菱形的性质和判定(北师版)(含答案)
九年级上册(北师大版)数学课时练习:菱形的性质与判定(有答案)
九年级上册(北师大版)数学课时练习:菱形的性质与判定(有答案)菱形的性质与判定一.填空题(共10小题)1.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.2.如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则= .3.如图,在▱ABCD中,E、F分别是AB、CD的中点,AF、DE 交于点G,BF、CE交于点H.当▱ABCD满足,四边形EHFG是菱形.4.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:,使得四边形BCDE成为菱形.5.如图,A、B两点的坐标分别为(5,0)、(1,3),点C 是平面直角坐标系内一点.若以O、A、B、C四点为顶点的四边形是菱形,则点C的坐标为.6.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②AB=AC;③BF∥EC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).7.如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形OE的长为()A.6 B.5 C.2D.415.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB 和BC的中点,EP⊥CD于点P,则∠FPC=()A.35° B.45° C.50°D.55°16.如图,菱形ABCD中,点M,N在AC上,NM=AN,ME⊥AD,NF⊥AB;若NF=2,则ME=()A.2 B.3 C.4 D.5 17.如图,在菱形ABCD中,点E,点F为对角线BD的三等分点,过点E,点F与BD垂直的直线分别交AB,BC,AD,DC 于点M,N,P,Q,MF与PE交于点R,NF与EQ交于点S,已知四边形RESF的面积为5cm2,则菱形ABCD的面积是()A.35cm2 B.40cm2 C.45cm2D.50cm218.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20° B.25° C.30°D.35°19.如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=,则下列结论中正确的个数为()①DE=3cm;②EB=1cm;③S菱形ABCD=15cm2A.3个 B.2个 C.1个 D.0个20.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A. cm B. cm C. cm D. cm 三.解答题(共4小题)21.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.22.如图,在▱ABCD中,BD是对角线,且DB⊥BC,E、F分别为边AB、CD的中点.求证:四边形DEBF是菱形.23.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG 平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.24.如图,在△ABC中,AB=AC,点D在边AC上,AD=BD=DE,联结BE,∠ABC=∠DBE=72°;(1)联结CE,求证:CE=BE;(2)分别延长CE、AB交于点F,求证:四边形DBFE是菱形.参考答案一.填空题1.50+72.2..3.AB⊥BC.4.AB=2BC.5.(﹣4,3).6.②.7.AC⊥EF.8.AB=BC,或AC⊥BD.9.此题答案不唯一,如AC⊥BD或AB=AD等.10.AD=AB.二.选择题11.D.12.A.13.D.14.D.15.C.16.C.17.C.18.C.19.A.20.B.三.解答题21.(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EF D=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.22.证明:∵E、F分别为边AB、CD的中点,∴DF=DC,BE=AB,又∵在▱ABCD中,AB∥CD,AB=CD,∴DF∥BE,DF=BE,∴四边形DEBF为平行四边形,∵DB⊥BC,∴∠DBC=90°,∴△DBC为直角三角形,又∵F为边DC的中点,∴BF=DC=DF,又∵四边形DEBF为平行四边形,∴四边形DEBF是菱形.23.解:(1)∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.24.证明:(1)∵AB=AC,∴∠ACB=∠ABC=72°,∴∠A=180°﹣72°﹣72°=36°,∵AD=BD,∴∠1=∠A=36°,∴∠2=36°,∵∠DBE=72°,∴∠3=36°,∵BD=DE,∴∠DEB=∠DBE=72°,∴∠BOE=180°﹣∠3﹣∠DEB=72°,∴∠4=∠BOE﹣∠2=36°,∴∠2=∠4,∴DO=BO,∵∠2=36°,∠ACB=72°,∴∠BDC=180°﹣∠2﹣∠DCB=72°,∴BC=BD,∵BD=DE,∴BC=DE,∴DE﹣DO=BC﹣BO,∴CO=EO,∵∠7=∠8,∴∠5=∠==∠4=36°,∴∠5=∠3=36°,∴CE=BE;(2)∵∠4=∠1=36°,∴DE∥BF,∵∠2=∠5=36°,∴EF∥DB,∴四边形DEFB是平行四边形,∵DE=DB,∴四边形DBFE是菱形.。
1.1+菱形的性质与判定++课件+++2024--2025学年北师大版九年级数学上册
学习目标
活动探究
当堂检测
课堂总结
问题2:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:
∠AFD=∠CBE.
证明:∵四边形ABCD是菱形, C
∴CB=CD,CA平分∠BCD,∴∠BCE=∠DCE.
B F
EA
又∵CE=CE,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDE. D
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠CDE,
∴∠AFD=∠CBE.
学习目标
活动探究
当堂检测
课堂总结
练一练 如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( B )
A.20
B.16
C.15
D.14
学习目标
活动探究
当堂检测
课堂总结
1.根据下图填一填:
(1)在菱形ABCD中,∠ABC=120 °,则∠BAC=___3_0_°__.
在等腰△ABD中,OB=OD,
∴AO⊥BD, 即AC⊥BD.
变式:试证明上题中的对角线是否都平分对角. ∵在等腰△ABD中,OB=OD,∴AO平分∠DAB, 同理可得BO平分∠ABC,CO平分∠BCD,DO平分∠ADC.
∴每条对角线平分一组对角.
学习目标
活动探究
当堂检测
课堂总结
归纳总结 菱形是特殊的平行四边形,它除具有平行四边形的所有性质外还有 平行四边形所没有的性质.
问题1:如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,
AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO= 1 AC,BO= 1 BD.
