the floating foundation.The survivability of the semi-submersible floating foundation under extreme sea conditions was assessed.It is shown that the motion performance of the semi-sub-mersible floating foundation isgood.Furthermore, under extreme sea states the safety factor of each mooring line was seen as being above 1.67.The safety factor of all of the other lines was above 1.33, which included one line broken.It is proven that the floating foundation and its mooring system have enough capacity of resisting extreme sea state.%针对5 MW海上风机动力响应较大的问题,提出了半潜型浮式基础的概念设计,研究了半潜式浮式基础在不同风浪环境下的运动响应和生存能力。
基于涡环栅格法的三体船斜拖水动力数值分析
基于涡环栅格法的三体船斜拖水动力数值分析王鸿东;易宏;余平【摘要】以三体船的操纵性能预报为背景,基于势流理论的三维面元法,对三体船的斜拖运动进行数值模拟,并求得相应的水动力系数.将传统的运用于机翼升力计算的涡环栅格法(VLM)运用于三体船斜拖运动的数值模拟,船体表面被离散成四边形的网格,网格及尾涡面上布置一个涡环,利用船体表面不可穿透条件以及尾缘处的库塔条件对各单元涡强进行求解,求得各个分布点压强以及船体表面压力分布,并根据压力分布积分求得在不同漂角下三体船舶所受的横向力以及转首力矩.最终由计算结果,求得与漂角相关的水动力系数,并与软件计算结果进行对比分析.%The maneuverability of trimaran is set as the background of this paper. Based on the 3D panel method of po-tential flow theory, the oblique towing motion of trimaran is stimulated, and the hydrodynamic derivatives is calculated. Vor-tex lattice method (VLM), which is traditionally used to calculate the lift force of wings, is used for the numerical stimula-tion of trimaran oblique towing motion. Ship hull is derived into many quadrilateral panels, and vortex lattice is placed in every panels and trailing vortex plane. By unpenetrated condition of the hull and Kutta Condition in the trailing edge, the vorticity of every panel could be calculated, and the displacement of pressure on the hull surface could be obtained. Then the lateral force and moment around Z direction could be obtained. By the obtained result, the hydrodynamic derivatives which is related with the drift angle could be calculated, and be used for comparison with the hydrodynamic derivatives which is cal-culated by software.【期刊名称】《舰船科学技术》【年(卷),期】2018(040)004【总页数】5页(P22-26)【关键词】三体船;操纵性;涡环栅格法;横向力;转首力矩【作者】王鸿东;易宏;余平【作者单位】上海交通大学海洋工程国家重点实验室,上海 200240;上海交通大学海洋工程国家重点实验室,上海 200240;上海交通大学海洋工程国家重点实验室,上海 200240【正文语种】中文【中图分类】U661.10 引言三体船是近年来发展迅猛的船型,它是一种高性能船,由1个中体和2个片体组成,相比于普通船型,拥有优良的阻力性能和耐波性能,优秀的稳性,较大的甲板面积,以及可以大型化的特点。
钻井工程词汇 Drilling Words 英汉对照
1. DRILLING ENGINEERING 钻井工程1.1 THE COMPENTS OF THE ROTARY DRILLING RIG 钻机系统的组成1.1.1 Hoisting System 提升系统sub structure 井架底座,底部结构derrick (mask) 井架crown block 天车traveling block 游动滑车wire line (drill line) 钢丝绳,钻井大绳deadline 死绳air hoist 气压提升机,气压提升绞车drilling rig (drilling machine) 钻机drawwork 绞车drum 滚筒brake crank (handle, bar) 刹把hydraulic brake 水刹车electric brake 电磁刹车mechanical friction device 机械磨擦装置cathead 猫头elevator 吊卡slip type casing elevator 卡瓦型套管吊卡pipe elevator 钻杆吊卡slip 卡瓦safety slip 安全卡瓦collar rotary slip 环形钻铤转盘卡瓦drill pipe rotary slips 环形钻杆转盘卡瓦links 连杆hook 大钩hook load 大钩负荷hook speed 大钩速度hook weight 大钩悬重DF (drill floor) 钻台monkey board 二层台1.1.2 Circulating & Solids Control System 循环及固控系统drilling mud (drilling fluid) 钻井泥浆,钻井液water mud 淡水泥浆water-base mud 水基泥浆salt mud 盐水泥浆salt-base mud 盐水基泥浆oil-base mud 油基泥浆oilemuision 油包水泥浆,石油乳浊液mud weight out/in 泥浆密度进/出mud density out/in 泥浆密度进/出mud viscosity 泥浆粘度mud conductivity 泥浆电导率mud resistivity 泥浆电阻PH-value PH值water loss 失水sand content 含砂量gel strength 静切力mud cake 泥饼mud cake effect 泥饼效应mud filtrate 泥浆滤液mud loss 泥浆漏失mud column 泥浆液柱mud sample 泥浆试样mud stability 泥浆稳定性mud pump (pump) 泥浆泵pump body 泵体pump capacity (discharge) 泵排量(泵容量) pump displacement 泵排量pump output 泵排量pump efficiency 泵效率pump stroke 泵冲程pump cylinder 缸套mud pump rod 泥浆泵拉杆piston 活塞mud room 泵房mud line 泥浆管线choke line 地面管汇high pressure line 高压管线standpipe 立管standpipe valve 立管闸门hose 水龙带swivel 水龙头swivel bail 水龙头吊环swivel sub (joint) 水龙头接头swivel stem 水龙头中心管gooseneck 鹅颈管wash pipe 冲管wash pipe swivel 冲管旋转接头kelly 方钻杆kelly cock 方钻杆上旋塞kelly dog nut 方钻杆下旋塞HWDP height weight drillpipe 加重钻杆DP drillpipe 钻杆DC drill collar 钻铤spiral collar 螺旋钻铤pony DC (collar) 短钻铤NMDC non-monel collar 无磁钻铤tool joint 钻具接头sub (joint) 接头tool joint box 接头母扣X-O (crossover) subs 配合接头(转换接头)shock sub 减震接头bumper sub 缓冲器接头bit sub 钻头接头flex sub 柔性短接string stabilizer (pin ×box) 钻具扶正器(公扣对母扣)near bit stabilizer (box ×box) 扶正器(母扣对母扣)centrallizer 扶正器bumpers (shock absorber) 减震器drilling junk basket 随钻打捞杯drilling jar 随钻震击器jar 震击器BHA bottomhole assembly 下部钻具总成HDRT high data rate tool 高速数据传输钻具(MWD用)drill stem (drill string) 钻柱bit 钻头drag bit (blade bit) 刮刀钻头cone bit (roller bit) 牙轮钻头tri-cone bit 三牙轮钻头jet bit 喷射式牙轮钻头core drilling bit 取心钻头milled tooth bit 铣齿钻头insert bit 镶齿钻头gauge insert bit 保径镶齿钻头diamond bit 金刚石钻头bit cone 钻头牙轮bit size 钻头尺寸bit cost 钻头成本bit record 钻头记录bit type 钻头类型bit jets 钻头水眼bit nozzle 钻头喷嘴TFA total flow area 钻头水眼总流量面积bit consumption 钻头用量bit footage 钻头进尺bit factor 钻头因素bit grading 钻头磨损等级bit-tooth dullness 钻头牙齿磨钝程度bit life 钻头寿命bit HHP hydraulic horsepower 钻头水马力hole opener 扩眼器underreamer 管下扩眼器annular 环空wellhead 井口flowline 架空管线shale shaker 震动筛mud tank (mud pits) 泥浆罐suction pit 进口罐setting pit 沉砂罐waste pit 泥浆坑desander 除砂器desilter 除泥器degasser 除气器mud cleaner 清洁器centrifuge 离心机agitator 搅拌机1.1.3 Rotary System 旋转系统 prime mover 原动机diesel engine 柴油机engine 引擎rotary table 转盘rotary base 转盘底座rotary chain 转盘传动链条KB kelly bushing 方钻杆补心roller type bushing 滚子方补心master bushing 转盘补心slip type casing spider 卡瓦型套管卡盘tongs 大钳,吊钳lead tongs 内钳back-up tongs 外钳hydraulic tongs 液压大钳chain tongs 链钳pipe tongs (spanner) 管钳spinning chain 旋链power tongs 动力大钳spanning wrench 旋转扳手1.1.4 Blowout Prevention System 防喷系统kick 井涌blowout 井喷blowout control 井控blowout control equipment 井控设备blowout hookup 防喷装置BOP blowout prevention 防喷器annular ram prevention (万能)环形防喷器pipe rams (半封)闸板防喷器blind rams 盲板全封式防喷器shear rams 剪切闸板式全封防喷器blowout plug 防喷塞blowout preventer of three stage packer 三级密封式防喷器control console 控制台remote control console 远程控制台conductor line 导管choke line manifold 节流管线fill line 灌浆管线kill line 压井管线emergency line 紧急压井管线chokes 节流阀hydraulic valve 液压阀gas buster 泥气分离器choke pressure 节流压力blowout prevention procedure 防喷措施1.1.5 Motion Compensation System 运动补偿系统offshore floating rigs 海上浮式钻机drillstring compensator 钻柱补偿器sea level 海平面sea floor 海底deck 甲板air pressure vessels 空气压力容器hydraulic cylinder assembles 液压缸总成piston rod 活塞杆standard hook assembles 标准大钩总成riser 隔水导管guideline tensioner 导索拉紧装置control panel 控制盘guide base 导引底盘marine riser 海中隔水导管moon pool 月形开口riser tensioner 隔水导管拉紧装置1.2 WELLS & DRILLING CRAFT 井与钻井工艺流程well, drilling well 井,钻井wildcat well 预探,初探井delineation well 探边井development well 生产井,开发井satellite well 丛式井injection well 注水井direction well 定向井deviation well 斜井COST continental offshore stratigraphic test well(美)大陆近海地层探井 to rig up 安装(钻机)to install the equipment 安装设备to get drill pipes in order 排钻具to measure & inspect drillstring 仗量,检查钻具to measure the length of drill pipes &drill collars 量钻杆,量钻铤to nipple up BOP 装封井器to spud in 开钻to turn on the pumps 开泵to circulate, circulation 循环circulate to the bottom up 完全循环reserve circulation 反循环bit break-in procedure 磨合钻头reaming 扩眼drilling 钻进coring drilling 取心钻进rough drilling (bouncing of drilling tool) 跳钻bit bouncing 蹩钻reverse rotation (running) 打倒车correct drift 纠斜slough (cave-in) 井塌to stop the pump 停泵PC pipe connection 接单根make a joint 接单根wire line survey 吊测deviation survey 测斜to change the shaker screen 换筛布to repair the pump 修泵to break down a joint 卸一个单根to slug the pipe 往钻杆内打重泥浆POOH to pull out of hole 起钻to trip out the hole 起钻touch sticking 遇卡pulling a piston 拔活塞to lubricate rig (drawwork) 保养钻机(绞车) to repair rig 维修钻机to cut & slip the drillline 倒大绳to clean the mud tank 清罐well logging, E-log 电测SWC sidewall coring 井壁取心DST drill stem test 钻杆中途测试to running casing, casing 下套管surface casing 表层套管intermediate casing 技术套管liner 尾管to running cementing 固井to squeeze cement 挤水泥WOC wait on cement 侯凝to nipple up BOP 换装封井器to install the BOP 装封井器to test BOP 封井器试压to change bit, bit change 换钻头RIH run in hole 下钻to trip in 下钻touchdown, touching resistance 遇阻RTO round trip operation 起下钻作业short tripping 短起下钻reaming 划眼to cement plug , plug back 打水泥塞side tracking 侧钻to kick off 造斜KOD kick off depth 造斜深度KOP kick off point 造斜点to hang up 意外停机to survey the flowout 监测溢流flow check 溢流检查WOO wait on order 等指令WOW wait on weather 等天气WOL wait on logging 等测井WOE wait on equipment 等设备WOFT wait on fishing tools 等打捞工具to finish drilling 完钻to running the liner 挂尾管to plug-back 填井final testing 完井测试to install the Chirstmas tree (production) 装采油树 well completion 完井to prevent sticking 防卡to prevent caving 防塌to prevent loss of circulation 防漏to prevent blowout 防喷1.3 SPECIAL ENGINEERING OPERATION 特殊工程施工 Coring 取心1.3.1.1 Coring Equipment 取心及岩心分析设备 coring drill 取心钻具core drilling bit 取心钻头core bit 取心钻头coring crown 金刚石取心钻头core cone bit 牙轮取心钻头core basket 岩心爪core barrel catcher 岩心抓取器core catcher 岩心爪core catcher case 岩心爪外套core gripper 岩心爪core-gripper with slip 卡瓦式岩心爪core-gripper with slipcollar 卡箍式岩心爪core-gripper with slipspring 卡簧式岩心爪core spring 岩心卡簧core barrel 岩心筒core container 内岩心筒core chamber 岩心室core barrel head 岩心筒上盖core barrel ring 取心筒垫圈core shoe (压力式)取心筒鞋core plunger 岩心推取杆core pusher 岩心推取塞core fisher 井底岩心打捞器core picker 落井岩心打捞器core bag 岩心袋core box 岩心盒core tray 岩心盒core house 岩心存储室core storage 岩心库core library 岩心库core breaker 岩心切断器core slicer (splitter) 岩心切断器core-drying oven 岩心烘箱core cutter 岩心切片机core distillation apparatus 岩心蒸馏仪core interpreting device 岩心分析仪core laboratory 岩心分析实验室1.3.1.2 Core Drilling Operation 取心钻进作业core hole 取心井core boring 取心钻进core drilling 取心钻进cored-up mould 岩心造型coring depth 取心井深coring footage (run) 取心进尺coring weight 取心钻压coring formation 取心地层core grouting 取心被卡core breaking 割断岩心core breaking by hydraulic pressure 投球液压割心core breaking by mechanical loading 机械加压割心1.3.1.3 Core Analysis 岩心分析core-analysis data 岩心分析数据core data 岩心数据core log 岩心录井core graph 岩心图core cross section 岩心横剖面core-description graph 岩心描述图core sample 岩心样core orientation 岩心方向core inlet face 岩心入口面core outlet face 岩心出口面core diameter 岩心直径core intervals 取心井段core footage (run) 取心进尺core recovery 岩心收获率core porosity 岩心空隙度core oil saturation 岩心含油饱和度core permeability 岩心渗透率1.3.2 Directional Well Drilling & Deviation Survey 定向钻井和井斜监测 directional well 定向井directional hole 定向井directional drilling 定向钻井directional drilling contractor 定向井承包商directional MWD 定向随钻测量directional drill tool 定向钻井工具directional orientation tool 定向工具the steering tool 定向工具deflecting tool 造斜工具directional-survey tool 定向测量工具direction finder 测向仪direction instrument 方向仪directional tool (steering tool) 随钻测斜仪inclinometer 测斜仪single shot inclinometer 单点测斜仪syphon inclinometer 虹吸测斜仪continuous inclinometer 连续测斜仪pendulums (plumb bob) 测棰magnetic compass 磁螺盘directional turbodrill 定向涡轮钻具directional bit 定向钻头directional-type tricone bit 定向三牙轮钻头directional clinograph 方位测斜仪deviation replot 井斜图side track 定向设计剖面图horiz projection 水平投影图vertical projection 垂直投影图projection on a vertical plane 垂直面上的投影图 deviation map 井斜图perspective view 透视图3 dimensions visualisation 三维空间透视图directional diagram 方位图deviation report 井斜报告directional data 井斜数据surveys 井斜数据deviation measurement data 井斜测量数据directional line 方向线main direction 主方向E.W.S.N 东,西,南,北directional control 方位控制directional characteristics 方位特征directional accuracy 方向性精度directional elements 定向要素direction parameter 方位参数horizontal plane 水平面vertical plane 垂直面directional angle 方位角the drift angle 井斜角the azimuth 方位角bearing (north) 方位角angle of projection 投影角desired drift angle 设计的造斜角the bottom hole coordinate 井底坐标coarse coordinates 水平位移坐标the vertical depth 垂直深度KOD kick off depth 造斜深度end off deviation vertical depth 稳斜结束时的垂直深度 end kick off vertical depth 结束造斜时的垂直深度 final re-entry depth 恢复点的深度average angle method 平均角度法radius of curvature method 曲率半径法KOP kick off point 初试造斜点end of kick off 造斜终点end of deviation 斜井段终点re-entry point 返直点dog leg 井斜度,狗腿角dog leg scale 狗腿度比例dog leg severity 狗腿严重程度angle build up 增斜dog leg at kick off point 增斜率dog leg at re-entry point 降斜率the actual well path 井眼轨迹1.3.3 Casing 下套管casing 套管casing joint 套管单根,一节套管 casing starter 入井第一节套管casing nipple 套管短节casing string 套管柱casing tally 套管记录casing type 套管类型casing weight 套管重量casing size 套管尺寸casing diameter 套管直径casing length 套管长度casing volume 套管容积casing grade 套管钢级casing depth 套管深度casing setting depth 套管下入深度casing accessories (hardware) 套管附件 casing guide shoe 引鞋casing float shoe 套管鞋casing shoe depth 套管鞋深度casing centralizer 套管扶正器casing collar 套管接箍casing check valve 回压凡儿casing float (collar) 回压凡儿casing sub 套管异径接头casing head 套管头casinghead spool 套管头四通casing landing 联顶节casing job 下套管作业casing running(installation) 下套管casing-bearing formation好套管下入地层casing appliances 下套管工具casing connection 套管连接casing elevator 套管吊卡casing slip 套管卡瓦casing spider 套管卡盘式吊卡casing suspender 套管悬挂器casing hanger 套管悬挂器casing screw protector 套管公扣护丝casing screw head 套管母扣护丝casing seal 套管密封件casing annular 套管环空casing-to-hole annular 套管井壁环空casing pressure 套管压力casing head pressure 套管头压力casing pressure test 套管试压casingless completion 裸眼完井casing inspection 套管探伤casing programme 套管程序casing severing 割套管casing sticking 套管被卡casing wear 套管磨损casing split 套管裂纹casing leak 套管漏casing imperfection 套管缺陷casing failure 套管损坏casing damage 套管损伤casing deformation 套管变形casing corrosion 套管腐蚀casing collapse 套管挤坏casing buckling 套管弯曲casing bridge plug 套管桥塞casing bowl 套管打捞筒casing collar location 套管接箍测定器casing corrosion monitoring 套管腐蚀监测casing knife 套管割刀casing mandrel 胀管器casing mill 套管铣鞋casing packer 套管封隔器casing perforator 套管射孔器casing section mill 套管铣刀casing splitter 套管割刀casing withdrawal 拔套管1.3.4 Well Cementing 固井open hole 裸眼井cased hole 套管井pocket 口袋the pocket volume 口袋体积normal volume 正常体积extra volume 额外体积hole description 井眼描述string / casing description 钻柱和套管描述surface cement line description 地面水泥管线描述 cement 水泥number of sacks 水泥袋数cement factor 水泥系数volume of the cement 水泥体积cement mark 水泥标号cement brand 水泥牌号cement filtrate 水泥滤液cement slurry 水泥浆cement paste 水泥浆cement milk 水泥浆slurry in string 钻柱内水泥浆cement slurry volume 水泥浆体积(用量)slurry excess 水泥浆余量slurry density 水泥浆密度cement column 水泥浆液柱cement consistency 水泥浆稠度cement flow 水泥浆液流additive name 添加剂名称bentonite 膨润土additive volume 添加物体积cementer 粘结剂cement accelerator 水泥促凝剂cement hardener 水泥速凝剂cement agent 粘结剂cement concrete 水泥混凝土cement-water ratio 水灰比cement operation (jobs) 固井作业cement method 固井方法first stage cementation 一级注水泥two stage cementation 二级注水泥multi-stage cementation 多级注水泥liner cementation 衬管注水泥cement equipment (unit) 固井设备cementing tool 固井工具cementing pump 固井泵cementing pump skid 撬装注水泥泵组 cementing tank 水泥罐cement blender 水泥搅拌器cement mixer 水泥搅拌器cement practice 固井施工cement squeeze work 挤水泥作业cementing formulation 注水泥配方cement point 封固段cementing through 全井封固seal liquid (spacer fluid) injection 注隔离液cementing injection 注水泥浆chasing 替浆cement displacement 替浆cementing reaction 胶结反应cement setting 水泥凝固cement curing time 水泥候凝时间cementing strength 水泥强度cemented up 注完水泥cement basket 水泥伞cement casing head 水泥头cement mantle 水泥环cement plug 水泥塞cement sheath 水泥壳cement evalution log 固井质量评价测井 cement needle 凝固强度检测针cement top 水泥顶界cement thickness 水泥环厚度cement bond log 水泥胶结情况测井 cement bond 水泥胶结cementation factor (exponent) 胶结系数cement-formation interface 水泥-地层界面 cement job quality 固井质量cement failure 固井不合格cement cap 悬空水泥塞cement contamination 水泥侵cement cut 泥浆水泥侵cement dehydration 水泥浆脱水1.4 THE APPLICATION PROGRAM OF ENGINEERING PARAMETERS工程参数应用程序1.4.1 BIT 钻头initialize run 钻头初始化运行new bit initialization 新钻头初始化bit report 钻头报告bit cost report 