九年级数学北师大版上册课时练第1章《菱形的性质与判定》 练习测试卷 含答案解析
课时练第1单元菱形的性质与判定一.菱形的性质1.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行2.已知菱形的面积为24cm2,一条对角线长为6cm,则这个菱形的边长是()厘米.A.8B.5C.10D.4.83.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是()A.2.1cm B.2.2cm C.2.3cm D.2.4cm4.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B 的度数是()A.70°B.75°C.80°D.95°5.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°6.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4B.3C.2D.7.如图,菱形ABCD的对角线AC=4cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为.8.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.9.如图,在菱形ABCD中,∠A=100°,M、N分别是边AB、BC的中点,MP⊥CD于点P.则∠NPC的度数为.10.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.11.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.12.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE ⊥AB于E,OF⊥AD于F(1)对角线AC的长是,菱形ABCD的面积是;(2)如图1,当点O在对角线BD上运动时,OE+OF的值是否会发生变化?请说明理由;(3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否会发生变化?若不变,请说明理由;若变化,请探究OE、OF之间的数量关系,并说明理由.13.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.14.在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.二.菱形的判定15.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形16.▱ABCD的对角线AC与BD相交于点O,添加以下条件,不能判定平行四边形ABCD 为菱形的是()A.AC=BD B.AC⊥BD C.∠ACD=∠ACB D.BC=CD 17.顺次连接等腰梯形各边中点所围成的四边形是()A.平行四边形B.矩形C.菱形D.正方形18.已知:如图,过四边形ABCD的顶点A、C、B、D分别作BD、AC的平行线围成四边形EFGH,如果EFGH成菱形,那么四边形ABCD必定是()A.菱形B.平行四边形C.长方形D.对角线相等的四边形19.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1B.2C.3D.420.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.521.已知AD是△ABC的角平分线,点E、F分别是边AB,AC的中点,连接DE,DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是(答案不唯一).22.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.23.已知:如图,平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.三.菱形的判定与性质24.下列说法中错误的是()A.四边相等的四边形是菱形B.菱形的对角线长度等于边长C.一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形25.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5B.10C.10.5D.1126.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.3C.2D.127.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB 的面积为4cm2.则OC的长为()A.2B.3C.4D.528.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.29.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.30.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能构成菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一.菱形的性质1.A2.B3.D4.C5.C6.B7.8.()n﹣19.50°10.﹣111.212.解:(1)如图,连接AC与BD相交于点G,在菱形ABCD中,AC⊥BD,BG=BD=×16=8,由勾股定理得,AG===6,∴AC=2AG=2×6=12,菱形ABCD的面积=AC•BD=×12×16=96;故答案为:12;96;=S△ABO+S△ADO,(2)如图1,连接AO,则S△ABD所以,BD•AG=AB•OE+AD•OF,即×16×6=×10•OE+×10•OF,解得OE+OF=9.6是定值,不变;=S△ABO﹣S△ADO,(3)如图2,连接AO,则S△ABD所以,BD•AG=AB•OE﹣AD•OF,即×16×6=×10•OE﹣×10•OF,解得OE﹣OF=9.6,是定值,不变,所以,OE+OF的值变化,OE、OF之间的数量关系为:OE﹣OF=9.6.13.解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在RT△PCB中,∵∠CPB=90°PC=6,BC=10,∴PB===8,在RT△ABP中,∵∠ABP=90°,AB=10,PB=8,∴P A===2.(2)△OMN是等腰三角形.理由:如图2中,延长PM交BC于E.∵四边形ABCD是菱形,∴AC⊥BD,CB=CD,∵PE⊥AC,∴PE∥BD,∴=,∴CP=CE,∴PD=BE,∵CP=CE,CM⊥PE,∴PM=ME,∵PN=NB,∴MN=BE,∵BO=OD,BN=NP,∴ON=PD,∴ON=MN,∴△OMN是等腰三角形.14.解:(1)如图1,连接BD,则BD平分∠ABC,∵四边形ABCD是菱形,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=60°,∴∠ABC=120°,∴∠ABD=∠ABC=60°,∴△ABD是等边三角形,∴BD=AD=4,∵E是AB的中点,∴DE⊥AB,由勾股定理得:DE==2,∵DC∥AB,∴∠EDC=∠DEA=90°,在Rt△DEC中,DC=4,EC===2;(2)如图2,延长CD至H,使CD=DH,连接NH、AH,∵AD=CD,∴AD=DH,∵CD∥AB,∴∠HDA=∠BAD=60°,∴△ADH是等边三角形,∴AH=AD,∠HAD=60°,∵△AMN是等边三角形,∴AM=AN,∠NAM=60°,∴∠HAN+∠NAG=∠NAG+∠DAM,∴∠HAN=∠DAM,在△ANH和△AMD中,∵,∴△ANH≌△AMD(SAS),∴HN=DM,∵D是CH的中点,Q是NC的中点,∴DQ是△CHN的中位线,∴HN=2DQ,∴DM=2DQ.二.菱形的判定15.C16.A17.C18.D19.C20.C21.解:由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.22.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠F AD,∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∴∠EAD=∠EDA,∴EA=ED,∴四边形AEDF为菱形.23.证明:(1)∵E是BO的中点,∴OE=BE,∵BF∥AC,∴∠BFE=∠OCE,在△BEF和△OEC中,,∴△BEF≌△OEC,∴BF=OC,∵平行四边形ABCD的两条对角线相交于点O,∴OA=OC,∴FB=AO;(2)当平行四边形ABCD是矩形时,四边形AFBO是菱形.理由如下:∵平行四边形ABCD是矩形,∴OA=OB,∴平行四边形AFBO是菱形.三.菱形的判定与性质24.B25.D26.C27.C28.3629.(1)证明:∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥BC,∴∠F AC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,∴OF=OE,∵OA=OC,∴四边形AECF为平时四边形,∵AC⊥EF,∴四边形AECF为菱形;(2)解:设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;(3)解:在Rt△ABC中,AC===4,∴OA=AC=2,在Rt△AOE中,OE===,∴EF=2OE=2.30.(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.。
九年级数学上第1章1菱形的性质与判定第1课时菱形及其性质习题北师大
∵△APE是等边三角形,∴AP=AE,∠PAE=60°. ∴∠BAP=∠CAE. ∴△BAP≌△CAE (SAS). ∴BP=CE,∠ABP=∠ACE=30°. 易知∠CAH=60°, ∴∠CAH+∠ACH=90°. ∴∠AHC=90°,即CE⊥AD.
精彩一题 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月26日星期六2022/3/262022/3/262022/3/26
件是( C )
A.∠BAF=∠DAE
B.EC=FC
C.AE=AF D.BE=DF
6.(2020·武威)如图所示的木制活动衣帽架是由三个全等的 菱形构成,根据实际需要可以调节A,E间的距离.若A, E间的距离调节到60 cm,菱形的边长AB=20 cm,则 ∠DAB的度数是( C )
A.90° B.100° C.120° D.150°
15.(2019·聊城)如图,在菱形ABCD中,点P是BC上一点, 连接AP,E,F是AP上的两点,连接DE,BF,使得 ∠AED=∠ABC,∠ABF=∠BPF.求证:
(1)△ABF≌△DAE;
证明:∵四边形ABCD是菱形,∴AB=AD,AD∥BC. ∴∠BPA=∠DAE. 又∵∠ABC=∠AED,∴∠BAF=∠ADE. ∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE. 又∵AB=DA,∴△ABF≌△DAE(ASA).
又∵BE= 3,∴AE=1. ∴AD=AB=2.
∴菱形 ABCD 的面积为 AD×BE=2× 3=2 3.
14.(中考·苏州)如图,在菱形ABCD中,对角线AC,BD相交 于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)求证:四边形ACDE是平行四边形; 证明:∵四边形ABCD是菱形, ∴AB∥CD,AC⊥BD. ∵DE⊥BD,∴DE∥AC. ∴四边形ACDE是平行四边形.
北师大版九年级上册数学1.1 菱形的性质与判定同步练习(附答案)
第一章特殊平行四边形1.1 菱形的性质与断定第1课时菱形的性质1.有一组__邻边__相等的平行四边形是菱形.2.菱形是__轴__对称图形,菱形的四边__相等__,菱形的对角线__互相垂直__.知识点一:菱形的定义1.四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,这个条件是(B)A.AB=CD B.AB=BCC.AD=BC D.AC=BD2.如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形__有一组邻边相等的平行四边形是菱形__.(请在横线上填上理由)知识点二:菱形的性质3.假设菱形两条对角线的长分别为6和8,那么这个菱形的周长为(A)A.20B.16C.12D.104.(易错题)如图,在菱形ABCD中,对角线AC,BD交于点O,以下说法错误的选项是(B)A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC,第4题图),第5题图) 5.如图,在菱形ABCD中,不一定成立的是(C)A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD6.在菱形ABCD中,∠A=60°,AB=5,那么△ABD的周长是(C)A.10 B.12 C.15 D.207.菱形的一个内角为120°,边长为8,那么它较短的对角线长是(C)A.3 B.4 C.8 D.8 38.如图,菱形ABCD中,对角线AC,BD相交于点O,点H为AD边中点,菱形ABCD 的周长为28,那么OH的长等于(A)A.B.4C.7 D.149.(2021·烟台)如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.假设∠DAC=28°,那么∠OBC的度数为(C) A.28°B.52°C.62°D.72°10.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.解:∵四边形ABCD是菱形,∴AC⊥BD且BO=DO.在Rt△AOB中,∵AB=5,AO=4,由勾股定理,得BO=3,∴BD=611.(2021·上海)如图,AC,BD是菱形ABCD的对角线,那么以下结论一定正确的选项是(B)A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍,第11题图),第12题图) 12.如图,菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,那么BC=__5__.13.如图是根据四边形的不稳定性制作的边长均为15 cm的可活动菱形衣架.假设墙上钉子间的间隔AB=BC=15 cm,那么∠1=__120__°.,第13题图),第14题图) 14.(2021·白银)如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白局部.当菱形的两条对角线的长分别为6和8时,那么阴影局部的面积为__12__.15.(2021·宜宾)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,那么较长的对角线长度是16.如图,四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.解:证明:∵四边形ABCD是菱形,∴AD=CD.∵点E,F分别是CD,AD的中点,∴DE=12CD,DF=12AD,∴DE=DF.又∵∠ADE=∠CDF,∴△AED≌△CFD(SAS),∴AE=CF17.如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)假设∠B=60°,AB=4,求线段AE的长.解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E,F分别是边BC,AD的中点,∴BE=DF,∴△ABE≌△CDF(SAS)(2)易得△ABC是等边三角形,点E为BC的中点,从而AE⊥BC,AE=2318.如图,在菱形ABCD中,点F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)证明:连接AC.∵BD是菱形ABCD的对角线,∴BD垂直平分AC.∴AE=EC(2)点F是线段BC的中点.理由:∵ABCD是菱形,∴AB=CB.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵AE=EC,∴∠EAC=∠ACE.∵∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.又∵△ABC是等边三角形,∴BF=CF.∴点F是线段BC的中点第2课时菱形的断定对角线__互相垂直__的平行四边形是菱形;__四边相等__的四边形是菱形.知识点:菱形的断定1.小明和小亮在做一道习题,假设四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为以下说法正确的选项是(B)A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.以下命题中正确的选项是(D)A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形3.如图,以下条件之一能使▱ABCD是菱形的是(D)①AC⊥BD;②∠BAD=90°;③AB=BC;④BD平分∠ABC.A.①③B.②③C.③④D.①③④,第3题图),第4题图) 4.如下图,在△ABC中,AB=AC,∠A<90°,BC,CA,AB的中点分别为点D,F,E,那么四边形AFDE是(A)A.菱形B.长方形C.正方形D.以上都不对5.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如下图,能得到四边形ABCD 是菱形的根据是(B)A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形,第5题图),第6题图) 6.(易错题)如图,以下条件能断定四边形ABCD为菱形的有(C)①AB=BC=CD=DA;②AC,BD互相垂直平分;③平行四边形ABCD,且AC⊥BD;④平行四边形ABCD,且AC=BD.A.1个B.2个C.3个D.4个7.(2021·淄博)▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是__AD=DC(答案不唯一)__.8.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__OA=OC或AD=BC或AD∥BC或AB=BC__,使四边形ABCD成为菱形.(只需添加一个即可)9.(2021·舟山):如图,在▱ABCD中,点O为对角线BD的中点,过点O的直线EF 分别交AD,BC于E,F两点,连接BE,DF.(1)求证:△DOE ≌△BOF ; (2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由. 