钻头成本报告drilling data 钻进数据报告well string data 钻具数据BHA bottom hole assembly 下部钻具组合bit list 钻头列表the bit general data 钻头一般参数bit performance 钻头性能bit characteristics 钻头特征bit number 钻头编号the last drilled bit 上一个钻头bit type 钻头类型drilling cost 钻进成本rig cost 钻机作业成本final cost on drilling time 钻进时间里最终钻头成本final cost on time in hole 钻头入井最终成本minimum bit cost 最小钻头成本FFA total flow area 钻头总截流面积nozzle's area 水眼尺寸nozzle efficiency 水眼效率bit run , footage 钻头进尺bit progress, run length 钻头进尺individual bit run 单个钻头进尺depth interval 井段,井深间隔average over the run 钻头平均运行参数expected run 钻头预计进尺drilling time 钻进时间off-bottom time 钻头提离井底时间the final wear 钻头最终磨损total revolutions 钻头总旋转圈数the bit manufacture 钻头制造商1.4.2 HYDRAULICS REPORT 水力学报告hydraulics computation 水力学计算Bingham formula 宾汉公式power law formula 幂次律公式power law exponent 幂律指数Reynold's number 雷诺数the friction factor 磨擦系数the mud system 泥浆系统mud system parameter 泥浆系统参数mud name 泥浆名称flow out 泥浆出口流量computed flow 计算流量measured flow 测量流量critical flow 临界流量optimize flow 优化流量mud density 泥浆密度the equivalent mud density 当量泥浆密度PV plastics viscosity 塑性粘度YP yield point 屈服点GEL strength 静切力MW mud specific weight 泥浆比重mud velocity 泥浆速度nozzles speed 水眼流速a critical velocity 临界流速the actual velocity 实际流速rheological model 流变模型rheological equation 流变方程flow behavior 流性flow type 流动类型laminar flow 层流turbulent flow 紊流Binghamien fluid 宾汉流体Newonient fluid 牛顿流体Pseudo-plastic fluids of Ostwold 奥式假塑性流体 the shear stress 切应力the shear rate 切率consistency index 稠度系统a hole cleaning efficiency 井眼净化程度pressure losses 压力损失annular pressure losses 环空压力损失total presses losses 总压力损失pressures losses of laminar flow 层流压力损失 pressures losses of turbulent flow 紊流压力损失 surge and swab pressure 抽吸和冲击压力bit hydraulic horsepower 钻头水马力mud lag time 泥浆迟到时间cuttings lag time 岩屑迟到时间cuttings size 岩屑尺寸cuttings density 岩屑密度cuttings removal 岩屑上返the slip velocity of cuttings 岩屑下滑速度the relative slip velocity 相对滑动速度drag coefficient 牵引系数annular parameter 环空参数well hole and string parameter 井眼和钻具参数 VAN volume of annular 环空体积open hole 裸眼段casing 套管段liner 尾管段FANN graph 范氏图1.4.3 KICK CONTROL 井控,压井well kick , well blowout 井涌,井喷the origin of a kick 井涌起因formation pressure 地层压力the mud column pressure 泥浆液柱压力the invading fluid 地层侵入流体the influx fluid 侵入井眼的流体circulating pressure 循环压力kick report 井涌报告,压井报告initial data 原始数据circulating data 循环数据killing of a well 压井driller's method 司钻法压井balance bottom hole pressure method 平衡井底压力法压井 kick killing data 压井数据the depth of the kick 井涌出现的井深kick size 井涌体积kick tolerance 井涌极限influx density 侵入液密度numbers of circulation cycles 循环周期数the initial mud weight 初始泥浆密度the required mud weight (density) 压井所需泥浆密度resulting mud weight 最终泥浆密度baryte density 重晶石比重heavy mud density 重泥浆密度the adding products 加重材料,添加材料adding rate 加重速度available quantity 储备量,available volume 可使用的体积slow pump stroke 低泵速泵冲the shut in drill pipe pressure 关井钻杆内压力well head maximum working pressure 井口最大工作压力 casing burst pressure 套管崩环压力the minimum formation fracturation pressure 最小地层破裂压力 expected surface pressure 预期地层压力initial circulating pressure 初始循环压力final circulating pressure 最终循环压力the maximum allowable surface pressure 最大允许地面压力 hydrostatic pressure inside pipe 钻杆内静水压力casing pressure 套管压力initial bubble pressure 初始冒泡压力shoe pressure 套管鞋压力displaced volume 排液体积the trip margin 起下钻边界1.4.4 OPTIMIZATION DRILLING 优化钻井WOB weight on bit 钻压RPM the rotation speed 转速the drilling rate 钻进速度the same type of formation 同类型地层a lithological change 岩性变化formation abrasiveness 地层研磨性参数abrasive formation (layer) 研磨性地层drillability factor 可钻性因素formation drillability factor 地层可钻性因素reliable field data 可靠的现场数据the lowest drilling cost 最低钻井成本five-spot drill-off test 五点钻速法optimum WOB 优化钻压值bit weight exponent 钻压指数optimum RPM 优化转速值expected footage 预期进尺expected rate 预期钻速zero drilling rate 零点钻速initial rate of penetration 初始钻速average rate of penetration 平均钻速expected rotating time 预期钻头旋转时间normalized bit tooth height 标准的钻头牙齿高度tooth wear rate 钻头牙齿磨损速度tooth dull 钻头牙齿钝化程度tooth wear 钻头牙齿磨损值bit bearing life 钻头轴承寿命bearing dull 钻头轴承钝化程度the normalized bearing wear 校正的钻头轴承磨损值 bit exponent 钻头指数rotating time 钻头旋转时间total rotating hours 总旋转小时数round trip time 起下钻时间bit starting depth 钻头启用井深the optimum parameter 优选参数IDAC code international association of drilling contractors国际钻井承包商协会钻头编号1.5 DRILLING TROUBLES & FISHING 钻井复杂情况与打捞lost circulation, mud loss 井漏,循环漏失kick, gas kick, well kick 井涌well blowout 井喷well slough (cave-in) 井塌drilling string not well braked 溜钻percussion drill 顿钻damaged bit 钻头损坏broken teeth 断牙齿lost nozzle 掉水眼lost cone 掉牙轮lost bit 掉钻头bit balling, balling up of a bit 钻头泥包drilling pipe breaking 断钻具touchdown, touching resistance 遇阻touch sticking 遇卡stuck (sticking) 卡钻drill pipe sticking, sticking of tool 卡钻differential sticking, wall sticking 粘卡key-seating sticking 键槽卡钻sand bridge sticking 砂桥卡钻sand settling sticking 沉砂卡钻fishing tool & process agent 打捞工具releasing stuck agent, 解卡剂black magic, pipe lax 解卡剂sticking point instrument 卡点测定仪plugging agent, sealing agent 堵漏剂lost circulation additive (material) 堵漏添加剂,堵漏材料 heavy weight additive 加重剂weighting material 加重物weighted mud 加重泥浆chemical cutter 化学切割器drill pipe cutter 钻杆外切割器casing cutte 套管内切割器washover backoff connector tool 套铣倒扣工具overshot, bell socket 卡瓦打捞筒washover pipe 套铣筒washover shoe 套铣鞋reverse circulating basket 反循环打捞篮drilling junk basket 随钻打捞篮catchall (junk catcher) 一把抓fishing tap 公锥box tap 母锥milling taper 铣锥mill (milling) shoe 铣鞋mill shoe 磨鞋impression block 铅印trip spear (bulldog) 打捞矛wireline spear 电缆打捞矛bend drill pipe 弯钻杆fishing magnet 强磁打捞器key seat wiper 键槽清除器key seat reamer 键槽扩大器stabbing guide 对扣引鞋fishing & other operation 打捞和其它作业to soak with black magic 泡解卡剂breakouting pack of dynamic 爆破松扣washover 套铣make-up (stab) 对扣thread making 造扣back-off 倒扣kill-job, well killing, well control 压井kill job 压井作业1.6 RIG TYPES & OTHER EQUIPMENTS ONWELLSITE钻机类型与其它井场设备1.6.1 Rig Types 钻机类型land, onshore 陆地,陆上swampy 沼泽地带shallow 泻湖区coastal area , offshore 沿海地区,海上drilling rig, drilling machine 钻机cable rig 顿钻钻机cable tool drilling unit 顿钻钻井设备mechanical drilling rig 机械钻机direct-current motor drive drilling rig 直流电动钻机onshore (land) rigs 陆上钻机offshore rigs 海上钻机drilling platform 钻井平台ODP offshore drilling platform 海上钻井平台Jack-up 自升式平台fixed platform 固定式平台SEMI-submersible 半潜式平台self-elevating drilling platform 自升式钻井平台self-elevating offshore drilling platform 自升式海上钻井平台 piled steel platform 钢柱支撑平台gravity structure platform 重力结构平台drilling barge, barge 钻井驳船,驳船drillship 钻井船deck (main deck) 甲板,主甲板delipad (helideck) 直升机停机坪steel jacket 钢制导管架1.6.2 Other Equipment on Wellsite 井场其他设备the top drive unit 顶部驱动装置mouse hole 大鼠洞rathole 小鼠洞cellar 圆井pipe slacking block 钻杆盒driller's console 司钻控制台drilling line reel, drum 大绳滚筒,滚筒the doghouse 钻台值班房,偏房the tool box (possum belly) 工具箱tools of wellhead 井口工具wrench 扳手B.O.P closing unit 封井器控制台wire line stand 大绳架catwalks 大门前跑道personal elevator 乘人电梯wellsite, drilling site 井场the drilling office 钻井办公室the company office 公司办公室pipe racks 钻杆架parts storage 配件房work shop 车工房tool house 工具房water tank 水罐trip tank 起下钻灌泥浆罐mud lab 泥浆房S.C.R house 可控硅房cable tray 电缆排cable elevator 电缆架generator house 发电房electric generator room 发电房gas flare 放喷管线点火处1.7 FIREPROTECTION, SAFETY & ENVIRONMENTAL PROTECTION消防,安全与环保1.7.1 Fire Protection 消防fire goods inflammables 易燃物inflammable material 易燃物explosive gas 易爆气fire damp 沼气gas, nature gas 煤气,天然气inflammable 易燃物品,易燃油品fired charge 引爆炸药fire alarm 火警fire alarm system 火灾报警系统fire detector 火灾探测器fire monitor 防火监控器fire safety system 防火安全系统fire control unit 消防设备fire control equipment 消防器材fire protection equipment 放火设备fire truck 消防车fire-entry suit 消防衣fire apparatus 灭火器fire extinguisher 灭火器fire extinguisher agent 灭火剂fire foam 灭火泡沫fire foam producing machine 泡沫灭火器fire escape 安全门fire exit 太平门fire door 防火门fire gate 放火闸fire ax 消防斧fire hydrant ,fire-plug, 消防栓fire bucket 消防桶fire bank 消防堤fire bulkhead 放火墙fire-fighting rack 消防梯fire sand 消防砂fire fighting boat 消防船fire boat 消防艇fire water line 消防供水管线fire department 消防局fire house 消防站fire brigade 消防队fire-fighting crew 消防队fire fighter , (fire man) 消防员fire patrolman 火灾巡警fireboss 瓦斯检验员firebug 纵火犯firer 放火者fire drill 消防演习fire control 防火fire failure 火灾事故fire hazard 火灾危险性fire insurance 火灾保险fire report 火灾报告fire performance 耐火性能fire resistance 耐火性fire resistance rating 耐火等级fire permit 用火许可证fire prevention code 防火法规1.7.2 Safety 安全security 安全safe area 安全区safe atmosphere 安全空气环境safety operation area 安全工作区safe distance, safety clearance 安全距离 safe allowance stress 安全许可最大应力 safe bearing load 安全负荷safe concentration 安全浓度safety measure, safety precautions 安全措施 safety code, safety regulation 安全规程 safety guide 安全指南safety clause 保护条款safety guide procedure 防护措施safety-check, safety inspection 安全检查 safety education 安全教育safety factor, coefficient 安全系数assurance coefficient 安全系数margin of safety 安全限度potential safety hazard 安全隐患safeguard procedure 防护措施safe rules 安全制度safe operation 安全操作safe practice 安全规章safety program 安全程序safety record 安全记录safety voltage 安全电压safety weight 安全重量safe working pressure 安全工作压力safety device , equipment 安全设备safety alarm device 安全报警设备safety checker, safety detector 安全检测器 safety apparatus 保险装置safety appliance 防护用具safety grounding device 安全接地设备 safety valve 安全阀safety sensor 安全传感器safety switch 安全开关safety belt, safety band 安全带,保险带 safety-strap 保险带safety chain 安全链safety board 安全工作台safety cable 保险索safety shelf 安全架safety hat, safety helmet 安全帽protective cap 安全帽safety clothing 安全服safety goggles 护目镜safety shoes 安全鞋safety notice 安全标志safety color 安全色标safety flare 安全照明灯safety lamp 安全灯safety screen 安全罩safety lighting 安全照明safety fuse 安全保险丝1.7.3 Environmental Protection 环境保护 environment 环境environmental conditions 环境条件environmental criteria 环境标准environmental parameter 环境参数environmental element 环境要素environmental factor 环境因素environmental effect, environmental impact 环境影响environmental pollution 环境污染waste water, devil water 废水exhaust gas, end gas, waste gas 废气waste product 废物waste liquid, devil liquor 废液off-scum, waste slag 废渣ambient noise 环境噪音environmental extreme 恶劣环境environmental conservation 环境保护environmental health 环境卫生environmental hazard 环境公害environmental noise 环境噪音environmental protection 环境保护environmental monitoring 环境监测2. GEOLOGY 地质2.1 LITHOLOGY CASSIFICATION AND DESCRIPTION ORDER岩性分类与描述顺序2.1.1 Rock Types 岩石类型Sedi Sedimentry 沉积岩clas clastic 碎屑岩ss sandstone 砂岩mdst mudstone 泥岩sh shale 页岩clyst, clst claystone 粘土岩sd sand 砂mSsd medium sandstone 中砂岩fsst fine sandstone 细砂岩bldr boulder 卵石pbl pebble 卵石grl gravel 砾石cgl conglomerate 砾岩gywk graywacke 硬砂岩cbl cobble 大鹅卵石ark arkose 长石砂岩grnl granule 粒砂brec breccic 角砾岩bioc bioclastic 生物碎屑岩vcrs sst very coarse sandstone 极粗砂岩 argl argillite 泥板岩gyp gypsum 石膏anhy anhydrite 硬石膏slt salt 盐岩flint-lingite 隧石carbonate 碳酸盐岩ls limestone 灰岩,石灰岩dolo dolomite 白云石dolst dolostone 白云岩mrls marlstone 泥灰石coq coquina 贝壳灰岩biosp biosparte 生物亮晶灰岩biomi biomicrite 生物微晶灰岩clcar calcarenite 灰屑岩,钙屑灰岩 clclt calcilutite 泥屑石灰岩micr micrite 微晶灰岩clcrd calcirudite 砾屑石灰岩clslt calcisilitite 粉砂屑石灰岩grst grainstone 粒状灰岩oolitic limestone 鲕状灰岩Igneous Rock 火成岩intrusive igneous 侵入岩extrusive igneous 喷出岩volc colcanic 火山岩grt granite 花岗岩dr diorite 闪长岩grdr grano diorite 花岗闪长岩qu dr quartz diorite 石英闪长岩dr po diorite porphyrite 闪长玢岩syenite 正长岩gab, gb gabbro 辉长岩。
新型浮式基础的海上风机系统动力响应研究
第36卷第1期海洋工程V o l.36N o.l 2018 年1月THE OCEAN ENGINEERING Jan. 2018文章编号:1005-9865 (2018) 01-0019-08新型浮式基础的海上风机系统动力响应研究刘利琴U2,韩袁昭U2,肖昌水U2,袁瑞U2(1.天津大学水利工程仿真与安全国家重点实验室,天津300072; 2.天津大学建筑工程学院,天津 300072)摘要:概念性地设计了一种新型半潜一S p ar混合浮式基础,以5 MW水平轴风机为例,研究了该新型浮式基础支撑的浮式风力机系统的动力响应。
基于三维势流理论和Morison公式,应用SESA M软件建立浮式基础模型,在频域内计算了该浮式基础的水动力参数和响应算子,分析了浮式基础的运动性能。
考虑叶片气动载荷和浮式基础波浪载荷,应用F A S T软件对风机一浮式基础系统进行时域计算,分析风力机系统的运动性能。
结果显示,该浮式基础运动幅值较小,具有良好的运动性能。
关键词:海上风机;新型混合浮式基础;动力响应;系泊系统;波浪载荷中图分类号:P752 文献标志码:A D0I:10.16483/j.issn.1005-9865.2018.01.003Research on dynamic response of offshore wind turbine system based on newsemisubmersible-spar hybrid floating foundationLIU Liqin1,2,HAN Yuanzhao',2,XIAO Changshui',2,YUAN Rui',2(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University,Tianjin 300072,China; 2. School of Civil Engineering,Tianjin University,Tianjin 300072,China)Abstract :A new semisubmersible-spar floating foundation is conceptually designed. Taking the 5 MW horizontal axis wind turbine as an example,the dynamic response of the floating foundation system supported by the new floating foundation is studied. Based on the three-dimensional potential flow theory and Morison formula,with the application of SESAM software,the floating foundation model is established,the hydrodynamic parameters and response operators are calculated in the frequency domain,and the motion performance of floating foundation is analyzed. Considering the aerodynamic loads on the blade and the wave loads on the floating foundation,with the application of FAST software,the wind turbine-floating foundation system is calculated in time domain,and the motion performance of wind turbine system is analyzed. The results show that the floating foundation has small amplitude and good motion performance.K eyw ords:offshore wind turbine; new hybrid floating foundation; dynamic response; mooring system; wave load风能是一种可再生的清洁能源,在国家能源战略中占有重要地位,与陆地风电相比,海上风能由于其资 源丰富、风速大、切变小等特点,受到沿海国家越来越多的关注。
浮动风力发电机安全及稳定性分析说明书