解:(1)证明:∵▱ABCD 中,点O 为对角线BD 的中点,∴BO =DO ,∠EDB =∠FBO ,在△EOD 和△FOB 中⎩⎨⎧∠EDO =∠OBF ,DO =BO ,∠EOD =∠FOB ,∴△DOE ≌△BOF (ASA )(2)当∠DOE =90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴BF =DE ,又∵BF ∥DE ,∴四边形EBFD 是平行四边形,∵BO =DO ,∠EOD =90°,∴EB =DE ,∴四边形BFDE 为菱形10.(2021·徐州)假设顺次连接四边形的各边中点所得的四边形是菱形,那么该四边形一定是( C )A .长方形B .对角线相等的梯形C .对角线相等的四边形D .对角线互相垂直的四边形11.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,那么四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,那么四边形ABEF 是菱形.根据两人的作法可判断( C )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误12.(2021·十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出以下条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC.从中选择一个条件使四边形BECF 是菱形,你认为这个条件是__③__.(只填写序号)13.(2021·新疆)如图,△ABC ,按如下步骤作图:①分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交点P ,Q 两点; ②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过点C 作CF ∥AB 交PQ 于点F ,连接AF.(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解:(1)由作图知:PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD ,∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED ,在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,AD =CD ,∠CFD =∠AED ,∴△AED ≌△CFD(2)∵△AED ≌△CFD ,∴AE =CF ,∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形14.(2021·南京)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,过点E 作EF ∥AB 交BC 于点F.(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?为什么?解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,又∵EF ∥AB ,∴四边形DBFE 是平行四边形 (2)当AB =BC 时,四边形是菱形.理由如下:∵点D 是AB 的中点,∴BD =12AB ,∵DE 是△ABC 的中位线,∴DE =12BC ,∵AB =BC ,∴BD =DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形15.某校九年级学习小组在探究学习过程中,用两块完全一样的且含60°角的直角三角形ABC 与AFE 按如图①所示位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),如图②,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)求证:AM =AN ;(2)当旋转角α=30°,四边形ABPF 是什么样的特殊四边形?并说明理由.解:(1)证明:∵α+∠EAC =90°,∠NAF +∠EAC =90°,∴α=∠NAF.又∵∠B =∠F ,AB =AF ,∴△ABM ≌△AFN ,∴AM =AN (2)四边形ABPF 是菱形.理由:∵α=30°,∠EAF =90°,∴∠BAF =120°.又∵∠B =∠F =60°,∴∠B +∠BAF =60°+120°=180°,∠F +∠BAF =60°+120°=180°.∴AF ∥BC ,AB ∥EF.∴四边形ABPF 是平行四边形.又∵AB =AF ,∴四边形ABPF 是菱形。
1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)
北师大版九上1.1菱形的性质与判定同步练习一、选择题(共10题)1. 菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 菱形ABCD中,∠A:∠B=1:5,若其周长为8,则菱形ABCD的高为( )B.4C.1D.2 A.123. 菱形ABCD中,AB=2,∠D=120∘,则对角线AC的长为( )A.1B.3C.2D.234. 菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )A.13B.52C.120D.2405. 如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是( )A.12B.16C.20D.246. 已知O为平行四边形ABCD对角线的交点,下列条件能使平行四边形ABCD成为菱形的是( )A.AB=BC B.AC=BDC.OA=OC,OB=OD D.∠A=∠B=∠C=90∘7. 如图,B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,CD,则根据作图过程判定四边形ABDC 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形8. 点E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点,AC,BD交于点O,当四边形ABCD的对角线满足( )条件时,四边形EFGH是菱形.A.AC⊥BD B.AC=BDC.OA=OC,OB=OD D.OA=OB9. 平面直角坐标系中,四边形ABCD的顶点坐标分别是A(―3,0),B(0,2),C(3,0),D(0,―2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形10. 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD二、填空题(共10题)11. 如图,菱形ABCD的周长是8 cm,AB的长是cm.12. 已知菱形两条对角线的长分别为4和6,则菱形的边长为.13. 已知菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是cm2.14. 如图,若菱形的边长为4,∠BAD=120∘,则较短对角线AC长为.15. 如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.16. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,反向延长交BC于点F,则EF的长为.17. 如图,菱形ABCD的对角线AC,BD相交于点O,已知OB=4,菱形ABCD的面积为24,则AC的长为.18. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②AB=AC;③BF∥CE.从中选择条件可使四边形BECF是菱形.19. 如图,在四边形ABCD中,AB≠CD,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.20. 如图,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC边的中点,请你在△ABC中添加一个条件:,使得四边形AEDF是菱形.