7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018) Dynamic response of a semi-submersible floating offshore wind turbineunder flooded column damageKan Zheng3,a,Wei Shi1,2,3,4,b,Nianxin Ren1,3,c1State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology,Dalian,Liaoning,116024,China2Ocean Engineering Joint Research Center of DUT-UWA,Dalian University of Technology,Dalian,Liaoning,116024,China3Deepwater Engineering Research Center,Dalian University of Technology,Dalian,Liaoning,116024,China4Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian,116024,Chinaa**********************,b***************.cn,c*******************.cnKeywords:dynamic response,flooded column damage,semi-submersible,floating wind turbine Abstract.One of the main aspect of floating offshore wind turbine(FOWT)operating in normal is the safety of its cabin.The ballast water in cabin is closely related to the stability of FOWT.The dynamic response of the motion and the mooring lines force will be changed once its flooded column damage.In this paper,three different types of flooded column damage of OC4DeepCwind semi-submersible floating offshore wind turbine are set and the performance of it under flooded column damage has been investigated.Simulation result shows that flooded column damaged has a vital effect on platform stability.The result of this paper could offer reference for FOWT’s design and optimization.IntroductionIn recent years,wind energy has been the fastest-growing renewable resource.As an important source in the wind energy industry,offshore winds have been increasingly developed in wind power pared to onshore wind power,offshore wind power has several advantages over onshore wind power.First,offshore wind sites generally produce stronger winds with less turbulence on average because the sea surface is considerably smoother than the land surface.Second,the effects of noise and visual pollution from these sites on humans are negligible because of their distance from populated areas.Finally,in most countries,the sea is owned by the government rather than private landlords,which allows for the development of large offshore wind farms[1].Hence,FOWT is widely investigated in the world due to its vast potential for offshore wind power generation.FOWTs are generally divided into three categories:tension leg platform(TLP),Spar and semi-submersible. As compared to spar type and TLP wind turbines,the advantages of semi-submersible wind turbines include,but are not limited to,1)greater flexibility in terms of varying sea bed conditions and drafts and2)significantly reduced installation costs due to their simpler installation,with full assembly at dock[2].Huijs[3]concentrated on GustoMSC Tri-Floater semi-submersible wind turbine and found that the mooring system has a considerable effect on the floating stability.Deng[4]conducted a numerical simulation for a5WM floating wind turbine by using Sesam software to investigate how three main factors,including the distance between pontoons,the radius of pontoons and the height of freeboard,influence the stability of platforms.Wu[5]focused on a semi-submersible wind turbine which is developed by Institute of Ocean Renewable Energy System(IORS)of Harbin Engineering University(HEU)and mainly investigates its responses under storm condition.According to the performance of surge motion,pitch motion and mooring tension in time history,the reliability of the semi-submersible wind turbine under storm condition is to be proved.Li[6]investigated the mooring system of ship under typhoon state.The result shows that the The better the elasticity of the mooring line is,the smaller the tensions on the line.Zhang[7]designed a triple-column semi-submersiblefloating wind turbine and analysis on intact stability and damaged stability.The result showed that when one cabin or two flooded column damage,the floating wind turbine will not overturn.In this paper,OC4DeepCwind semi-submersible FOWT is investigated in the time domain under its base columns damaged.The dynamic response of different types of the base columns damage is simulated under two different design load cases.A series of comparison between different types of damage in six freedom degree and mooring line force.The definition of model of OC4DeepCwind semi-submersible FOWTDescription of the OC4DeepCwind Semi-submersible systemThe phase II of the Offshore Code Comparison Collaboration Continued(OC4)project, operated under IEA Wind Task30,has defined the semisubmersible floating system[8]for the National Renewable Energy Laboratory(NREL)offshore5-MW baseline wind turbine[9]. According to the definition of OC4DeepCwind system,the height of tower is87.6m and the total mass is249718kg.The platform which concludes the main column(MC)and two sets of three offset columns(Upper columns and Base columns).The offset columns which contain ballast water are shown in Figure1and Figure2.Columns are connected by braces and pontoons.The main parameters of OC4DeepCwind semisubmersible FOWT are listed in Table1.In this paper, numerical simulation for dynamic response of OC4DeepCwind system is carried out by hydrodynamic software package ANSYS-AQWA.Parameters ValueWind turbine NREL5MWHub and Nacelle mass350tTower height/mass87.6m/249.715tPlatform OC4DeepCwindPlatform mass,including ballast 1.3473E+7kgCM location below SWL13.46mPlatform roll/pitch/yaw inertia about CM 6.827E+9/6.827E+9/1.226E+10kg-m2 Diameter of main column 6.5mDiameter of offset(upper)columns12mDiameter of base columns24mDiameter of pontoons and cross braces 1.6mDepth of platform base below SWL(total draft)20mMooring lines CatenaryDepth to Fairleads Below SWL14mUnstretched Mooring Line Length835.5mRadius to Fairleads from Platform Centerline40.868mThe numerical model of OC4DeepCwind semi-submersible systemThe OC4DeepCwind Semi-submersible system is modelled as rigid body.ANSYS-AQWA soft package is chosen to simulate the OC4DeepCwind semi-submersible FOWT in the condition of coupled wind and wave.The total mass and inertia of turbine and tower is transferred to the mass point of platform according to parallel axis theorem The aerodynamic loads on both the wind turbine rotor are simplified as external force based on the design data of the NREL5MW wind turbine.The data of wind speed and thrust force is shown in Figure3.Figure1Side view of platform(columns and DeepCwind ballast water distribution)、Figure2Numerical model of OC4 semi-submersible floating systemFigure3Thrust force and wind speed relationship of NREL5MW wind turbine Design load cases and numerical resultsTypes of OC4DeepCwind base columns damageConsidering complicated sea condition,the stability of platform is significant to stable operation of offshore wind turbine.As for FOWT,the stability of platform mainly depends on its mooring system and ballast water in its cabin.Once flooded column damaged,the platform will be tilted even overturn.In this study,three different types of base columns damaged are set to simulate:1#base column damaged,2#base column damaged and1#&3#base column damaged.No misalignment is considered in this study.Load Case1:constant wind and regular wave sea conditionConsidering the rated wind of NREL-5MW wind turbine,typical condition is selected as the coupled rated wind speed(11.4m/s)and corresponding regular wave sea case(wave height is3m, period is10s).Normal1#Damaged2#Damaged1#&3#DamagedSurge Mean(m) 6.71 4.1813.08 1.20STD0.500.470.510.47Sway Mean(m)0.15-4.290.170.15STD0.080.110.120.11Heave Mean(m)-10.48-8.50-8.87-5.42STD0.470.200.240.17Roll Mean(°)0.00-7.540.000.00STD0.040.090.000.03Pitch Mean(°) 2.27-12.819.63-5.90STD 4.940.350.280.34Yaw Mean(°)0.00 1.350.03-0.03STD0.000.230.030.03Figure 4Dynamic motion in Load Case 1(a)surge;(b)sway;(c)heave;(d)roll;(e)pitch;(f)yaw.The dynamic response of six freedom motion response is shown in Figure 4.Because of the columns damaged,different types have different performance.To compare the dynamic response clearly,the analysis result is shown in Table 2.As can be seen ,the condition of 1#damaged has a significant difference in sway ,roll ,pitch and yaw motions.It indicates that the column which is perpendicular to the direction of wind and wave is critical to the stability of floating platform.Normal 1#Damaged 2#Damaged 1#&3#Damaged 1#Mooring Mean(kN)8.96E+029.24E+028.79E+029.09E+02Maximum(kN)9.54E+029.50E+029.07E+029.34E+022#Mooring Mean(kN) 1.43E+03 1.61E+03 1.59E+03 1.59E+03Maximum(kN) 1.66E+03 1.70E+03 1.69E+03 1.67E+033#Mooring Mean(kN)9.05E+029.49E+028.89E+029.17E+02Maximum(kN)9.68E+029.74E+029.16E+029.39E+02(a)(b)(c)(d)(e)(f)The result of mooring lines tension in Case 1is shown in Table 3.In the condition that 1#Damaged,the tension of all moorings is pared to Normal,the average tension of 1#mooring,2#mooring and 3#mooring increase by 3.09%,12.08%and 4.94%.This result also indicates 2#mooring line is the main-bearing cable chain and 1#Damaged incite a significant load on it.Load Case 2:unsteady wind and irregular wave sea condition To test the columns damaged influence of OC4DeepCwind semi-submersible floating offshore wind turbine in real sea condition,the performance of it in operational sea condition should be investigated.The JONSWAP spectra with a default peak parameter γvalue of 3.3is used to describe the character of irregular wave which the significant wave height (Hs)is 3m and the spectral period is 10s.The wind turbine works in its rated power while the mean wind speed is 11.4m/s based on IEC Kaimal wind model [10].According to TurbSim User’s Guide,the “A”category which is the most turbulent is selected to calculate the turbulence intensity (TI=0.16).Normal 1#Damaged 2#Damaged 1#&3#Damaged Surge Maximum(m)12.26 6.7017.05 5.40Minimum(m)-0.12-2.64 6.40-6.66STD 1.85 1.46 1.75 1.91Sway Maximum(m) 1.54-3.66 1.88 1.75Minimum(m)-0.68-4.89-1.04-0.88STD 0.430.160.510.52Heave Maximum(m)-8.70-7.19-6.79-2.72Minimum(m)-12.68-9.83-10.73-7.76STD 0.580.350.480.67Roll Maximum(°)0.15 2.160.100.51Minimum(°)-0.13-16.73-0.06-0.52STD 0.06 2.480.020.19Pitch Maximum(°)13.02-4.9419.96 6.39Minimum(°)-9.42-21.66-4.00-19.61STD 3.25 2.31 2.84 3.46Yaw Maximum(°)0.04 3.840.340.31Minimum(°)-0.03-1.71-0.22-0.52STD 0.010.760.090.15In this case,the result of the dynamic motion response is shown in Figure 5and Table 4.As can be seen,the influence of 1#Damaged is mainly reflected in sway,roll,pitch and yaw motion.The response of 2#Damaged is violent and it causes the acceleration of nacelle increasing and affect the operation of wind turbine pared with 1#Damaged ,the dynamic response of 2#Damaged and 1#&3#Damaged is smaller.The dynamic of mooring lines force is shown in Figure 6and Table 5.In the condition of 1#Damaged,the tension of both 3#mooring line and 1#mooring line appears the maximum pared with Normal,the value increases by 8%and 11%.As for 2#mooring line force,which is main stress bearing line,the maximum tension of it is in 1#&3#Damaged and the value is 2310kN.It increases by 15%to Normal.(a )(b )(c )(d )(e )(f )Figure 5Dynamicmotionin Load Case 2(a)surge;(b)sway;(c)heave;(d)roll;(e)roll;(e)pitch;(f)yaw.Normal 1#Damaged 2#Damaged 1#&3#Damaged1#Mooring Mean(kN)8.88E+029.62E+029.04E+029.34E+02Maximum(kN) 1.07E+03 1.17E+03 1.03E+03 1.08E+03STD 3.88E+013.57E+01 3.71E+01 3.93E+012#Mooring Mean(kN) 1.44E+03 1.48E+03 1.47E+03 1.48E+03Maximum(kN) 2.00E+03 1.93E+03 2.10E+03 2.31E+03STD 1.56E+02 1.20E+02 1.60E+02 1.75E+023#Mooring Mean(kN)9.06E+029.80E+029.23E+029.52E+02Maximum(kN) 1.06E+03 1.18E+03 1.11E+03 1.12E+03STD 3.92E+01 4.07E+01 4.19E+01 4.34E+01ConclusionsIn this paper,three different types of base column damaged are simulated.A comparison of six freedom degree motion and mooring line force to Normal has been done above.The result can be summarized as follows:Figure 6The dynamic response of mooring lines force in Load Case 2(a)1#mooring line force;(b)2#mooring line force;(c)3#mooring line force.1#base column damaged has a vital effect on platform stability,especially in roll and yaw motion.It can be seen that the safety of 1#base column is important to the operation of the whole semi-submersible floating wind turbine.As the main stress-bearing mooring line,2#mooring line plays an important role and the strength of it is advised to be improved.AcknowledgementThe authors would like to gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No.51709039,51709040).This work is also partially supported by the international collaboration and exchange program from the NSFC-RCUK/EPSRC with grant No.51761135011and supported by the Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education.References[1]D.Roddier,C.Cermelli,A.Weinstein:Proceedings of the ASME 200928th International Conference on Ocean,Offshore and Arctic Engineering (OMAE2009,USA 2009).[2]C.Luan,Z.Gao and T.Moan:Proceedings of the ASME 201635th International Conference on Ocean,Offshore and Arctic Engineering (OMAE2016,South Korea 2016).[3]F.Huijs:Proceedings of the ASME 201534th International Conference on Ocean,Offshore and Arctic Engineering (OMAE2015,Canada 2015).[4]L.Deng,Z.Xiao,B.Wang,X.Song and H.Wu:J.Harbin Eng.Univ.,Vol.37(2016),p 1359-1365[5]H.Wu,J.Jiang,J.Zhao and X.Ye:Appl.Mech.Mater.,Vol.260-261(2012),p 273-278[6]W.Li,R.Ji,T.Huang:OCEANS 2016(Institute of Electrical and Electronics Engineers,USA 2016).[7]L.Zhang,H.Deng:Appl.Sci.Technol.,Vol.38(2011),p 13-17[8]J.Abelson,F.Elfotouh,F.Elfotouh,F.Abulfotuh and J.Abushama:Technical Report NREL/TP-5000-60601(National Renewable Energy Laboratory,USA 2014).[9]J.Jonkman,S.Butterfield W.Musial and G.Scott:Technical Report NREL/TP-500-38060(National Renewable Energy Laboratory,USA 2009).[10]A.Robertson,J.Jonkman,M.Masciola,H.Song and A.Goupee:Technical Report NREL/TP-xxx-xxxx (National Renewable Energy Laboratory,USA 2012).[11]R.Manhar,I.Nikolaos:Springer Handbook of Ocean Engineering (Springer Nature,Germany 2016).(a)(b)(c)。
一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究
㊀㊀文章编号:1005⁃9865(2021)02⁃0144⁃09一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究汤群益1,2,孙震洲1,2,陈杰峰2,金㊀磊3(1.浙江省深远海风电技术研究重点实验室,浙江杭州㊀311122;2.中国电建集团华东勘测设计研究院有限公司,浙江杭州㊀311122;3.三峡新能源山东昌邑发电有限公司,山东潍坊㊀261300)摘㊀要:浮式海上升压站的动力响应分析是其设计阶段的重要内容,对浮式升压站进行结构优化进而改进其水动力性能意义重大㊂提出一种基于状态空间模型的浮式海上升压站平台动力响应算法,该方法通过频域拟合的方法计算延迟函数频响函数有理分式的系数,得到延迟函数的极值和留数,进而构建延迟函数的状态空间模型,通过状态空间模型代替Cummins方程中的卷积项,从而计算浮式海上升压站的动力响应㊂采用日本福岛示范项目的浮式升压站模型对方法进行验证,结果表明计算得到的动力响应与商业软件SESAM计算结果吻合较好,说明方法的有效性㊂关键词:浮式海上升压站;Cummins方程;频域拟合;状态空间模型;动力响应中图分类号:TK89;P751㊀㊀㊀文献标志码:A㊀㊀㊀DOI:10.16483/j.issn.1005⁃9865.2021.02.015收稿日期:2020⁃03⁃30基金项目:中国电建集团华东勘测设计研究院有限公司科技项目(KY2018⁃XNY⁃09,KY2020⁃XNY⁃02⁃06)作者简介:汤群益(1983⁃),男,浙江人,主要从事新能源结构设计方面的研发㊂E⁃mail:tang_qy@ecidi.comResearchondynamicresponsecalculationmethodoffloatingoffshoresubstationplatformbasedonstatespacemodelTANGQunyi1,2,SUNZhenzhou1,2,CHENJiefeng2,JINLei3(1.KeyLaboratoryofFar⁃shoreWindPowerTechnologyofZhejiangProvince,Hangzhou311122,China;2.PowerChinaHuadongEngineeringCorporation,Hangzhou311122,China;3.ThreeGorgesNewEnergyShandongChangyiPowerGenerationCo.,Ltd.,Weifang261300,China)Abstract:Dynamicresponseanalysisoffloatingoffshoresubstationisanimportantpartofitsdesignstage,whichisofgreatsignificancetothestructuraloptimizationandhydrodynamicperformanceimprovementoffloatingoffshoresubstation.Inthisresearch,adynamicresponsealgorithmoffloatingoffshoresubstationbasedonstate⁃spacemodelisproposed.Thecoefficientofrationalfractionoffrequencyresponsefunctionofdelayfunctioniscalculatedbymeansofpass⁃frequencydomainfittingmethod,thepoleandresidueofdelayfunctionareobtained,andthenthestate⁃spacemodelofdelayfunctionisconstructed.TheconvolutiontermofCumminsequationisreplacedbystate⁃spacemodel,thusthedynamicresponseoffloatingoffshoresubstationcanbecalculated.AfloatingoffshoresubstationmodelofFukushimademonstrationprojectinJapanisusedtoverifythemethodinthispaper.TheresultsshowthatthedynamicresponsecalculatedinthispaperisingoodagreementwiththecalculationresultsofcommercialsoftwareSESAM,whichindicatestheeffectivenessofthismethod.Keywords:floatingoffshoresubstation;theCummins equation;frequencydomainmethod;statespaceequation;dynamicresponse随着海上风电建设的推进,海上风电逐渐由近海走向深海,为了适应海上风电的发展趋势,海上风电场中的海工结构物结构型式也由固定式转变为浮式㊂作为电力输送㊁汇集的枢纽,浮式海上升压站的安全性对第39卷第2期2021年3月海洋工程THEOCEANENGINEERINGVol.39No.2Mar.2021海上风电场的健康运营至关重要㊂相比于固定式升压站,浮式海上升压站在6自由度上的响应更为明显,这也给升压站中的电气设备带来较大的安全隐患[1]㊂因此,需要在设计阶段对浮式海上升压站结构进行动力响应分析,进而优化其水动力性能,保障浮式海上升压站的平稳运行㊂基于势流理论,同船体等浮式结构相同,浮式海上升压站的运动常采用Cummins方程进行描述[2]㊂为了求解Cummins方程得到浮式结构的动力响应,常用的方法包括时域法和频域法㊂频域法通过傅里叶变换,在频域内求解Cummins方程,避免卷积项积分㊂但在运算时应用傅里叶变换,会导致傅里叶变换漏频㊁能量泄露等局限性突显[3],并且无法计算浮式结构瞬态响应㊂时域法又可分为直接时域法和间接时域法㊂直接时域法直接在时域内构建求解速度势的初边值偏微分方程,通过求解时域格林函数来分析浮式结构物的动力响应㊂直接时域提出时间较早,但在求解浮式结构的水动力过程中,面临计算量大㊁分析效率低等问题㊂相比直接时域法,间接时域法采用频域势流理论计算浮式平台的水动力参数及波浪力,通过傅里叶变换将上述频域水动力参数和波浪力转化到时域,从而在时域内求解浮式结构的动力响应㊂间接时域法能够分析浮式结构的瞬时动力响应,并且比直接时域法的计算效率高㊂然而,间接时域法求解浮式结构的动力响应时,依赖于卷积运算,从而消耗大量计算资源[4]㊂同时,间接时域法由于高频位置的水动力系数难以精确求得,对最终的动力响应求解造成难以控制的误差[5]㊂针对这些问题,一种思路是通过状态空间模型来代替线性卷积项,从而提高浮式结构动力响应分析的计算速度和精度㊂对于此,学者们展开了大量研究㊂Schmiechen[6]将状态空间模型和船体的瞬态响应建立起联系㊂Xia等[7]也在相关海洋结构物的水动力分析中使用了状态空间模型并进行了深入研究㊂Sutulo和Guedes[8]进一步提出可以用状态空间形式来表达辐射力,进而代替传统时域方程中的卷积项㊂Taghipour等[9]应用时域方程直接计算卷积方法和状态空间方法做了相应的算例分析,并给出了方法的详细介绍㊂然而,这些方法大多通过对兴波阻尼进行余弦变换得到延迟函数,进而求解对应的状态空间模型㊂此过程采用梯形积分法计算延迟函数,额外引入计算误差㊂为了解决卷积项导致浮式海上升压站动力响应分析效率低及采用梯形积分法引起计算误差的问题,提出了一种基于状态空间模型的浮式海上升压站动力响应分析方法,同时运用附加质量和兴波阻尼在频域内计算延迟函数对应的状态空间,从而提高浮式海上升压站动力响应的分析效率和精度㊂通过将文中方法应用于日本福岛浮式海上风电示范项目中的浮式升压站模型[10],并与商业软件SESAM[11]计算结果进行对比,检验文中方法的正确性和有效性㊂1㊀基础理论1.1㊀浮式平台运动方程在势流理论的假设条件下,只考虑一阶水动力作用,无航速海上浮式结构的运动方程可以用Cummins方程表示:[M+A]η㊃㊃(t)+ʏt0K(t-τ)η㊃(τ)dτ+Cη(t)=fexc(t)(1)式中:M为海上浮式结构的质量矩阵,A为附加质量矩阵;K(t)为延迟函数矩阵;C为静水恢复力系数矩阵;η(t)㊁η㊃(t)㊁η㊃㊃(t)分别为浮式结构的位移㊁速度和加速度向量,fexc(t)为作用于浮式结构的激励力㊂1.2㊀Oglivie关系式Cuminns方程中附加质量A和延迟函数K(t)是与海上浮式结构水动力参数相关的量,为探讨它们之间的数学关系,对式(1)进行傅里叶变换[12]:η(jω)=-ω2[M+A(ω)]+jωB(ω)+C{}-1fexc(jω)(2)式中: η(jω)为η(t)的傅里叶变换;A(ω)为随频率变化的附加质量;B(ω)为兴波阻尼; fexc(jω)为外荷载fexc(t)的傅里叶变换;ω为角频率㊂Ogilvie通过对船体运动预测的研究,建立了随频率变化的附加质量A(ω)及兴波阻尼B(ω)与延迟函数K(t)的关系式,即[10]:A(ω)=A-1ωʏɕ0K(t)sin(ωt)dt(3)541第2期汤群益,等:一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究B(ω)=ʏɕ0K(t)cos(ωt)dt(4)延迟函数K(t)的傅里叶变换通过A(ω)和B(ω)可表示为:K(jω)=ʏɕ0K(t)e-jωtdt=B(ω)+jω[A(ω)-A(ɕ)](5)由式(3)可知,式(1)中附加质量为:A=limωңɕA(ω)=A(ɕ)(6)从而,式(1)可表示为:[M+A(ɕ)]η㊃㊃(t)+ʏt0K(t-τ)η㊃(τ)dτ+Cη(t)=fexc(t)(7)2㊀状态空间模型频域算法2.1 频域线性回归拟合在采用时域积分法计算海上浮式结构的动力响应时,式(7)中卷积项的积分会消耗大量计算时间,同时采用时域积分进行卷积运算会导致误差累积问题[13]㊂考虑到卷积运算为线性运算,对于线性系统卷积计算的结果可看作某系统的输出,延迟函数为该系统的脉冲响应函数,即y(t)=ʏt0Kik(t-τ)η㊃k(τ)dτ㊂为了方便表述,令u(t)=η㊃k(t),该线性系统的输入输出关系可以等价使用高阶微分方程表示:dny(t)dtn+qn-1dn-1y(t)dtn-1+ +q1dy(t)dt+q0y(t)=pmdmu(t)dtm+pm-1dm-1u(t)dtm-1+ +p1du(t)dt+p0u(t)(8)㊀㊀对式(8)进行Laplace变换,即可得到该系统的传递函数㊂传递函数与脉冲响应函数为一对Laplace变换对,从而得到:Kik(s)=H(s)=P(s)Q(s)=pmsm+pm-1sm-1+ +p1s+p0sn+qn-1sn-1+ +q1s+q0(9)式(5)中的水动力参数A(ω)和B(ω)能够通过SESAM软件提取,由于海上浮式结构的水动力参数无法通过解析的方式得到解析解,只能通过数值方法计算其离散值㊂式(5)和式(9)可以通过关系式s=jω建立联系,根据离散值在频域内估算浮式结构的传递函数表达式,即:^H(s,θ)=P(s,θ)Q(s,θ)=pmsm+pm-1sm-1+ +p1s+p0sn+qn-1sn-1+ +q1s+q0(10)式中:θ=pmp0qn-1q0[](11)由式(10)可知传递函数的有理分式形式是关于θ的函数,求解式(10)中θ的常用方法包括非线性最小二乘拟合法[14]㊁拟线性频域回归法[15]及权重迭代频域拟合法[16]㊂这几种方法在实际应用中有各自的优缺点,文中采用权重迭代法对延迟函数的Laplace变换进行频域线性回归拟合,其计算公式为:θk=minθðNi=1si,kQ(jωi,θ)H(jωi)-P(jωi,θ)2(12)其中,si,k=1Q(jωi,θk-1)2(13)641海㊀㊀洋㊀㊀工㊀㊀程第39卷通过几次迭代后,式(12)会很快收敛,即θkʈθk-1,从而估算出式(10)中有理分式的分子和分母系数,即得到系统传递函数表达式㊂2.2㊀状态空间模型构建传递函数的有理分式可以等价地转化为极值 留数的和式形式,即:Kik(s)=P(s)Q(s)=ðnl=1γik,ls-λik,l(14)式中:λik,l为该输入输出系统的极值,γik,l为对应的留数㊂式(14)中的极值为分母Q(s)=0的根,可以通过求解下式获得㊂sn+qn-1sn-1+ +q1s+q0=0(15)将式(15)的根s=λik,l代入下列极限公式中,对应的留数为:γik,l=limsңλik,l(s-λik,l)Kik(s)(16)由式(15) (16)得到的卷积项对应系统的极值和留数,从而可以构建该系统的状态空间模型,即:z㊃(t)=Aikz(t)+Biku(t)y(t)=Cikz(t)+Diku(t){(17)其中,Aik=λik,1λik,2⋱λik,néëêêêêêùûúúúúú,Bik=11︙1éëêêêêêùûúúúúú,Cik=γik,1γik,2γik,n[],Dik=0(18)式中:AikBikCikDik[]为有理分式(9)对应的等价状态空间模型的参数,z(t)为状态向量㊂2.3㊀动力响应计算通过上述方法得到各延迟函数对应的状态空间模型,将各自由度的状态空间模型进行组装,得到浮式结构的运动方程卷积项整体状态空间模型,并代入式(7)中,得到:[M+A(ɕ)]η㊃㊃(t)+CᶄZ(t)+Cη(t)=fexc(t)(19)其中,Z(t)为组装后的状态向量,并且有:Z㊃(t)=AᶄZ(t)+Bᶄη㊃(t)(20)其中,Aᶄ㊁Bᶄ㊁Cᶄ为Aik㊁Bik㊁Cik组装后的状态空间矩阵㊂为求解式(19)和(20),计算浮式结构的动力响应,对式(19)和(20)进行变形,并联立得到新的状态空间方程,即:η㊃(t)=v(t)v㊃(t)=[M+A(ɕ)]-1[fexc(t)-Cη(t)-CᶄZ(t)]Z㊃(t)=AᶄZ(t)+Bᶄv(t)ìîíïïïï(21)式中:v(t)为浮式结构的速度向量㊂采用四阶龙格 库塔法对式(21)进行积分,进而得到浮式结构在外荷载作用的动力响应㊂3㊀数值算例采用的数值模型为日本福岛浮式风电示范项目的改进Spar浮式海上升压站模型,如图1所示㊂该浮式升压站总高110m,上部为甲板和塔台结构,下部浮式基础为立柱式平台,由中央立柱和三层舱体组成㊂三层舱体为八边形柱体,由中部和上部舱体提供浮力,下部舱体压载㊂浮式海上升压站工作水域水深120m,741第2期汤群益,等:一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究图1㊀浮式海上升压站Fig.1㊀Floatingoffshoresubstation吃水为50m㊂根据浮式海上升压站的物理尺寸,采用SESAM软件建立水动力模型,计算结构的水动力参数,进而通过提出的基于状态空间模型动力响应分析方法计算浮式结构的动力响应㊂3.1 水动力参数浮式海上升压站的附加质量A(ω)和兴波阻尼B(ω)由SESAM软件提取㊂根据浮式海上升压站的尺寸可知,该浮式结构的几何模型同时关于xoz平面和yoz平面对称,从而使其水动力参数具有特殊的对称性质㊂根据势流理论,A(ω)和B(ω)分别对应辐射力的实部和虚部,从而具有相同的对称性质,以A(ω)为例,有如下关系式:A11(ω)=A22(ω),A15(ω)=A51(ω),A24(ω)=A42(ω),A44(ω)=A55(ω)(22)因此,在计算浮式升压站的动力响应时,只有A11(ω)㊁A15(ω)㊁A24(ω)㊁A33(ω)㊁A44(ω)和A66(ω)等6个位置的水动力参数参与计算㊂这6个位置的水动力参数随入射波频率变化如图2所示㊂图2㊀附加质量A(ω)和B(ω)随频率变化Fig.2㊀CurveofaddedmassA(ω)andB(ω)withfrequency从图2可知,水动力参数A(ω)和B(ω)只在有限的频率范围内随频率发生变化㊂当频率ω大于一定值时,A(ω)趋于稳定,即趋近于A(ɕ),B(ω)趋近于0㊂A(ɕ)也可由SESAM提取,将A(ω)㊁A(ɕ)和B(ω)代入式(5)中,并通过式(12)在频域内拟合,估算延迟函数Laplace变换的有理分式分子和分母系数㊂由频率拟合得到的有理分式,代入对应频率ω,计算延迟函数^K(jω),并与式(5)计算的 K(jω)进行对比,其实部和虚部对比如图3和4所示㊂对比结果表明,估算的有理分式计算结果的实部和虚部都与原始值吻合较好,即估算得到的有理分式(10)能够代表延迟函数对应的线性系统㊂将估算的有限分式系数代入式(14)中,并通过式(15) (16)计算延迟函数的极值和留数,进而由式(17)构建浮式海上升压站延迟函数的等价状态空间模型,最后通过状态空间模型计算Cummins方程的卷积841海㊀㊀洋㊀㊀工㊀㊀程第39卷项㊂对各延迟函数对应的状态空间模型AikBikCikDik[]进行组装,得到浮式海上升压站的多自由状态空间模型AᶄBᶄCᶄ0[],代入式(21)中,通过四阶龙格 库塔法计算浮式海上升压站外荷载作用下的动力响应㊂图3㊀估算延迟函数傅里叶变换与原始值的实部对比Fig.3㊀RealpartcomparisonbetweenestimateddelayfunctionFouriertransformandoriginalvalue图4㊀估算延迟函数傅里叶变换与原始值的虚部对比Fig.4㊀ImaginarypartcomparisonbetweenestimateddelayfunctionFouriertransformandoriginalvalue3.2㊀浮式升压站动力响应分析为了验证方法的正确性,通过商业软件SESAM的Wasim模块计算浮式海上升压站在波浪荷载作用下941第2期汤群益,等:一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究图5㊀浮式海上升压站RAOFig.5㊀RAOofthefloatingoffshoresubstation的动力响应,将其作为参考值评估文中方法计算结果的正确性与有效性㊂分析浮式海上升压站的动力响应之前,先通过SESAM计算浮式结构的RAO㊂当入射波的方向为0ʎ时,浮式海上升压站平台的RAO如图5所示,即纵荡㊁垂荡和横摇自由度上有响应,横荡㊁纵摇和艏摇自由度上的响应为零㊂因此,只对比浮式海上升压站的纵荡㊁垂荡和横摇3个自由度的动力响应㊂实际海域中的波浪多为不规则波,采用Jonswap谱模拟浮式海上升压站所在海域的不规则波,其参数如表1所示㊂入射波的方向为0ʎ,从工况1到工况2,海况条件由温和变恶劣,两种工况下作用于浮式海上升压站的波浪力如图6和7所示,波浪力在横荡㊁纵摇和艏摇自由度上为零㊂表1㊀各工况入射波浪参数Tab.1㊀Incidentwaveparametersundervariousworkingconditions海况有效波高/m谱峰周期/s工况11.257工况23.008图6㊀工况1波浪力Fig.6㊀Waveforceofworkingcondition1图7㊀工况2波浪力Fig.7㊀Waveforceofworkingcondition2通过SESAM中的Wasim模块提取浮式海上升压站的质量矩阵M㊁附加质量矩阵A(ɕ)和静水恢复力系数矩阵C,其结果如下:M=1.081ˑ107000-3.660ˑ108001.081ˑ10703.660ˑ10800001.081ˑ10700003.660ˑ10801.647ˑ101000-3.660ˑ1080001.647ˑ10100000001.135ˑ109éëêêêêêêêêêùûúúúúúúúúú(23)051海㊀㊀洋㊀㊀工㊀㊀程第39卷A(ɕ)=3.170ˑ106000-9.999ˑ107003.214ˑ10601.014ˑ10800002.242ˑ10700001.014ˑ10804.716ˑ10900-9.999ˑ1070004.666ˑ1090000001.527ˑ107éëêêêêêêêêùûúúúúúúúú(24)C=000000000000002.829ˑ1060000003.496ˑ1080000003.502ˑ1080000000éëêêêêêêêêùûúúúúúúúú(25)将上式及上节估算的状态空间模型代入式(21)中,并运用四阶龙格 库塔法求解该状态空间方程,从而得到浮式海上升压站在波浪荷载作用下的动力响应㊂在工况1和工况2条件下,采用文中方法计算得到浮式海上升压站纵荡㊁垂荡和横摇自由度的响应与Wasim计算结果对比如图8和10所示㊂从对比结果可知,在上述两种工况下,文中基于状态空间模型的浮式海上升压站动力响应计算方法得到的结果与商业软件SESAM计算结果吻合较好,二者计算结果的差异如图9和11所示,证明文中方法的正确性㊂图8㊀工况1动力响应对比Fig.8㊀Dynamicresponsecomparisonofworkingcondition1图9㊀工况1文中方法与WASIM计算结果差异Fig.9㊀DifferencebetweenthemethodinthispaperandWasimcalculationresultsofworkingcondition1图10㊀工况2动力响应对比Fig.10㊀Dynamicresponsecomparisonofworkingcondition2图11㊀工况2文中方法与WASIM计算结果差异Fig.11㊀DifferencebetweenthemethodinthispaperandWasimcalculationresultsofworkingcondition2151第2期汤群益,等:一种基于状态空间模型的浮式海上升压站平台动力响应计算方法研究251海㊀㊀洋㊀㊀工㊀㊀程第39卷㊀㊀同时,采用状态空间模型代替Cummins方程中的卷积项,避免时域积分时卷积项运算消耗大量计算资源的情况,从而提高了浮式海上升压站动力响应分析的效率㊂4㊀结㊀语提出了一种新的浮式海上升压站动力响应分析方法,该方法根据频域内线性回归拟合,通过附加质量和兴波阻尼,估算延迟函数对应传递函数的有理分式形式,进而计算延迟函数的极值和留数,再由极值和留数构建延迟函数对应的状态空间模型,从而使用状态空间模型代替Cummins方程中的卷积项,最后通过四阶龙格 库塔法计算浮式海上升压站的动力响应㊂与传统的时域积分方法相比,文中方法通过状态空间模型代替Cummins方程卷积项,不同于SESAM中的频域方程和直接时域方法,为间接时域方法的延伸,避免了卷积项计算导致的误差积累,同时提高了动力响应分析效率㊂文中以日本福岛浮式海上风电示范项目的浮式升压站为研究对象,提取其附加质量和兴波阻尼,估算延迟函数的状态空间模型,从而计算浮式升压站在两种不规则波作用下的动力响应,并与SESAM软件计算结果对比,二者结果吻合较好,说明文中方法的正确性㊂参考文献:[1]㊀黄维平,刘建军,赵战华.海上风电基础结构研究现状及发展趋势[J].海洋工程,2009,27(2):130⁃134.(HUANGWeiping,LIUJianjun,ZHAOZhanhua.Thestateoftheartofstudyonoffshorewindturbinestructuresanditsdevelopment[J].TheOcearEngineering,2009,27(2):130⁃134.(inChinese))[2]㊀CUMMINSWE.Theimpulseresponsefunctionandshipmotions[J].Schiffstechnik,2010,9:101⁃109.[3]㊀李华军,刘福顺,王树青.海洋平台结构模态分析与损伤检测[M].北京:科学出版社,2017.(LIHuajun,LIUFushun,WANGShuqing.Modalanalysisanddamagedetectionofoffshoreplatformstructures[M].Beijing:SciencePress,2017.(inChinese))[4]㊀陈杰峰.基于留数分解的浮式结构动力响应频域方法研究[D].青岛:中国海洋大学,2018.(CHENJiefeng.Studyondynamicresponseestimationoffloatingstructuresinfrequencydomainviaresiduesdecomposition[D].Qingdao:OceanUniversityofChina,2018.(inChinese))[5]㊀杨敏冬.深水浮式结构与系泊/立管系统的全时域非线性耦合动力分析[D].大连:大连理工大学,2011.(YANGMindong.Full⁃time⁃domainnonlininearcoupleddynamicanalysisofdeepwaterfloatingstructuresandmooring/risersystems[D].Dalian:DalianUniversityofTechnology,2011.(inChinese))[6]㊀SCHMIECHENM.Onstatespacemodelsandtheirapplicationtohydrodynamicsystems[R].Tokyo:UniversityofTokyo,1973.[7]㊀XIAJ,WANGZ,JENSENJ.Nonlinearwave⁃loadsandshipresponsesbyatime⁃domainstriptheory[J].MarineStructures,1998(11):101⁃123.[8]㊀SUTULOS,GUEDESSC.Animplementationofthemethodofauxiliarystatevariablesforsolvingseakeepingproblems[J].InternationalShipbuildProgress,2005(52):357⁃384.[9]㊀TAGHIPOURR,PEREZT,MOANT.Hybridfrequency⁃timedomainmodelsfordynamicresponseanalysisofmarinestructures[J].OceanEngineering,2008(35):685⁃705.[10]SHININGZ,TAKESHII.Numericalstudyofhydrodynamiccoefficientsofmultipleheaveplatesbylargeeddysimulationswithvolumeoffluidmethod[J].OceanEngineering,2018,163:583⁃598.[11]SesamUserCourse,Hydrodynamicanalysisofoffshorefloaters⁃frequencydomain[S].2013.[12]OGILVIETF.Recentprogresstowardstheunderstandingandpredictionofshipmotions[J].SymposiumonNavalHydrodynamics,1964:3⁃79.[13]LUHC,TIANZ,ZHOUL,etal.Animprovedtime⁃domainresponseestimationmethodforfloatingstructuresbasedonrapidsolutionofastate⁃spacemodel[J].OceanEngineering,2019,173:628⁃642.[14]NOCEDALJ,WRIGHTSJ.Numericaloptimization[M].Springer,NewYork,1999.[15]LEVYE.Complexcurvefitting[J].IRETransactionsonAutomaticControl,1959,AC⁃4:37⁃43.[16]SANATHANANC,KOERNERJ.Transferfunctionsynthesisasaratiooftwocomplexpolynomials[J].IEEETransactionsofAutomaticControl,1963,8:56⁃58.。
OffshoreWindTurbineHydrodynamics:海上风机的流体力学
Offshore Wind Turbine Hydrodynamics Modeling in SIMPACKAs the offshore wind energy sector expands, so too does the demand for advanced simulation environments that are able to accurately model these com-plex systems. The latest trend is floating offshore wind turbines which can be installed in deep water and hold great economic potential. To accurately simu-late offshore wind turbines, the S tutt-gart Chair of Wind Energy(SWE) at the Universityof S tuttgart has ex-tended S IMPACK with a coupling to the hydrodynamicpackage HydroDyn developedby NREL. A Morison force element and dynamic MBS mooring system model were also introduced. By taking advan-tage of these hydrodynamic extensions plus existing advanced drivetrain and aerodynamic submodels, a full dynamic coupled simulation of fixed-bottom and floating offshore wind turbines is pos-sible with SIMPACK.HYDRODYNAMICS FOR OFFSHORE WIND TURBINESOffshore wind turbine support structure types include:• monopile (gravity-based and suction bucket foundations for shallow sites)• jacket and tripod structures for depths up to 50 m• floating structures for deeper locations In general, hydrodynamic and hydrostatic loads on offshore structures subject to waves and currents are an effect of the inte-grated pressure distribution on the wetted surface. In offshore terminology, the various load contributions are separated into:• buoyancy force (hydrostatic restoring)• radiation force:a. inertia force from added massb. viscous damping force • wave excitation force:a. diffraction (incident-wave scattering)b. Froude-Kriloff (undisturbed pressure field forces)• sea current force and • nonlinear higher order forces (slow, mean drift and sum-fre-quency forces).Some substructures for wind turbines consist of slender axisymmetric cylindricalωd dsfluidI s /2zxu kr syxyu tvu k = u t + ωd I s /2ωdWAMIT8 | SIMPACK News | July 2013elements. This enables the use of the simple and efficient semi-empirical Morison Equa-tion which is valid if the flow acceleration can be assumed uniform at the location of the cylinder thus simplifying the diffraction problem. This requires that the diameter of the cylinder D be much smaller than the wavelength L — typically D/L values of less than 0.15–0.2. It is also assumed that rela-tive motions are small so that viscous drag dominates the damping; radiation damping can be neglected; and that off-diagonal added-mass terms are negligible, as in the case of axisymmetric structures. Since the equation contains empirical coefficients for added mass, inertia and drag (which de-pend on the Keulegan-Carpenter number, Reynolds number and surface roughness), careful attention to these is required to obtain viable results.For structures with larger diameters and larger motions—typically tripods or float-ing structures—effects from hydrodynamic radiation and diffraction (not considered by Morison’s Equation) become important. For such structures, linear hydrodynamicFig 1: Calculation of Morison forces on mooring line segmenttheory is currently most commonly used. It is based on potential theory, and includes effects from linear hydrostatic restoring, added mass and damping contributions from linear wave radiation (including free-surface memory effects), and incident wave excitation from linear diffraction. Typically, nonlinear viscous drag contributions areFig 2: HydroDyn calculation procedure and interface to SIMPACK (image source: NREL)Mooring-System3 DOF3 DOF2 DOF1 DOF3 DOF3 DOF3 DOF2 DOF1 DOF3 DOF3 DOF3 DOF2 DOF1 DOF3 DOFy α, β, γy α, β, γy α, β, γα, γ, y α, γ, y α, γx, y, zα, γ, y α, γ, y x, y, zα, γ, y α, γ, y x, y, zα, γα, γ0 DOF6 DOFanchorseabed rigid BodyJointfairlead spar buoy3 DOFc t ,d t c r , d ru y φx φzd sc s SIMPACK News | July 2013 | 9added from Morison’s equation. However, nonlinear steep and/or breaking waves, vortex-induced vibrations, second-order effects of mean-drift, slow-drift and sum-frequency excitation, and any other higher order effects, are neglected within Hydro-Dyn. To overcome this limitation, a coupling between SIMPACK and the Computational Fluid Dynamics (CFD) tool ANSYS CFX is currently being developed at SWE (Beyer, Arnold & Cheng, 2013). The incorporation of second-order hydrodynamic effects is planned for future releases of HydroDyn.To enable modeling of offshore wind tur-bines in SIMPACK, the two hydrodynamic Fig 3: Topology of dynamic nonlinear MBS mooring system Fig 4: Topology of floating offshore wind turbinemodeling methodologies described have been implemented. Currently, most other commercial codes only ap-ply Morison’s equation and are, therefore, limited to afore-mentioned slender structures where radia-tion damping and off-diagonal added-mass terms are negligible.MORISON FORCE ELEMENT For cylindrical fixed-bottom structures and mooring systems, a SIMorison user Force Element was implemented at SWE into SIMPACK 9. It uses the relative formula-tion of the Morison equation according to Östergaard and Schellin, and also includesan option to directly account for buoyancyif the body is always completely submerged. Due to the relative simplicity of the Morison Equation, the user only needs to supplyvalues for the two empirical coefficients: inertia C m and drag C D . A Reynolds depen-dency of these coefficients can be added.Water density, kinematic viscosity, effective cylindrical diameter (to determine the cross sectional area) and length of the body where the Force Element is applied also need to be defined. The desired discretiza-tion of a mooring system can be achieved by using multiple Morison Force Elementsalong cylindrical structures with differentdiameters and lengths (Fig. 1).Since the Morison equation in its relativeformulation features an added mass term depending on the relative fluid acceleration, the routine requires the structure to accelerate at eachtime step. In MBS, the acceleration is usually not solvedduring integration, thus making the imple-mentation of Morison’s Equation complex. Here, SIMPACK’s ability to use algebraic states (q-states) is utilized, "anticipating" acceleration results of the Right-Hand Side, i.e., making them available before they areactually calculated.