三、解答题(共7题)21. 【测试4】如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M,N.(1) 求证:四边形BNDM是菱形;(2) 若BD=24,MN=10,求菱形BNDM的周长.22. 已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1) 求证:△ABE≌△CDF;(2) 连接DG,若DG=BG,则四边形BECF是什么特殊四边形?请说明理由.23. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1) ∠CEB=∠CBE;(2) 四边形BCED是菱形.24. 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1) 求证AB=BC;(2) 若AB=2,AC=23,求平行四边形ABCD的面积.25. 在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF,求证:(1) △ABF≌△DAE.(2) DE=BF+EF.26. 在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BE=DF,连接AE,AF,CE,CF,如图所示.(1) 求证:△ABE≌△ADF;(2) 试判断四边形AECF的形状,并说明理由.27. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1) 求证:四边形ABCD是平行四边形;(2) 若AC⊥BD,求平行四边形ABCD的面积.答案一、选择题(共10题)1. 【答案】B2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】B二、填空题(共10题)11. 【答案】212. 【答案】1313. 【答案】2414. 【答案】415. 【答案】2416. 【答案】24517. 【答案】618. 【答案】②19. 【答案】AD=BC20. 【答案】如:AB=AC,答案不唯一三、解答题(共7题)21. 【答案】(1) ∵AD∥BC,∴∠DMO=∠BNO,∵MN 是对角线 BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在 △MOD 和 △NOB 中,∠DMO =∠BNO,∠MOD =∠NOB,OD =OB,∴△MOD ≌△NOB (AAS),∴OM =ON ,∵OB =OD ,∴ 四边形 BNDM 是平行四边形,∵MN ⊥BD ,∴ 四边形 BNDM 是菱形.(2) ∵ 四边形 BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在 Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13, ∴ 菱形 BNDM 的周长 =4BM =4×13=52.22. 【答案】(1) ∵ 四边形 ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在 △ABE 和 △CDF 中,AB =CD,∠BAE =∠DCF,AE =CF,∴△ABE ≌△CDF (SAS);(2) 四边形 BEDF 是菱形;理由如下:如图所示:∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴ 四边形 BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴ 四边形 BEDF 是菱形.23. 【答案】(1) ∵ △ABC ≌△ABD ,∴ ∠ABC =∠ABD .∵ CE ∥BD ,∴ ∠CEB =∠DBE ,∴ ∠CEB =∠CBE .(2) ∵ △ABC ≌△ABD ,∴ BC =BD .∵ ∠CEB =∠CBE ,∴ CE =CB ,∴ CE =BD .∵ CE ∥BD ,∴ 四边形 CEDB 是平行四边形.∵ BC =BD ,∴ 四边形 CEDB 是菱形.24. 【答案】(1) 因为四边形 ABCD 是平行四边形,所以 AD ∥BC ,所以 ∠DAC =∠BCA ,因为 ∠BAC =∠DAC ,所以 ∠BAC =∠BCA ,所以 AB =BC .(2) 连接 BD 交 AC 于点 O ,因为四边形 ABCD 是平行四边形,AB =BC ,所以四边形 ABCD 是菱形,所以 AC ⊥BD ,OA =OC =12AC =3,OB =OD =12BD ,所以 OB =AB 2―OA 2=22―(3)2=1,所以 BD =2OB =2,所以 S 平行四边形ABCD =12AC ⋅BD =12×23×2=23.25. 【答案】(1) ∵ 四边形 ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BOA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA).(2) ∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26. 【答案】(1) ∵ 正方形 ABCD ,∴AB =AD ,∠ABE =∠ADF =135∘,在 △ABE 和 △ADF 中,AB =AD,∠ABE =∠ADF,BE =DF,∴△ABE ≌△ADF (SAS).(2) 四边形 AECF 为菱形.证明:连接 AC ,∵△ABE ≌△ADF ,∴AE =AF ,∵正方形ABCD,∴EF垂直平分AC,∴EA=EC,FA=FC,∴EA=EC=FA=FC,∴四边形AECF是菱形.27. 【答案】(1) ∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2) ∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴平行四边形ABCD的面积=1AC⋅BD=24.2。
北师大版九年级上册第一章菱形(有答案)
北师大版九年级上学期数学菱形的性质与判定 补充习题(一)一、选择题1.菱形具有而一般平行四边形不具有的性质是( )A .对角相等B .对边相等C .对角线互相垂直D .对角线相等2. 如图,在菱形ABCD 中,不一定成立的( )A.四边形ABCD 是平行四边形B.AC ⊥BDC.△ABD 是等边三角形D.∠CAB =∠CAD 3.菱形的周长为100 cm ,一条对角线长为14 cm ,它的面积是( )A .168 cm 2B .336 cm 2C .672 cm 2D .84 cm 24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为( )A .4B .8C .10D .125.下列语句中,错误的是()A .菱形是轴对称图形,它有两条对称轴B .菱形的两组对边可以通过平移而相互得到C .菱形的两组对边可以通过旋转而相互得到D .菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm ,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.33338.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为8平方厘米,两条对角线的比为1:,那么菱形的边长为_______.三、解答题11.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF12.如图,四边形ABCD是边长为13cm(1)对角线AC的长度;(2)菱形ABCD的面积.13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.33A15.已知:如图,在中,D 是BC 边上一点,交AB 于E ,交AC 于F ,且DE=DF 求证:四边形AEDF 是菱形.16.