“For cylindrical fixed-bottom structures and mooring systems, a SIMorison user Force Element was implementedat SWE into SIMPACK 9.”10 | SIMPACK News | July 2013The wave generator can generate either periodic waves or random irregular Airy waves with user-defined significant wave height and peak spectral period based on a defined wave spectrum (the JONSWAP and Pierson-Moskovitz spectra are predefined). Kinematic stretching (Vertical, Extrapolation,Wheeler) is also implemented to provide predictions of wave kinematics above the mean water level; an option used only for Morison calculations since it is inconsistent with linear hydrodynamic theory.The Morison Equa-tion implementa-tion of HydroDyn is equivalent to the previously described Morison Force Element. It accounts for the current fraction of wetted surface dependent on instantaneous wave elevation. Currently, it is applicable for monopile structures, and the upcoming HydroDyn version 2 (already avail-able in an alpha version) will then be able to simulate multi-member fixed-bottom and floating substructures such as jackets or semi-submersibles with the Morison Equation.The third feature of HydroDyn is its linear hydrodynamic model. It computes loading contributions from:• linear hydrostatic restoring• nonlinear viscous drag contributions from Morison’s Equation• added mass and damping contributions from linear wave radiation (including free-surface memory effects)• incident wave excitation from linear diffraction The linear hydrodynamic option in Hydro-Dyn requires the user to enter frequency-dependent hydrodynamic vectors and matrices. These must be pre-calculated by external offshore panel-based codes such as WAMIT ® or ANSYS ® AQWA TM , which solve the linearized radiation and diffrac-tion problems in the frequency domain. Full details of HydroDyn’s theory are given in J onkman (J onkman, 2007). The upcoming HydroDyn version 2 release will also feature the possibility of Morison elements with linear hydrodynamics which can be used to model the hydrodynamic forces on the main pontoons of a semi-submersible with linear theory and on the braces with Morison’s.The fourth module within HydroDyn pro-vides a quasi-static mooring line model to efficiently calculate mooring line loads on floating platforms. At SWE, a dynamic nonlinear mooring line model has been developed within SIMPACK to overcome the drawbacks of the quasi-static approach (Fig. 3, 4). More details on this MBS moor-ing line model are given by Matha (Matha, Fechter, Kühn, Cheng, 2011).The original input file for HydroDyn has been modified for usage in SIMPACK and allows the user to define the incoming waves, to select between the Morison and linear hydrodynamic module, and define the properties of the mooring system.VALIDATION WITH OC3 & OC4The SIMHydro coupling was first validatedwith results from phase four of the IEA Annex 23 Offshore Code Comparison Col-laboration (OC3) project (Fig. 5), and is cur-rently used in phase two of the follow-upOC4 project. Exemplary results from OC4 load cases 1.3, representing free decaytests where the semi-submersible platform(Fig. 6) is released at an initial displacementin still water without wind loads, are shownin Fig. 7 and Fig. 8.The presented platform surge and pitch displacement show very good agreementbetween SIMPACK and other participants applying linear hydrodynamic theory like FAST (NREL) and DeepLinesWT (Principia). Compared to codes using Morison’s equa-tion for modeling the hydrodynamics — likeHAWC2 (DTU) and Bladed (GH) — distinct At SWE, the SIMorison Force Element is primarily used and validated by modeling the hydrodynamic loads on mooring lines. The regular or irregular Airy wave kinematics used by this element are computed by the SIMHydro element which is described next.SIMHYDRO — COUPLING TO NREL’S HYDRODYN The SIMHydro Force Element couples NREL’s HydroDyn module with SIMPACK (Fig. 2). HydroDyn was developed by J ason onkman at NREL (J onkman, 2007) and has since been used to model monopiles and various floating structures. The current release of Hy-droDyn offers four important features: • a wave generator for periodic and regu-lar/irregular Airy waves (J ONSWAP, PM spectra) including stretching • the Morison equation module for hydro-dynamic load calculation • a linear hydrodynamics module for load calculation on non-slender (floating) bodies • a quasi-static mooring line module for mooring system load calculation of float-ing platforms Fig 5: OC3 spar-buoy floating wind turbine model with MBS mooring system“At SWE, a dynamic nonlinear mooring line model has been developed within SIMPACK to overcome the drawbacks of the quasi-static approach.”HAWC2BladedDeepLinesWT FAST SIMPACKP l a t f o r m p i t c h [º]0 50 100 150 200 250 3001086420-2-4-6-8-10Simulation time [s]HAWC2BladedDeepLinesWT FAST SIMPACKP l a t f o r m s u r g e [m ]0 100 200 300 400 500 6002520151050-5-10-15-20-25Simulation time [s]SIMPACK News | July 2013 | 11differences in load and motion predictions are evident depending on the load case. This is due to the differences in the semi-empiric approach of a Morison-only formulation. USAGE OF SIMPACK OFFSHORE SWE uses SIMPACK to model offshore floating wind turbines in the European research projects OFFWINDTECH, Innwind,AFOSP and FLOATGEN. The latter is cur-rently the largest EU-funded offshore wind energy research project and will deploy two multi-MW floating wind turbine systems in Mediterranean waters over 40 m deep. With this project, the SWE will have the opportu-nity to compare the SIMPACK floating wind turbine model with measured scale and full-scale prototype data, analyze the differ-ences, validate the predictions and improve the models where required.SUMMARYThe implementation of SIMorison and SIMHydro Force Elements makes it possible to simulate fixed-bottom and floating wind turbines with SIMPACK. The coupling is vali-dated by OC3 and OC4. SIMPACK offshore wind turbine models have already been successfully applied in a number of research projects, and show excellent potential for future applications.REFERENCESBeyer, F., Arnold, M., Cheng, P. W. (2013). Analysis of Floating O ffshore Wind Turbine Hy-drodynamics using coupled CFD and Multibody Methods. ISOPE. Anchorage, USA.Jonkman, J. (2007). Dynamics Modeling and Loads Analysis of an O ffshore Floating Wind Turbine. NREL/TP-500-41958. Golden, US-CO :National Renewable Energy Laboratory.Matha, D., Fechter, U., Kühn, M., Cheng, P. W.(2011). Non-linear Multi-Body Mooring System Model for Floating O ffshore Wind Turbines.University of Stuttgart, OFFSHORE 2011, Amster-dam, Netherlands.Fig 6: OC4 semi-submersible floating wind turbine with quasi-static mooring system (only nodes displayed)Fig 7: OC4 LC 1.3a: Platform translation in surge direction Fig 8: OC4 LC 1.3c: Platform rotation in pitch direction。
基于HydroStar的OC4-DeepCwind浮式风机平台
136研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2022.12 (下)1 前言随着我国“双碳”目标的确立,对新型能源的研究愈发火热,风能作为可再生的绿色清洁能源越来越受到广泛的重视。
目前国内固定式风机装机容量趋近饱和,陆地、近海区域已无大面积风电资源,风电技术走向远海势在必行。
利用漂浮式基础平台搭配大型风机是目前远海风电的标准配置。
漂浮式基础平台对水深要求颇高,需要水深达到40~60m 方能达到其工作领域。
目前较为主流的漂浮式平台有驳船式、半潜式、Spar 式、TLP 式和混合式,它们各有优点和局限性,综合考虑经济、水深、施工、装配等特点,半潜式平台是目前较为成熟的工业选择。
当前对浮式平台的研究十分成熟。
Wayman 等以驳船和TLP 作为风机的浮式平台,在150m 水深条件下,考虑风机和平台间的耦合作用,在频域范围内计算了不规则波作用下的水深和风速对浮式平台运动响应的影响。
Chujo 等以小比例的Spar 模型平台在有水池的风洞中,试验了系泊点位置对模型运动响应的影响,以大比例模型试验了纵摇控制器对控制模型纵摇响应、系泊线对艏摇运动的影响。
靳扬等基于我国“南海挑战号”半潜式平台上开展的实测研究工作,对实测的海洋环境荷载作用下浮式结构运动特性开展了讨论并进行了实测波浪谱与JONSWAP 谱之间的关系。
综合现有的研究成果,本文选取OC4-DeepCwind 半潜式平台,利用水动力软件HydroStar 进行频域计算,计算浮式平台运动响应和频域上的一阶二阶波浪力,初步验证分析平台的水动力性能。
2 基本理论2.1 势流理论基本方程势流理论核心在于假定流场无旋有势,流场的速度基金项目:海上浮式风机基础平台的设计和优化(YZLYJFJH2021CX021)。
通讯作者:沈勇。
基于HydroStar 的OC4-DeepCwind浮式风机平台频域分析沈勇1,2,刘传艺1,潘伟宸1(1.中船澄西扬州船舶有限公司,江苏 扬州 225200;2.中船澄西船舶修造有限公司,江苏 江阴 214400)摘要:选取OC4-DeepCwind 平台,基于势流理论,建立质量模型,利用HydroStar 进行水动力学频域计算。
深水自由站立混合立管的响应特性参数分析_英文_陈海飞
第15卷第9期船舶力学Vol.15No.9 2011年9月Journal of Ship Mechanics Sep.2011Article ID:1007-7294(2011)09-0996-09Parametric Study of Global Response Behavior ofDeepwater Free Standing Hybrid RisersCHEN Hai-fei,XU Si-peng,GUO Hai-yan(College of Engineering,Ocean University of China,Qingdao266100,China)Abstract:Free standing hybrid riser,as an enabling technology for deep field developments,has ac-quired increasing attention worldwide.In this paper,a parametric study of a single line hybrid riser is conducted,using an in-house FEM code which can handle geometric nonlinearity efficiently,to ex-amine its global response behavior.The effects of varying parameters-buoyancy tank depth,jumper length,tank diameter and tank length,on hybrid riser’s static equilibrium profile are investigated un-der the action of current.Dynamic analyses of the hybrid riser under vessel harmonic surge and reg-ular wave are also performed and the results obtained confirmed the quasi-static nature of the hy-brid riser.When the buoyancy tank is located at a required depth,the tank motion induced by ves-sel surge and wave loads is expected to be so small that it has negligible influence on the jumper’s dynamic analysis.Key words:free standing hybrid riser;elastic rod model;parametric study;static analysis CLC number:TE973.92Document code:A1IntroductionRisers are critical components of offshore field developments because they provide the means of transferring fluids or gas between subsea units and topside floating platforms.Due to strength and cost consideration when the fields go deeper,conventional flexible risers are both technically and economically unfeasible.For deepwater applications,steel catenary riser(SCR) has been proven recently to be a cost-effective solution and has been widely used by offshore oil and gas industry.However,the increasing use of SCR in deepwater developments does not come as a straightforward task for riser design and analysis engineers,as the design of SCR is very site-specific and it must handle the complex fatigue issue induced by Touch Down Point (TDP)movement at the seabed and Vortex Induced Vibration(VIV).In this regard,free stand-ing hybrid riser,a relatively new technology,appears as a competing alternative for SCR in deep and ultra-deep field developments[1-2].Received date:2010-07-18Revised date:2010-11-30Foundation item:Supported by the National High-Tech Research and Development Program of China(GrantNo.2010AA09Z303),the Key Project of National Natural Science Foundation of China(GrantNo.50739004),and the National Natural Science Foundation of China(Grant No.11002135) Biography:CHEN Hai-fei(1986-),male,master student of Ocean University of China;XU Si-peng(1976-),male,Ph.D.,lecturer.Fig.1Hybrid riser tower configuration The free standing riser consists of a vertical steel pipe connected to a foundation pile [3]at the pliancy is provided by the use of short flexible pipe jumpers which are locat -ed near the surface to accommodate relative motions between the top of the riser and vessel.The “hybrid ”description relates to the partial use of steel lines and flexible lines within the configuration.The system is tensioned by means of a buoyancy tank which is located at the re -quired depth below the surface,typically 50to 150m below Mean Water Level (MWL),depend -ing on the current profiles.At the top of the buoyancy tank is a gooseneck assembly [4-5]to which a flexible jumper is attached linking the riser to the vessel,thus essentially decoupling the free standing riser from the vessel motions.There are numerous designs for free standing hybrid risers,such as Single Line Offset Riser (SLOR),pipe in pipe Concentric Offset Riser (COR)[4-6],andBundle Hybrid Offset Riser (BHOR)[7]-a number of small diameterpipes configured into a vertical bundle,also called Hybrid RiserTower (HRT),see Fig.1for illustration.HRTs have been demon -strated,by Girassol (1400m WD),Total Rosa BHOR (1360mWD),and Greater Plutonio (1310m WD)[8],to operate when con -nected to spread-moored FPSOs in offshore West Africa.Assess -ments of jumper interference of HRT configurations for BrazilCampos Basin and Gulf of Mexico conditions were also carriedout [5,9],and it is confirmed that a HRT system could be appliedto a turret-moored FPSO in the Brazilian and GoM environments.Over the years experience of HRT application in deep waters isgained and lessons are learned [10];drivers for selection of this hy -brid riser system over others,and possible ways to improve its per -formance are identified [11-12].Though field proven,hybrid riser design and analysis details are still unknown to many and they are rarely disclosed by industry operators.As a potentially promising ultra-deepwa -ter riser system,basic understanding and accumulation of knowledge of its response character -istics build up our confidence in continuing its further application in future field developments.The present paper is an attempt in this direction and it mainly focuses on the global response behavior of hybrid risers.A parametric study of an assumed single line hybrid riser is con -ducted using an in-house code.The structural model based on which the in-house code is de -veloped and the hybrid riser modeling methodology are described in Section 2,with the results presented in Section 3.And final conclusions are drawn in Section 4.2Mathematical model formulation2.1Elastic rod modelIn principle,hybrid riser system can be considered as slender structures involving large 第9期CHEN Hai-fei et al:Parametric Study of Global Response (997)Fig.2Definition of rod coordinate system displacement and large rotations,whose structural modeling needs special care.The elastic slen -der rod model,which was originally derived by Garrett [13]and later extended by Paulling and Webster [14]to allow for small line stretch,is fit for this job.This model holds no assumption with respect to the rod shape or orientation,and the governing equation,including fully geomet -ric nonlinearity,is derived directly in the global coordinate system,as briefly formulated below.In the theory of rods,the behavior of the slender rod is described in terms of the position of its centerline.In a 3D Cartesian coordinate system,as shownin Fig.2,the centerline of the rod in the deformed state canbe described by a space curve r s ,觶觶t .The space curve is de -fined by the position vector r ,which is a function of the arc-length s (measured along the curve)and time t .Assuming thatthere is no torque or twisting moment,one can derive a linearmomentum conservation equation with respect to the above position vector [13,15]-EI r 觶觶″″+λr 觶觶′′+q =ρr 咬(1)λ=T e -EI κ2(2)where the prime and superposed dot denote differentiation with respect to arc length and time,respectively,EI is the bending stiffness,κ=r ″is the local curvature,ρis the mass per unit length,q is the distributed force on the rod per unit length,T e is the local effective tension,wheninternal and external hydrostatic pressures p o ,p i 觶觶are considered,T e =T +p o A o -p i A i ,where T is the riser wall tension,and A o ,A i are the outer and inner cross-sectional area of the riser.The scalar variable λcan be regarded as a Lagrangian multiplier.Note that in the derivation of the above equation,rotary inertia and shear deformations are neglected.The rod is assumed to be elastic and extensible,thus the following condition holds 12r ′·r ′-觶觶1=T EA ≈λ-p o A o +p i A i EA(3)where EA is axial stiffness of the riser.In most offshore applications,the applied force q on the rod comes from hydrostatic and hydrodynamic force from surrounding fluid,and the gravity force of the rod itself.While the hy -drostatic pressure is incorporated into the model using the concept of effective weight,hydro -dynamic force is calculated by Morison equation,the normal component of which isF d =-C A ρe A o r 咬n +C M ρe A o V 觶n +C D 1ρe D V n rel V n rel (4)V n rel =V n -r 觶n =V-r 觶觶觶-V-r觶觶觶·r r r ′·r ′(5)where C A ,C M ,C D are the added mass,inertia,and normal drag coefficients,respectively,ρe is the external fluid density,D is the local diameter of the riser,V nrel is the normal relative velocity,r 觶n ,r 咬n are the riser velocity and acceleration normal to its centerline,and V n ,V 觶n are the normal 998船舶力学第15卷第9期components of wave particle velocity(plus current velocity if any)and acceleration,which are obtained by employment of the linear Airy wave theory.A finite element method similar to Garrett[13]is used to discretize the governing Eqs.(1)and(3)in space.The method employs global position displacements and their derivatives as nodal variables,thus obviating all transformations involving trigonometric functions,which are typi-cally required in traditional finite element method.The static problem neglecting inertial and damping terms can be solved using Newton-Raphson iterative method.While in the dynamic problem,special consideration is required due to the fact that the added mass and the nonlin-ear drag force proportional to relative velocity squared are functions of the instantaneous po-sition of the rod.A more detailed procedure can be found in the reference[15].2.2Hybrid riser modeling methodologyAs the present paper mainly focuses on the hybrid riser’s global response behavior,the modeling of minor components of the riser,which are critical for riser integrity,such as bend stiffener and taper joint,is not considered.It is assumed that the hybrid riser has a pinned-pinned connection at its two ends.The buoyancy tank is modeled as a single pipe element with a relatively larger bending stiffness and the hydrodynamic loads acting on the tank are calcu-lated by the Morison equation(4)presented in the above subsection.At the top of the buoyan-cy tank,a short element is used to approximate the gooseneck assembly in order that a more practical static equilibrium profile is achieved.3Parametric study and results discussionThe elastic slender rod model formulated in the preceding section has been implemented into a computer code.And validation of the code has been also conducted with certain results available in literature,but for the sake of brevity it is not shown here.In this section,a para-metric study of static and dynamic analysis is performed and results are demonstrated below.3.1Hybrid riser and environmental dataThe origin of the coordinate system is defined to locate at MWL and z-axis is pointed up-wards.The baseline hybrid riser data and additional data of the buoyancy tank are presented in Tab.1and Tab.2,respectively.The approximate buoyancy provided by the tank is about220te. In addition,the free standing riser and the jumper are assumed to be filled with seawater.The top node of the jumper is located at5m below MWL to ensure that all elements are submerged.Tab.1Baseline hybrid riser dataFree standing riser JumperTotal length(m)External diameter(m)Mass per unit length(including content,kg/m) Axial stiffness(N)Bending stiffness(Nm2)1236.50.421903e82e75000.281023e82.1e4第9期CHEN Hai-fei et al:Parametric Study of Global Response (999)Fig.3Schematic of hybrid riser Fig.4Static equilibrium position of the baselineriser under mean,far and near positionsTab.2Additional data for hybrid riserTank propertiesEnvironmental data External diameterTank lengthTank depth4.5m 13.5m 150m Water depth Seawater density Vessel offset 1400m 1025kg/m 3350m (mean)+6%WD Total mass70te Current profile Axial stiffnessBending stiffness 3e8N 1e9Nm 2Surface 1.5m/s;-200m 0.5m/s;-800m 0.1m/s;bottom 0.1m/s (linear interpolation)Hydrodynamic coefficients Added mass,C A 1.0Inertia,C M Drag,C D2.01.0Vessel motion Regular wave Surge,5m/16s In-plane,10m/12s 3.2Static analysisThe static profiles of the baseline hybrid riser at mean,far,and near positions are plot -ted in Fig.4.The mean position in the figure is achieved by applying only effective weight on the riser.By applying the current drag force from opposite direction for the far and near posi -tions,Fig.4plots the maximum possible static envelope for this baseline hybrid riser.It is assumed for all static analyses hereafter that all current comes from the left direc -tion unless otherwise specified.The following 4groups of data are used to examine the effects of varying parameters on the hybrid riser ’s static equilibrium profile.Note that all the param -eters are varied in the vicinity of its baseline value.·Tank depth:100m,150m,200m·Jumper length:450m,500m,550m·Tank length:10m,13.5m,17m·Tank diameter:4.0m,4.5m,5.0mThe effects of the tank depth and jumper length on the equilibrium position are shown in Fig.5,while the effects of tank diameter and length are shown in Fig.6.The main variables of the global response,such as riser top and base effective tension,top and base angle (measured against the positive x -axis),are tabulated in Tab.3.Examination of these results demonstrates that:1000船舶力学第15卷第9期Fig.5Effects of tank depth and jumper length Fig.6Effects of tank diameter and length on the equilibrium position on the equilibrium position·When the tank is located at a relatively shallow water depth,the effect of current on the tank’s lateral displacement is significant.The more depth the tank is located,the less effect of current on its lateral displacement.·The less length of the jumper,the more horizontal force at the top of the buoyancy tank; this horizontal force pulls the tank moving towards the vessel.When the jumper length exceeds a certain value,the top hang-off angle(with respect to horizontal)may exceed90°under the strong action of surface current,which is usually not allowed by the flex joint at the vessel.·The tank diameter and length determine the magnitude of buoyancy that the tank can provide.The larger the two parameters,the more vertically the free standing riser stands.When the tank diameter and length are reduced to a certain level,the upthrust provided by the buoyan-cy tank may not be large enough to make the riser acquire significant geometric stiffness that the inclination angle at the riser base may reach a relatively large value that the foundation pile can-not tolerate;at the same time,due to the lateral movement of the tank the flexible jumper may become so slack that the top hang-off angle at the vessel termination point may also exceed90°.Tab.3Relevant variable results of the parametric static analysisWith current Top effectivetension(kN)Top hang-offangle(°)Base effectivetension(kN)Base angle(°)Baseline MeanNearFar128.8124.0137.188.766.279.6827.5825.1830.685.490.984.3Tank depth Jumper length Tank diameter Tank length 100m200m450m550m4.0m5.0m10m17m117.1140.6121.5136.7127.4129.7127.1129.791.587.080.990.592.486.593.786.5795.6861.1835.2817.6375.51332.3268.11387.084.186.184.785.581.486.978.986.93.3Dynamic analysisIn order to compare and study the response behavior of the baseline hybrid riser under dy-第9期CHEN Hai-fei et al:Parametric Study of Global Response (1001)namic loads,a new case where the bottom end of thejumper is pinned is also studied.By locating the bot -tom end of jumper at its static equilibrium position,one obtains the jumper ’s static equilibrium profileas shown in Fig.7.The minor difference observed forthe hybrid riser case is due to the presently inade -quate and simplified modeling of the gooseneck as -sembly at the top of the buoyancy tank.Dynamic analyses for the hybrid riser and thejumper under harmonic surge and regular wave areconducted.In the starting phase of the numerical sim -ulation,dynamic loads are ramped within a time span of one period of surge and wave to dis -sipate the transients.The relevant results (top node effective tension,top and bottom rotation angle)are plotted in Fig.8(surge)and Fig.9(regular wave),respectively.It is seen that com -pared with the jumper-only case,the buoyancy tank motion for the hybrid riser case has little influence on the jumper ’s top effective tension.This,combined with the small variation of the bottom rotation angle (approximately 0.1°for the present load case),confirmed the quasi-static nature of the hybrid riser.In other words,the fatigue damage induced by dynamic loads for the riser is low,which provides the hybrid riser system a competitive edge over SCRs in this aspect.Fig.8Dynamic response under vessel surge 5m/16s (left:top node effective tension;right:bottom and top rotation angle)Fig.9Dynamic response under regular wave 10m/12s (left:top node effective tension;right:bottom and top rotation angle)1002船舶力学第15卷第9期第9期CHEN Hai-fei et al:Parametric Study of Global Response (1003)4ConclusionsA parametric study of a single line hybrid riser is conducted using an in-house code.The developed code can efficiently handle geometric nonlinearity-namely large displacement and large rotations,which are common to see in offshore slender structures.The effects of varying parameters-buoyancy tank depth,jumper length,tank diameter and tank length,on hybrid ris-er’s static equilibrium profile are investigated.It is found that an optimum combination of these parameters must be achieved in order that the hybrid riser system can have satisfactory global response performance.Dynamic analysis performed in this paper confirmed the quasi-static nature of the hybrid riser.When the buoyancy tank is located at a required depth,the tank motion induced by wave loads is expected to be so small that it has negligible influence on the jumper’s dynamic anal-ysis.The present paper only focused on the global response behavior under current,vessel surge and regular wave,further fatigue and interference analysis for multiple lines are needed to ac-quire a more thorough understanding of the hybrid riser system’s response behavior.References[1]Hatton S,Howells H.Catenary and hybrid risers for deepwater locations worldwide[C]//Advances in Riser Technologies.Aberdeen,1996.[2]Thiébaud F,Alliot V,Hatton S.Innovative hybrid riser concept for FPSO’s[C]//Advances in Riser Technologies.Singapore,1998.[3]Hatton S,Lim F,Luffrum S.Hybrid riser foundation design and optimization[C]//Proceedings OTC Offshore TechnologyConference,Paper17199.Houston,2005.[4]Hatton S,Lim F.Third generation deepwater hybrid risers[C]//World Wide Deepwater Technologies Conference.London,1999.[5]Wu M,Saint-Marcoux J F,Jacob P,Birch V.The dynamics of flexible jumpers connecting a turret moored FPSO to a hy-brid riser tower[C]//Proceedings of D.O.T XVIII Conference-Unlocking Deepwater Assets Through Technology.Houston, Texas,USA,2006.[6]Hatton S,McGrail J,Walters D.Recent developments in free standing riser technology[C]//3rd Workshop on SubseaPipelines.Rio de Janeiro,2002.[7]Chiesa G,Casola F,Pionetti F R.Bundle hybrid offset riser(BHOR):An advanced solution for improved riser tower sys-tem instability and operability in deepwater West of Africa[C]//2004Offshore Technology Conference,OTC16630.Hous-ton,TX,USA,2004.[8]Cruz D,Zimmermann C,Neveux P,Louvety F.The Greater Plutonio riser tower[C]//2009Offshore Technology Confer-ence,OTC19929.Houston,TX,USA,2009.[9]Blevins R D,Jacob P,Saint-Marcoux J F,Wu M.Assessment of flow-induced jumper interference for hybrid riser tower[C]//Proceedings of the Sixteenth(2006)International Offshore and Polar Engineering Conference.San Francisco,Cali-fornia,USA.[10]Alliot V,Legras J L.Lessons learned from the evolution and development of multiple-lines hybrid riser towers for deep wa-ter production applications[C]//2005Offshore Technology Conference,OTC17683.Houston,TX,USA,2005.1004船舶力学第15卷第9期[11]Sworn A.Hybrid riser towers from an operator’s perspective[C]//2005Offshore Technology Conference,OTC17397.Hous-ton,TX,USA,2005.[12]Saint-Marcoux J F,Abelanet M.Minimum deepwater production risers:Design,construction,assessment of interference[C]//Proceedings of the Third(2009)International Deep-Ocean Technology Symposium.Beijing,China,2009.[13]Garrett D L.Dynamic analysis of slender rods[J].Journal of Energy Resources Technology,1982,104:302-306.[14]Paulling J R,Webster W C.A consistent large amplitude analysis of the coupled response of a TLP and Tendon System[C]//Proceedings of the5th OMAE Symposium.Japan,1986,3:126-133.[15]Ran Z.Coupled dynamic analysis of floating structures in wave and current[D].Ph.D.Dissertation,Texas A&M Univer-sity,College Station,TX,USA,2000.深水自由站立混合立管的响应特性参数分析陈海飞,徐思朋,郭海燕(中国海洋大学工程学院,山东青岛266100)摘要:作为深水油气开发中的一种先进立管形式,自由站立的混合立管得到了越来越多的关注。
不规则波和流下的重力式网箱水弹性响应研究