已知:如图,在菱形ABCD 中,E 、F 分别是BC 、CD 上的点,,求的度数.17.已知:如图,四边形ABCD 是菱形,AC 、BD 是对角线,.求证:18.如图,菱形ABCD 的对角线交于点O,AC=16cm,BD=12cm ,求菱的高.19.如图,在菱形ABCD 中,相交于点O ,且,若,求菱形ABCD 的面积.ABC ∆AC DE//AB DF //︒=∠︒=∠=∠18,60BAE EAF B CEF ∠︒=∠30ABC .2BD AC AB ⋅=BD AC 、3:1:=BD AC 12=AB20.如图,在ABCD 中,,把AB 向两方延长,使,连结CE 、DF ,请问CE 、DF 有怎样的位置关系,并证明你的结论.21.把两条宽度相同的纸条交叉重叠放在一起,如图,重叠部分ABCD 是什么四边形?度证明你的结论?AB AD 2=AB BF AE ==参考答案一、1.C 2.C 3.B 4.B 5.D二、6.2 cm 7.44厘米 8.176 cm 2 9.8 cm 5 cm 10.4 cm三、11.△ADE ≌△ABF AE =AF .12.AC=24cm , 菱形ABCD 的面积是120 cm 213.24 cm 2 14.9.6 cm15.,∴四边形是平行四边形,又,∴平行四边形是菱形.16.连结是等边三角形,∴,又可证,∴是等边三角形,∴.17.由,可知菱形的高等于边长的一半.∴,∴ 18.9.6cm19.20.,连结MN ,可证得,则,同理,由,且可知四边形是平行四边形,又,可知四边形是菱形,所以.21.是菱形,作于于Q ,由于两纸条的宽度相等,所以,则,∴,则,∴,又由四边形是平行四边形可知是菱形.AB DF AC DE //,// AEDF DF DE = AEDF ABC AC ∆,AC AB ACB BAC =︒=∠=∠,60ACF ABE ∆≅∆AEF ∆︒=∠18CEF ︒=∠30ABC 2212121AB AB BC BD AC S ABCD =⋅=⋅=菱形.2BD AC AB ⋅=372DF CE ⊥DMC AME ∆≅∆DC DM =CN DC =CN DM =CN DM //DMNC DM DC =DMNC DF CE ⊥ABCD BC AP ⊥CD AQ P ⊥,AQ AP =AQD APB ∆≅∆AD AB =AQD APB ∆≅∆AD AB =ABCD菱形的性质与判定学习要求理解菱形的概念,掌握菱形的性质定理及判定定理.课堂学习检测一、填空题:1.菱形的定义:__________________的平行四边形叫做菱形.2.菱形的性质:菱形是特殊的平行四边形,它具有四边形和平行四边形的______:还有:菱形的四条边______;菱形的对角线______,并且每一条对角线平分______;菱形的面积等于__________________,它的对称轴是______________________________.3.菱形的判定:一组邻边相等的______是菱形;四条边______的四边形是菱形;对角线______的平行四边形是菱形.4.已知菱形的周长为40cm,两个相邻角度数之比为1∶2,则较长对角线的长为______cm.5.若菱形的两条对角线长分别是6cm,8cm,则它的周长为______cm,面积为______cm2.二、选择题6.对角线互相垂直平分的四边形是( ).(A)平行四边形(B)矩形(C)菱形(D)任意四边形7.顺次连结对角线相等的四边形各边中点,所得四边形是( ).(A)矩形(B)平行四边形(C)菱形(D)任意四边形8.下列命题中,正确的是( ).(A)两邻边相等的四边形是菱形(B)一条对角线平分一个内角的平行四边形是菱形(C)对角线垂直且一组邻边相等的四边形是菱形(D)对角线垂直的四边形是菱形第9题图9.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是( ).(A)4(B)8 (C)12 (D)16 10.菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). (A) (B)4 (C)1(D)2综合、运用、诊断一、解答题11.如图,在菱形ABCD 中E 是AB 的中点,且DE ⊥AB ,AB =4.求:(1)∠ABC 的度数;(2)菱形ABCD 的面积.12.如图,在菱形ABCD 中,∠ABC =120°,E 是AB 边的中点,P 是AC 边上一动点,PB +PE 的最小值是,求AB 的值.13.如图,在□ABCD 中,E ,F 分别为边AB ,CD 的中点,连结DE ,BF ,BD .(1)求证:△ADE ≌△CBF .(2)若AD ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.14.如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E .(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.21315.如图,□ABCD 中,AB ⊥AC ,AB =1,BC =.对角线AC ,BD 相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC ,AD 于点E ,F .(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC 绕点O 顺时针旋转的度数.16.如图,菱形ABCD 的边长为2,BD =2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.5参考答案1.一组邻边相等.2.所有性质,都相等;互相垂直,平分一组对角;底乘以高的一半或两条对角线之积的一半;对角线所在的直线.3.平行四边形;相等,互相垂直. 4. 5.20,24.6.C . 7.C . 8.B . 9.D . 10.C .11.120°;(2)8. 12.2.13.(1)略;(2)四边形BFDE 是菱形,证明略.14.(1)略;(2)△ABC 是Rt △.15.(1)略;(2)略;(3)当旋转角是45°时,四边形BEDF 是菱形,证明略.16.(1)略;(2)△BEF 是等边三角形,证明略.(3)提示:∵≤△BEF 的边长<2.3103322)2(43)3(43<≤∴S .3343<≤∴S菱形的性质(提高)一、判断题1.一组邻边相等,且对角线互相垂直的四边形是菱形.()2.一条对角线平分一组对角的四边形是菱形.()3.对角线交点到各边中点的距离都相等的四边形是菱形.()4.菱形是轴对称图形,它的对称轴只有一条.()5.菱形的对角线互相垂直平分,且平分各内角.()二、填空题6.菱形的邻角比为1:5,它的高为1.5cm,则它的周长为_______.7.两条对角线_________的四边形是菱形.8.已知菱形的两对角线的比为2:3,两对角线和为20,则这对角线长分别为_____,_______.9.菱形ABCD的AC交BD于O,AB=13,BO=12,AO=5,求菱形的周长=_____,面积= ____.10.O为菱形ABCD的对角线交点,E、F、G、H分别是菱形各边的中点,若OE=3cm,则OF=_____,OG=_______,OH=______.三、选择题11.从菱形的钝角的顶点向对边引垂线,并且这条垂线平分对边,则该菱形的钝角为().A.110°B.120°C.135°D.150°12.菱形的两邻角之比为1:2,如果它的较短对角线为3cm,则它的周长为().A.8cm B.9cm C.12cm D.15cm13.菱形具有而矩形不一定具有的性质是().A.对边相等B.对角相等C.对角线互相相等D.对有线相等14.能够找到一点使该点到各边距离相等的图形为().A.平行四边形B.菱形C.矩形D.不存在15.下列说法不正确的是().A .菱形的对角线互相垂直B .菱形的对角线平分各内角C .菱形的对角线相等D .菱形的对角线交点到各边等距离 四、解答题16.如图所示,已知E 为菱形ABCD 的边AD 的中点,EF ⊥AC 于F 交AB 于M .试说明M 为AB 的中点.17.