第22卷第3期 2018年3月船舶力学Journal of Ship MechanicsVol.22 No.3Mar. 2018Article ID:1007-7294(2018)03-0260-16Hydroelasitic Analysis of the Gravity Cage Subjected toIrregular Waves and CurrentHU K e1,2, FU S h i-x ia o1,2(1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China)Abstract: In this paper, the hydroelastic response of a gravity cage exposed to irregular waves and current was analyzed. A full scale net cage bulit by the FEM was introduced to further study the cag e's motion and deformation. In the numerical model, nonlinear spring elements and truss elements were used to simulate the mooring lines and the net, respectively. Furthermore, the 耶 buoyancy distribution' method was adopted by simulating the floating collar with several coupled beams in order to calculate the instantaneous buoyancy force acting on the collar. On this basis, when the net cage is subjected to wave-current flows, the dynamic response of the floating collar, the modal contribution to the collar's deformation from each mode shape were carefully studied. The results show that more flexible modes will be aroused in the vertical direction when the significant wave height increases;while the current will have a great contribution to the rigid-body motion in the horizontal direction.Key words: gravity net cage; finite element analysis; irregular waves and current flow;hydroelastic responseCLC number: O357 Document code: A doi: 10.3969/j.issn.1007-7294.2018.03.0020 IntroductionThe offshore environmental problem is becoming a crucial issue for human society and the development of the nearshore aquaculture industry. Moreover, the demand for more sea foods high in protein is pushing engineers to design cost-effective fish cages that can withstand extreme environmental loads in deeper ocean conditions. Therefore, accurate prediction of a cage 爷 s hydroelastic response has become a key focus in aquaculture engineering.Previous investigations into sea loads on gravity net cages normally considered the impact of waves and currents separately.First of all, the investigations into the wave loads exerted on the net cages focused on three main aspects:the loads on the net, the loads on the collar and the dynamic response of the fishReceived date:2017-12-07Foundation item: Supportted by the National Natural Science Foundation of China (Grant No. 51279101, 51490674 and 51490675); National Basic Research Program of China (973 Program-2013CB036103); the High-TechShip Research Projects of the Ministry of Industry and Information Technology (special topic: Mooringpositioning technology research of floating structures)Biography:HU K e(1986-), male, Ph. D., student of Shanghai Jiao Tong University;FU Shi-xiao(1976-), male, professor, corresponding author, E-m ail: shixiao.fu@.第3期HU Ke et al: Hydroelasitic Analysis of the Gravity Cage 噎261cage system.Concerning wave loads on the net, Lader[1]compared the changes in the wave height and energy before and after the wave passed through the net. Song[2]successfully predicted wave loads of the net by calculating the cubic net cage?s hydrodynamic response based on sinusoidal wave theory and the Morison equation, and he claimed that the relative error between the numerical prediction and test result was under 15%. Ito[3-4]simplified the wave condition into- forms of oscillating flow, under which the hydrodynamic forces on the net with different solidity ratios and pretensioning forces were studied.In order to conduct detailed research into the wave loads on the collar, Krassimi[5]calculated the damping coefficient and added mass coefficient for the forced oscillating collar based on the potential flow theory. Kristiansen[6]later conducted a model test in a wave tank with a cylinder fixed on the free surface. He further investigated the nonlinearities in the wave forces on the collar caused by the influence of the free surface.To quantify the response of the fish cage, Colbourne[7]conducted an experiment on multiple cages to compare the mooring forces under different kinds of wave loads. Fredriksson[8]and Fredriksson, et al[9-10]carried out a serious of experiments to investigate the mooring line forces and motion of the realistic fish cage. Besides, numerical simulations were also performed, and comparisons between experimental and simulated results indicated good agreements. By using the lumped mass point method and rigid body kinematics theory, Dong[11]and Xu[12]predicted the response of a net cage under irregular wave loads.Secondly, in the case with current only (no waves), Aarnses[13]studied the drag force on the net cage, the changes in the cage?s volume and the reduction in current speed by towing a gravity cage model in calm water. Lader[14]conducted an experiment with a full-scale cage to specifically study the relationship between the current speed and cage 爷 s volume. Huang[15]and Zhao[16-17]studied the hydrodynamic response based on the 耶 lumped mass point method 爷.Huang found that the total force of the numerical model was lower than the experimental data when the Reynolds number was lower than the range of 1400-1800, while Zhao noticed that the volume of a net cage with diamond grids was larger than that with square grids. Berstad[18]calculated the mooring forces and the volume changes of a net cage by using finite element software (AquaSim). Moe[19]used ABAQUS to analyze the deformation of the net cage in currents with different speeds. Kristiansen[20]estimated the drag force and the volume changes of a net cage by replacing the twine5s drag and lift forces with each plane5s tangential forces and normal forces. The numerical results were in good agreement with the experimental data.Based on the previous study, the hydrodynamics of the fish cage under wave or current loads has been researched extensively. Because irregular waves and currents normally co-exist in the real ocean environment, the dynamic response of the gravity net cage under the combined effects of irregular waves and currents needs to be further studied. Besides, because geometric nonlinearity due to net cage?s large deformation under the wave-current loads is evident, research on the full scale model should be conducted.262船舶力学第22卷第3期In this paper, a full-scale numerical model of a gravity net cage under irregular waves and currents was studied by using FEM. The irregular waves were simulated based on the JON- SWAP wave spectrum. On this basis, the dynamic response of the floating collar, the modal contribution from each mode shape to the collar in the combined wave-current flows together and the changes in the mooring-line tension were analyzed.1 Basic theory1.1 Equations of motionWhen the whole gravity cage is exposed to irregular waves and current, the dynamic equilibrium equations of the structure can be expressed as:[m][蓘]+ [c] [x] + [k] [x]=F(1)e x tF=G+f b+f w+f c(2) where 蓘m蓡is the mass matrix,蓘c蓡is the damping matrix and 蓘k蓡is the stiffness matrix of thee x tsystem. The total external loads on the structure represented by F include four parts, which are the gravity force G, the buoyancy force fb,the wave forces fw and and the current forces f c. In Eq.(1) and Eq.(2), the gravity force G can be calculated by the static buoyancy force. The buoyancy force fb is calculated according to the volume of water displaced by the structure, and will be described further in Chapter 3.Both the wave forces f and the current forces f can be estimated by the modified Mori-w cson equation[21], where the velocity of the current and wave is superposed linearly, as shown in Eq.(3),F=fw+fc =C d\p D\U-Vp±U\〈U-Vp±U+C M P:4D u-C m P:4D a p⑶where C m represents the inertia coefficient, CM=Cm+1, C d is the drag coefficient, D is the effective diameter of the beam elements and the truss elements, u and u represent velocity and acceleration of water particles in the wave-only condition. U is the current velocity and p is the water density. In the dynamic analysis where the motion of the structure must be taken into account, Vp and Up represent the velocity and acceleration of an element forming the structure. In this case, the influence of the mutual interference of the velocity field in the combined wave- current condition is not considered, see Lee[22]. Based on the equation, the dynamic reponse of the net cage will be studied under wave-current combined condition, and the results will be further compared against those in wave-only condition.1.2 Description of irregular wavesSeveral linear waves with random phase angles can be combined to generate an irregular wave.Firstly, the elevation of water surface in an irregular wave can be written as:第3期HU Ke et al: Hydroelasitic Analysis of the Gravity Cage 噎263浊(x, z, t )=移 A n sin (k nx -M nt+£n )(4)n=1while the horizontal and vertical velocities of a water particle can be expressed as:U ( x, z , t 蔀=移 A n 棕 n cosh^ ^ sin ( k n x -棕 n t+着 n 蔀 (5)n =1 sinh(k nd )肄 T sinh (k n (z+d 蔀)W ( X , Z , t 蔀=^An 棕 n —• A t i +、 c o s ( k n X -棕 n t +着 n 蔀 (6)n =1 sinh (k n d )where A can be further denoted as:nA n =姨2S 浊(棕)驻棕 (7)In the four equations above, A n , k n , ^n and 棕n represent the wave amplitude, the wave number, the random phase angle and the circular frequency of the nth regular wave component, repective-ly. z is the vertical position of a water particle, d is thedepth of the water, S 浊(棕)is the wave spectrum and驻棕 denotes the difference between the circular frequencies of the measured components. The irregular wavewas formed by choosing appropriate input parametersbased on the JONSWAP wave spectrum, moreover, thesignificant wave height defined as the mean of the one Fig.1 JONSWAP wave spectrum with different significant wave heightthird highest waves (H "3 ) and the mean wave period (T j in this paper were chosen a s 3m and 5 s, respectively. The corresponding wave spectrum is shown in Fig.1.Based on the wave spectrum presented above, the time series at point (0, 0, 0) is shown in Fig.2.1.3 Geometric nonlinearityAccording to the small deformationhypothesis, the strain in a certain directionat an arbitrary point can be derived by calculating the first-order partial derivativeof the corresponding displacement. Underthis hypothesis, the large deflection and rotation of the element can be ignored whenformulating the equilibrium. Nevertheless, due to the large deformation experienced by the structure, the geometric nonlinearities in the finite element analysis should be focused on in this study.1.3.1 Strain-displacement relationshipWhen geometric nonlinearities are considered, the relationship between the stress and the strain can be expressed as:Fig.2 Wave elevation time series at point (0, 0,0)264船舶力学第22卷第3期{着}=蓘]{啄}[軍j is a strain matrix, which can be further decomposed into:蓘 1 = [B0] + [B l](8)(9)where [B〇]isaconstan tstrain m atrix,and [B L j is the nonlinear strain matrix related to the displacement of the node considered.1.3.2 Stress-displacement relationshipThe relationship between the increment of stress and that of strain can be expressed as:d {滓r=[ d j d {着r(i〇) where [D j is the constitutive matrix for the material. Combining Eqs.(8)-(10) can lead to Eq.(11),d {滓r=蓘d蓡蓸蓘b〇蓡+蓘B l j) d {啄r(11)1.3.3 Equilibrium equationBased on the principle of virtual work,the equilibrium equation can be expressed as: |f e T e e T eJ{着*瑟{滓瑟d v-{啄*瑟{F}=0 (12)Ve e e where {着* 瑟and {滓瑟represent virtual strain and stress of an element,respectively. {啄* }eis the virtual nodal displacement and {F瑟represents the nodal forces.A combination of Eq.(8) and Eq.(12) results in,J蓘]V}e d v-{F}e=0 (13)VDifferentiating this equation can lead to,J d蓘j {滓} dv+ J 蓘]d{^} dv=d{F} (14)V VEq.(14) can be rewritten as:([k〇j + [k滓j + [kLj)d{啄瑟e=d{F瑟e(15) Eq.(15)isthebasisforsolvin ggeom etricnon lin earp roblem s.Inthisequ ation,[k〇j is a standard linear stiffness matrix,[k滓]is the initial-stress matrix for nonlinear conditions,and [&] is the initial displacement matrix under large deformation. The three matrices can be expressed as:[koj= J d[B0j[D j [B0j dv [k滓]d{滓瑟=J d[^j {滓瑟dv (16)(17)第3期HU Ke et al: Hydroelasitic Analysis of the Gravity Cage 噎265[kL ] = | ( [B0]T[D] [B l ] + [b /[D ] [B0] + [b /[D ] [B l ] )dv (18)V 1.4 Modal superposition methodIn order to have an overview of the motion and deformation of the system, it is important to study the global deformation of the floating collar at first. Even though it is impossible to use modal superposition method to predict the nonlinear hydrodynamic response of the floating collar, the method can still be considered as a 4data post-processing5 procedure. Based on the predicted nonlinear hydroelastic results, the method can be applied to analyze the weight of the participation of each mode at any instant.In this method, the hydrodynamic response of the floating collar can be described as a linear superposition of all the possible motion and deformation modes:肄w (t , x ')=移 Pi (t)渍;(x 蔀,x e 蓘 0, l 蓡i =1Replacing 肄 by n in Eq.(19) yields:nw (t, x 蔀=移Pi (t 蔀渍;(x 蔀,x e 蓘0, l 蓡i =1where p { (t ) represents the weight of the ith mode in the global response at time t and 渍i (x ) represents the ith-order mode shape. Eq.(20) can be further expressed in matrix form:蓘w 蓡(t)=蓘渍蓡[p 蓡(t) (21). . . T ...After multiplying both sides of Eq.(21) by [渍],the modal-weight matrix at time t canbe rewritten as:(19)(20)T -1 tL p ]u)=蓸渍][渍])[渍][w ]w Therefore, the standard deviation of the modal weight can be derived as follows:(22)03)where T is the total time length and Pi (t ) symbolizes the time-averaged modal weight.2 Finite element model descriptionsNumerical and experimental results in the previous work by Lader[14] and Berstad[18] have shown that the bottom nets normally have a negligible effect on the global dynamic response of fish cages. Therefore, in the finite element model, the bottom net and its knots were excluded. The numerical model of the whole gravity net cage is shown in Fig.3. The numerical model is composed of 4 main parts: the floating collar, containment net, mooring lines and bottom ring. To avoid unwanted friction caused by chains and ropes, the bottom ring is attached to the net directly, see Lader[23]. The original solidity of net panel is 0.32. The materialsused266船舶力学第22卷第3期and their relative properties are also listedin Tab.1. Due to the limitation of the computational capability, the mesh size of thenet is generally enlarged in order to reducethe computational time. The validation of thesimplified method is shown in the section 3.1. Four points on the floating collar (A, B,C and D), marked as chief indications forthe the dynamic response of the floatingcollar, will be further investigated in Chapter 3.Tab.1 Properties of fish cage systemDiameter of fish cage (m)20Depth of fish cage (m)20Floating collarsinker Net Outer diameter (m)0.30.10.05Thickness (m)0.02--Elastic modules (MPa)950950350• 3Density (kg/m )9532 0001 120To begin with, the collar and bottom ring were simulated by the beam elements. Considering the non-bending properties of net twines, the truss elements were adopted to simulate the twines.The instantaneous buoyancy acting on the collar often makes it difficult to calculate the hydrodynamic forces accurately. Therefore, the 耶Buoyancy Distribution5method, see Li[24], was adopted to solve this problem by replacing the partly immerged floating collar with 11 distributed coupled beams as shown in Fig.4.^^p istirib u ted coupled section扭41 1B s o i e 2B it 柳 3B e 拉M B e a n 5 B e a u G 7S (issri : S f g e d )Bean 9 fiaaQr*e:d)O f l &E L I (ia m g ru e d ]Fig.4 Illustration of the distributed coupled beam sectionThe instantaneous buoyancy of the whole section fB s e c t i 〇n equals the sum of the buoyancy of each immerged beam ( f B _i m m e r g e d _b e a m ) ^, which can be expressed as:Fig.3 The complete fish cage systemmodel第3期HU Ke et al: Hydroelasitic Analysis of the Gravity Cage 噎267fB_s e c t i o n移(f i m m e r g e d_b e(24) In order to ensure that the distributed beam sections move and deform simultaneously, the six degrees of freedom for each pair of nearby nodes on the neighbouring beams should satisfy the linear constraints.Meanwhile, the mass and bending-stiffness properties of the floating collar and the beams must also be equivalent, as described in the following equations:m s e c t i o n^m i05)(E I)se-=移E i l(26)where m section ™d (E/)sectio n arethemassdensity andthebending stiffnessofthesectioninthe floating collar, respectively, while m i and (E l)i are the mass density and the bending stiffness of the ith distributed beam.Secondly, in the simulation of the mooring lines, four spring elements with 6 000 N/m linear tensional stiffness, were employed. The spring elements were attached horizontally to the floating collar in the xoy plane in Fig.3.3 Results and discussionsABAQUS/Standard, a software for finite element analysis, was used to simulate the model under the combined effect of current and irregular waves. Both the wave load and the current load were calculated based on the Morison equations, the hydrodynamic coefficients C M and C d should be chosen according to the Re and K C numbers. In this paper, the R e number was pretty low and the K C number was very high, hence C m and Cd were chosen as 2.0 and 1.2, respectively^251. Moreover, the geometrical nonlinearities associated with the nets 爷large deformation and motion were also taken into account.3.1 Validation of the numerical modelOwing to the large number of meshes in a full-scale net, it is hard to conduct calculations on a model with detailed mesh. Thus, the full-scale model was simplified. The hydrodynamic force, tensile stiffness and mass in the simplified model should be equivalent in the numerical models before and after simplification. This can be described in the following equations:A t-= ^A k(27)(s e c t i o n. )t r u s s•^移E k A s e c t i o n_k08) M t r u s s=M(29)268船舶力学第22卷第3期where A and A are the proiected area and cross-sectional area of the twine; M is the mass sectionof the net, and E represents the elastic modulus. Moe[19]validated their numerical models by comparing predicted deformation to that of a real model. Similar deformation to that observed by Moe[19]was observed in this model. Moreover, the deformation of the model with detailed mesh agrees well with that of the simplified model. The comparison also indicates that the model with coarse mesh was sufficiently accurate to study the motion and deformation of the gravity cage. The result is shown in Fig.5.Comparison of models Companion ot modelswith dettiiled mesh with applied (coiiise) mesh(h i)Dctormaiion picdi.LH.