如图所示,已知菱形ABCD 中E 在BC 上,且AB=AE ,∠BAE=∠EAD ,AE 交BD 于M ,试说明BE=AM .18.如图所示,已知在菱形ABCD 中,AE ⊥CD 于E ,∠ABC=60°,求∠CAE 的度数.19.如图所示,菱形的周长为20cm ,两邻角的比为1:2. 求:(1)较短对角线长是多少?(2)一组对边的距离是多少?20.如图所示,已知菱形ABCD 中,E 、F 分别在BC 和CD 上,且∠B=∠EAF= 60°,∠BAE=15°,求∠CEF 的度数.21M FE DC BA 123421ME DC BA21.已知:菱形一边及这边上的高.求作:满足条件的这个菱形.22.已知在菱形ABCD中,AE⊥BC于E,且BE=EC,若AC=6,求菱形ABCD的各边长.23.菱形一边与两条对角线所构成的两个角的差为10°,求菱形的各内角.24.如图所示,已知菱形ABCD中,E、F是BC、CD上的点,且AE=EF=AF=AB,求∠C的度数.25.如图所示,O为矩形ABCD的对角线交点,DE∥AC,CE⊥BD,OE与CD 互相垂直平分吗?请说明理由.26.如图所示,已知在菱形ABCD中,E在BC上,若∠B=∠EAD=70°,ED 平分∠AEC吗?请说明理由.27.试说明:菱形的对角线的交点到各边的中点距离相等.参考答案一、1.× 2.× 3.√ 4.× 5.√二、6.12cm 7.互相垂直平分 8.8 12 9.52 120 10.3cm 3cm 3cm三、11.B 12.C 13.C 14.B 15.C四、16.由于△AME 是以AC 为轴的轴对称图形(其中∠1=∠2,ME ⊥AC )所以AM=AE=AD , 故AM=AB ,所以M 是AB 的中点. 17.设∠BAE=x°,则∠EAD=2x°, 所以∠AEB=∠ABC=2x°,那么5x°=180°,x=36°,由于∠1=∠2,故∠2=36°,∠BEM=72°, 那么∠BME=72°,所以∠BEM=∠BME 即BE=BM ,又∠1=∠5=36°, 所以BM=AM ,那么BE=AM 18.30° 19.(1)20cm (2)cm20.连AC ,可得△ABC 为等边三角形,则∠ACF=120°-60°=60°, 由已知得∠2=∠1=15°,把△ABE 绕着A 按逆时针方向旋转60 °可与△ACF 重合,这样AF=AE ,由于∠EAF=60°,故△AEF 为等边三角形,那么∠AEF=60°,由于∠AEB=180°-60°-15°=105°,故∠CEF=180°-60°-105°=15°21.略 22.6 6 6 6 23.80° 100° 80° 100° 24.100° 25.四边形ODEC 是菱形26.由∠B=∠EAD=70°,AD ∥BC ,即∠AEB=70°,那么∠1=40°,由AB=AE ,AB=AD ,得AE= AD ,即∠2=55°, 而∠AEC=180°-70°=110°,故∠DEC=110°-55°=55°, 所以ED 平分∠AEC27.通过斜边中线等于斜边的一半和菱形各边都相等的道理而推得.1212。
北师大九上数学菱形的性质和判定课堂讲义及练习(含答案)
1.1菱形的性质和判定【菱形的性质】1.菱形的定义有一组邻边相等的平行四边形叫做菱形.符号语言:∵四边形ABCD是平行四边形,且AB=BC,∴四边形ABCD是菱形 .温馨提示:①菱形必须满足两个条件:一是平行四边形;二是一组邻边相等;②菱形是特殊的平行四边形,即当一个平行四边形满足一组邻边相等时,该平行四边形是菱形,不能错误地认为有一组邻边相等的四边形就是菱形;③菱形的定义既提供了菱形的基本性质,也提供了基本判定方法。
2.菱形的性质(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都相等.(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称图形,它有两条对称轴,对角线所在直线就是它的对称轴.菱形又是中心对称图形,对角线的交点为对称中心.菱形中相等的线段:AB = CD = AD = BC.OA = OC ,OB = OD.菱形中相等的角:∠AOB = ∠DOC = ∠AOD = ∠BOC = 90°.∠ADC=∠ABC.∠DAB=∠DCB∠1 = ∠2 = ∠3 = ∠4,∠5 = ∠6 = ∠7 = ∠8.菱形中的全等三角形:全等的等腰三角形有:,全等的直角三角形有:点拨:有关菱形问题可转化为直角三角形或等腰三角形的问题来解决(转化思想).温馨提示:①菱形具有平行四边形的一切性质;②“菱形的对角线互相垂直”这一性质可用来证明两条线段互相垂直,“菱形的每一条对角线平分一组对角”这一性质可用来证明角相等;③菱形的两条对角线分菱形为四个全等的直角三角形。
1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形2.如图,菱形的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是。
3.菱形ABCD的两条对角线长分别为6和8,则它的周长和面积分别为()A. 28、48B.20、24C.28、24D.20、484.如图,在菱形ABCD中,AB=5,∠B:∠BCD=1:2,则对角线AC等于()A. 5B. 10C. 15D. 205.如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为( )A. 2B. 2C. 4D. 4第2题第3题第4题第5题6.如图,已知四边形ABCD是菱形,DE⊥AB,DF⊥BC,求证:△ADE≌△CDF.7.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF .(1)求证:四边形AECF是平行四边形;(2)若四边形AECF是菱形,且BC=10,∠BAC=90°,求BE的长.8.如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.(1)求证:AE=CF;(2)若AB=2,点E是AB中点,求EF的长.【菱形的判定】1. 菱形的判定定理(1)定义法:有一组邻边相等的平行四边形是菱形.(2)对角线互相垂直的平行四边形是菱形 .(3)四边相等的四边形是菱形 .①证明一个四边形是菱形,一般情况下,先证明它是一个平行四边形,然后要么证明“一组邻边相等”,要么证明“对角线互相垂直”.若要直接证明一个四边形是菱形,只要证明“四条边相等”即可;②对角线互相垂直平分的四边形是菱形;③对角线平分一个内角的平行四边形是菱形。
北师大版2024-2025九年级数学上(菱形的性质与判定(二))
五、课堂小结
D
有一组邻边相等
A
C 的平行四边形是菱形
B
菱形 的判定
D
┐
对角线互相垂直
A
C 的平行四边形是菱形
B
D菱形
B
六、作业
1. P9 习题1.3 第1、2题
2.思考题:在等边△ABD中,E是BD边上的中点, 连接AE并延长至点C,使得CE=AE,连接BC、 CD,你有哪些方法可以得到四边形ABCD是菱 形?
求证:四边形AFCE是菱形.
三、巩固练习
2. 已知:如图,在四边形 ABCD 中,AD = BC, 点
E、F、G、H分别是AB、CD、AC、BD 的中点.
求证: 四边形 EGFH 是菱形.
四、探究活动
如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD是菱形吗?为什么?
A
B
F
D
EC
方法一: 过点A作AE⊥CD于E,过点C作CF⊥AD于F ∵AB∥CD,AD∥BC ∴四边形ABCD是平行四边形 ∴S□ABCD=DC·AE=AD·CF 又∵两张纸条等宽 ∴AE=CF ∴AD=DC ∴四边形ABCD是菱形
第一单元 特殊平行四边形 菱形的性质与判定
(二)
【北师·数学九年级上册】
一、动手实践
1.如图,你能用一张锐角三角形纸片ABC折出 一个菱形,使∠A成为菱形一个内角吗?
二、知识回顾
平行四边形
菱形
四边形
三、巩固练习
1.已知:如图,在□ABCD中,点O是AC的中点,过 点O作AC的垂线,分别交AD、 BC于点E、F.