-Ll(cJ) JJemrinanun,prcdicicdby Moc ct a J 12010)b y M oecU ili:2U]〇)(<l)Model E C.S I化戒T e L tiim(b2) DcJornialion predfcicd le i) Petomialion prcdicicdm ill i s s i u d v m ih is sti]d vFig.5 Validation and verification of the numerical model3.2 Modal analysis of floating collar under combined effects of irregular wavesand currentAs the modal superposition method mentioned in the section 1.4, the mode shapes of the 1st to the 20th modes of the floating collar calculated by the modal analysis were shown in Fig.6. The modes numbered from 1t o6correspond to the six rigid-body-motion modes, while the rest correspond to the flexural deformation modes of the structure. In this analysis, the nonlinearities in the mooring-line are ignored.第3期HU Ke et al: Hydroelasitic Analysis of the Gravity Cage 噎2690 Hz (Rigid-body mode,/>-9.54 «10* 'Hz (Rigid-body( Rigiii-hoiJy mode, vertical rotanon in plane ) mode, roll iti in pltme O'r-z)motion in the plane O-x-z)/&-3.1〇x l〇--Hz\\z(Rimd-hodw_/4-1.22^]r- Hz(Rigid-badv(Kiyiu-bodv mcxie.mode, trai]sial[omn the planeH id e, roll m the plane O-.t-j)transJatiomn the planeO-x-v)J7 =0.55213 Ilz/s =0,552 13 H/.(Flexural mode in U’lexuraJ mode i n sitk(He s ury I mode iji(Hm jrd mode in O-.^-r view)view)O-x-z view)yidtr view)/g =0.569 25 Ux/,〇 =0,571 95 Hz/,i=].584 4Hz(Flexunil rm)de m the iTIcxuml mode in the(Hcxural mode in(J Jcxuial m odea tlL-plane O'x-y)O-x-z view)e ii side view)Fig.6 shows that the deformation of the 1st, 5th, 6th, 9th, 10th, 13th, 14th, 17th and 18th modes appears in the O -x -y plane, while that of the 2nd, 3rd, 4th, 7th, 8th, 11th, 12th, 15th, 16th, 19th and 20th modes occurs in the O-x-z plane in Fig.3.In order to investigate the modal contribution, the numerical model operated in conditions where the current speed was set as0m/s, 0.5 m /s and 1m/s, coupled with i^egular waves with /『]=1.584 4 Hz yij = !.ftll 2 Hz fu = l£i \ 2llz\ /t 〇k ' / / 飞咖 r '!K i / \'I .丨一':'1^s.J \ ■ll}:■(Flexural mode inO-x-z view)(Flexural mode in side view)(Flexuralmode in the plane (l lcxural mode in tlic plane C i-.v -v )057 2 11/./ifi^3.057 2 Hz■_ r】node h iP-.v-z view)(Flexural mode h i side view)(Fkxural mode in view)(Flexural mode in side view)/7-3.0S 9 7IIZ H O W 3 M z /a ,=4,961 4 Hz (〕(Klexunil mode in the plane O-r-v)(Flexural mode in the pfane O 'w )(Flexural mode in O u view)(Flexural mode in side view)/m =4.961 4 Hz ,,jL //\^Y '■n .(FlexuraJ mode in O-r-j view)(HeKural mode in side view)Fig .6 The first 20 mode shapes of the floating collarsignificant heights set as 0.3 m,1m and 3 m. Time histories of the modal weight in the horizontal and vertical directions are shown in the figures below (Figs.7-16), and their corresponding standard deviations are depicted in the four following figures (Figs.17-20): Analysis of modal weights in the horizontal response revealed that the 5th, 6th, 9th and 14th modes were the dominant modes. This means that the translational rigid-body-motion modes as well as the in-plane flexural structural-deformation modes dominated the response of the floating collar. However, as the current speed increased, the modal weights of the 5th and 6th modes experienced a steeper increase than the flexural structural-deformation modes, indicating that the current had a stronger influence on the translational rigid-body-motion modes.电 〇&0 90 10G M s)Fig.16 Modal weight (vertical motion when H 1/3=3 m, Tx =5 s, C=1.0 m/s)Fig.14 Modal weight (vertical motion when H 1/3=3 m, T 1=5 s, C=0.5 m/s)Fig.15 Modal weight (horizontal motion whenH "3=3m , (=5s ,C=1.0m /s)Fig.17 Standard deviation of the horizontal response of each mode for different significant wave heightsWith regard to the vertical response, the 2nd, 3rd, 4th and 8th modes participated most actively, as can be observed in Figs.8, 10, 12, 14 and 16. Each modal weight increased with the significant wave height. On the other hand, Figs.12, 14, and 16 show that the current had a smaller influence on the modal weight in the vertical direction compared to that in the horizontal direction.7C 孩分 90 1Q 〇Modal weight (horizontal motion whenH "3=3m , T !=5s, C=0.5m/s)-s js l -ll ft fxs:l l f .^^n lopos1]Mode nymberFig.18 Standard deviation of the horizontal response of each mode for different current speedsFig.19 Standard deviation of the vertical response of each mode for different significant wave heightsFig.20 Standard deviation of the vertical response of each mode for different current speedsBesides, the comparison of the horizontal and vertical standard deviations of each mode above shows that much higher modes (flexural structural deformation modes) were excited vertically. The current had a stronger impact on the standard deviation of the 5th and 6th modes in the horizontal direction. In addition, the standard deviation of modal weight increased with significant wave height in both directions, which indicates that higher waves may induce higher l t o p fi >3p-H EPUE^order modes.From the discussion in this section, it can be seen that compared with the wave-only-condition, the combination of current and wave has a greater influence on the translational rigid- body-motion in the horizontal direction. This indicates that the rigid-body motion of the floating collar should be paid more attention in the design of mooring systems attached to the fish cage in the wave and current combined condition. It has also been suggested that higher wave will arouse more flexible modes, while current contributes little to the flexible modes.4 ConclusionsThis paper presents an analysis based on the FEM in predicting the dynamic response of the gravity net cage system under the combined effects of irregular waves and current. The following conclusions are derived: the modal weight in both the horizontal and vertical directions becomes larger as the significant wave height increases, which can be found from the modal analysis of the floating collar under the combination of irregular wave and current. Meanwhile, the modal weight of the rigid-body-motion mode in the horizontal direction grows with the current speed, while the modal weight in the vertical direction is only slightly in^uenced by the variation of the speed. Moreover, it can be seen from the standard deviation of modal weight that much higher order modes will be excited with significant wave height increased. This indicates that when analyzing the total dynamic response under larger wave height, more attention should be paid on deformation.References[1] Lader P F, Olsen A, Jensen A, Sveen J K, Fredheim A, Enerhaug B. Experimental investigation of the interaction between waves and net structures-damping mechanism[J]. Aquacultural Engineering, 2007, 37(2): 100-114.[2] Song W H, Liang Z L, Zhao F F, Huang L Y, Zhu L X. Approximate calculated on waving-force for a square sea-cagehydrodynamics[J]. J Zhejiang Ocean Univ., 2003, 23: 211-220. (in Chinese)[3] Ito S, Kinoshita T, Kitazawa D, Bao W, Itakura H, Nishizawa S. Experimental investigation and numerical modeling of hydrodynamic force characteristics of a heaving net[C]. ASME, 2010.[4] Ito S, Kinoshita T, Kitazawa D, Bao W, Itakura H. Experimental investigation and numerical modeling of hydrodynamicforce characteristics and deformation of an elastic net[C]. ASME, 2011.[5] Krassimi I, Doynov. A dynamic response model for free floating horizontal cylinders subjected to waves[D]. Doctoral dissertation, University of Florida, 1998.[6] Kristiansen David. Wave induced effects on floaters of aquaculture plants[D]. Doctoral dissertation, Dept. of Marine Hydrodynamics, Norwegian Institute of Technology, 2012.[7] Colbourne D B, Allen J H. Observations on motions and loads in aquaculture cages from full scale and model scale mea-surements[J]. Aquacultural Engineering, 2001, 24(2): 129-148.[8] Fredriksson D W. Open ocean fish cage and mooring system dynamics[D]. Dept. Mechanical and Ocean Engineering, University of New Hampshire, 2001.[9] Fredriksson D W, Swift M R, Irish J D, Tsukrov I, Celikkol B. Fish cage and mooring system dynamics using physical andnumerical models with field measurements[J]. Aquacultural Engineering, 2003, 27: 117-46.[10] Fredriksson D W, DeCewa J, Swift M R, Tsukrov I, Chambers M D, Celikkol B. The design and analysis of a four-cagegrid mooring for open ocean aquaculture[J]. Aquacultural Engineering, 2004, 32: 77-94.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A detailed study on offshore floating wind turbines and the working principle of various floater concepts and the conceptual designs for floating platforms used for floating wind turbines are presented. In the case of fixed wind turbine, the influence of the environmental conditions on wind turbine design loads for a monopole foundation is studied by analyzing the bending moment at the tower base and tower root for various values of water depth, tower height, pile diameter and turbulence model. The analysis is done using FAST code for 5MW wind turbine with a monopile foundation. In the study of offshore floating wind turbine, a numerical time-domain model is used for the fully coupled dynamic analysis of deep water offshore floating wind turbines such as spar-type, barge-type and semi-submersible-type floating wind turbine. The hydrodynamic behaviour of the floaters is analysed using panel method. Hydrodynamic added mass, damping and exiting force are obtained in frequency domain and are validated with the available results. The hydrodynamic study of the floater is combined with and aerodynamic model to obtain a coupled aero-servo-hydro-elastic model. The performance of spar-type and barge-type floating wind turbine designed by the National Renewable Energy Laboratory (NREL) and semi-submersible type floating wind turbine designed by Principle Power are analyzed in detail. The mooring system attached to WindFloat semi-submersible floating wind turbine is also examined for six and eight mooring lines and the platform rotations along with motions results obtained are also compared. Keywords: Renewable energy; Monopile wind turbine; Offshore floating wind turbine; Added mass; Damping coefficient; Mooring system.
Hasan Bagbanci
iii
______________________________________________________________
ABSTRACT ______________________________________________________________
DYNAMIC ANALYSIS OF OFFSHORE FLOATING WIND TURBINES
Hasan Bagbanci
Dissertation for the Degree of Master of
Naval Architecture and Marine Engineering
Jury
President: Supervisor: Co-supervisor: Member: Prof. Yordan Garbatov Prof. Carlos António Pancada Guedes Soares Dr. Debabrata Karmakar Prof. Serge Sutulo
ii
______________________________________________________________
ACKNOWLEDGMENTS ______________________________________________________________
I express my sincere thanks and appreciation to my supervisor Professor Carlos Guedes Soares for his guidance, support and help during the tenure of the present research work. I am highly indebted to Professor Carlos Guedes Soares who has taken keen interest and offered valuable suggestions on the research work. I feel proud and honored to be a student of such a personality. I sincerely appreciate and thank Dr Debabrata Karmakar for his co-operation and help right from the inception of the problem to the final preparation of the manuscript. Thanks are also to the all the faculty members of the CENTEC for their technical suggestions at various times. My thanks are also to my colleagues and other labmates for their active cooperation with whom I shared so many nice moments together. Lastly, I extend my sincerest gratitude to my parents and brothers for always standing by me and supporting me at this endeavor.
December 2011
______________________________________________________________
DEDICATION ______________________________________________________________
Dedicated to Teresa Leonor Lopes Miranda
______________________________________________________________
RESUMO ______________________________________________________________
Um estudo detalhado sobre mar turbinas eólicas flutuantes e o princípio de funcionamento de conceitos diversos floater e os projetos conceitual para plataformas flutuantes utilizadas para turbinas eólicas flutuantes são apresentados. No caso da turbina de vento fixo, a influência das condições ambientais em cargas de turbinas eólicas de design para uma fundação monopolo é estudada através da análise dos momentos de flexão na base da torre e torre de raiz para vários valores de profundidade de água, altura da torre, diâmetro pilha e modelo de turbulência. A análise é feita usando o código FAST para 5 MW de turbinas eólicas com uma fundação monopile. No estudo da turbina eólica offshore flutuante, um modelo de domínio de tempo numérico é utilizado para a análise totalmente acoplado dinâmica de águas profundas ao largo de turbinas eólicas flutuantes, como longarina tipo, barcaça tipo e semi-submersível do tipo turbina eólica flutuante. O comportamento hidrodinâmico das moscas volantes é analisado utilizando o método de painel. Hidrodinâmica acrescentou massa, amortecimento e sair de força são obtidos no domínio da freqüência e são validados com os resultados disponíveis. O estudo hidrodinâmico do floater é combinado com e modelo aerodinâmico para obter um modelo combinado de aero-servo-hidro-elástica. O sistema de amarração anexado ao WindFloat semi-submersível turbina eólica flutuante também é examinado para seis e oito linhas de amarração e as rotações plataforma e os resultados obtidos movimentos também são comparados.