方法二:
过点A作AE⊥CD于E,过点C作CF⊥AD于F ∵AB∥CD,AD∥BC ∴四边形ABCD是平行四边形 ∵AE⊥CD,CF⊥AD ∴∠AED=90º=∠CFD=90º 在∆ADE和∆CDF中
第一讲 菱形的性质与判定-【暑假衔接】2021年新九年级数学暑假精品知识点(北师大版)(解析版)
第一讲 菱形的性质与判定【学习目标】1.理解菱形的定义。
2.经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的基本方法.3.了解菱形的现实应用和常用判别条件.探索并掌握菱形的判定.4.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.【基础知识】1、菱形的性质菱形的性质由平行四边形的性质+菱形的特性组成。
因此,要学习菱形的性质,在平行四边形性质各性质基础上,我们更应该熟练掌握的是菱形的特性 1). 菱形的邻边相等2).对角线互相垂直,并且每一条对角线平分一组对角; 3). 菱形面积=对角线乘积的一半; 2、矩形的判定方法分为两种途径:1).在四边形基础上证明四条边相等的四边形是菱形; 在平行四边形基础上+菱形特性: 2).邻边相等的平行四边形是菱形; 3).有对角线互相垂直的平行四边形是菱形;【考点剖析】考点一:应用菱形的性质进行计算求解例1.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE AB =,连接CE .(1)求证:四边形BECD 是平行四边形; (2)若60E ∠=︒,求BAO ∠的大小.(3)在第(2)问的基础上,且2AB =,求四边形BECD 的面积. 【答案】(1)见解析;(2)30°;(3)23【解析】(1)证明:四边形ABCD 是菱形,//AB CD AB CD ∴=,,又BE AB =,//BE CD BE CD ∴=,,∴四边形BECD 是平行四边形;(2)四边形BECD 是平行四边形,//BD CE ∴,60OBA E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9030BAO OBA ∴∠=︒-∠=︒;(3)过点C 作CF BE ⊥交BE 于F ,2AB =, 2BE ∴=,AE=4,又//BD CE AC BD ,⊥,AC CE ∴⊥, 30BAO ∠=︒, 2CE =∴,2223AC AE CE ∴=-=132CF AC ∴== ∴23BECD S BE CF 四边形=⋅= 考点二:菱形的判定例2.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 垂足为D ,AE 平分∠CAB 交CD 于点F ,交BC 于点E ,EH ⊥AB ,垂足为H ,连接FH . (1)求证:CF=CE(2)试判断四边形CFHE 的形状,并说明理由.【答案】(1)证明见解析;(2)四边形CFHE是菱形. 【解析】(1)证明:如图∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE(2)四边形CFHE是菱形理由:∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EH,由(1)CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.∵CF=CE,∴四边形CFHE是菱形.考点三:菱形与尺规作图例3.如图,平行四边形ABCD中,以B为圆心,BA的长为半径画弧,交BC于点F,作∠ABC的角平分线,交AD于点E,连接EF.(1)求证:四边形ABFE是菱形;(2)若AB=4,∠ABC=60°,求四边形ABFE的面积.【答案】(1)证明见解析;(2)83【解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBF=∠AEB,∵BE平分∠ABC,∴∠EBF=∠ABE,∴∠AEB=∠ABE,∴AB=AE,∵AB=BF,∴AE=BF,∴四边形ABFE是平行四边形,∴四边形ABFE是菱形;(2)过A作AG⊥BC,∴∠AGB=90°,∵AB=4,∠ABC=60°,∴∠BAG=30°,∴BG=2,AG=3∵BF=AB=4,∴四边形ABFE 的面积=BF•AG =83.【真题演练】1.菱形具有而平行四边形不一定具有的性质是( ) A .两组对边分别平行 B .两组对角分别相等 C .对角线互相平分 D .对角线互相垂直【答案】D 【详解】解:A 、菱形的两组对边分别平行,平行四边形的两组对边也分别平行,故此选项不符合题意; B 、菱形的两组对角分别相等,平行四边形的两组对角也分别相等,故此选项不符合题意; C 、菱形的对角线互相平分,平行四边形的对角线互相平分,故此选项不符合题意; D 、菱形的对角线互相垂直但平行四边形却无此性质,故此选项符合题意. 故选:D .2.如图,菱形ABCD 中,115∠=︒,则D ∠=( )A .130°B .125°C .120°D .150°【答案】D 【详解】∵四边形ABCD 是菱形, ∴BA =BC ,∠B =∠D , ∴∠BCA =∠1, ∵115∠=︒, ∴∠BCA =15°,∴∠B =180°-∠BCA -∠1=150°, ∴∠D =150°; 故选:D .3.如图,菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若4EF =,则菱形ABCD 的周长为( )A .8B .16C .24D .32【答案】D 【详解】∵E ,F 分别是AD ,BD 的中点 ∴EF 为DAB 的中位线 ∴2248AB EF ==⨯= 又∵ABCD 是菱形∴8AB BC CD DA ==== ∴8432ABCD C =⨯=菱形 故答案选:D.4.如图过菱形对角线的交点的任意一条直线,把菱形分成两个梯形,这两个梯形全等的理由是( )A .因为菱形是轴对称图形B .因为菱形是中心对称图形C .因为菱形既是轴对称图形又是中心对称图形D .因为菱形对角线相等且互相平分 【答案】B 【详解】解:∵菱形是中心对称图形,∴过菱形对角线的交点的任意一条直线分成两个梯形全等. 故选:B .5.如图,平行四边形ABCD 的周长是24cm ,对角线AC BD ⊥于点,若60BAD ∠=︒,则AC 的长等于( )A .3cmB .33cmC .6cmD .63cm【答案】D 【详解】解: 平行四边形ABCD 中,AC BD ⊥∴平行四边形ABCD 是菱形,平行四边形ABCD 的周长是24cm , 6cm AB ∴=60BAD ∠=︒30BAO ∴∠=︒Rt AOB 中, cos30AOAB︒=3cos306332AO AB ∴=⋅︒=⨯= 263AC AO ∴==, 故选:D .6.如图,在ABC 中,90,6,8B AB BC ∠=︒==,将ABC 沿DE 折叠,使点C 落在边AB 上的点C '处,并且//C D BC ',则CD 的长是( )A .409B .509C .154D .254【答案】A 【详解】解:设CD x =, 根据C ′D ∥BC ,∴∠C ′DE =∠DEC =∠DEC ′, ∴EC ′=DC ′, ∵EC =EC ′, ∴C ′D =EC ,可得四边形C DCE '是菱形; 即Rt ABC △中,226810AC =+=,8101010BE C E CD x '===, 45EB x =; 故可得485BC x x =+=;解得409x =. 故选:A .7.如图,在ABC 中,作以A ∠为内角,四个顶点都在ABC 边上的菱形时,如下的作图步骤是打乱的.①分别以点A ,G 为圆心,大于12AG 的长为半径在AG 的两侧作弧,两弧相交于点M ,N ; ②作直线MN 分别交AB ,AC 于点P ,Q ,连接PG ,GQ ; ③分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧相交于ABC 内一点F ,连接AF 并延长交边BC 于点G ;④以点A 为圆心,小于AC 长为半径作弧,分别交AB ,AC 于点D ,E . 则正确的作图步骤是( )A .②④①③B .④③②①C .②④③①D .④③①②【答案】D 【详解】解:正确的作图步骤是:以点A 为圆心,小于AC 长为半径作弧,分别交AB ,AC 于点D ,E ; 分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧相交于ABC 内一点F ,连接AF 并延长交边BC 于点G ;分别以点A ,G 为圆心,大于12AG 的长为半径在AG 的两侧作弧,两弧相交于点M ,N ; 作直线MN 分别交AB ,AC 于点P ,Q ,连接PG ,GQ 故答案为:D .8.如图,在菱形ABCD 中,点E 在CD 上,若AE =AC ,∠B =48°,则∠BAE 的大小为_____.【答案】114° 【详解】∵四边形ABCD 是菱形,//AB CD ∴,CA 平分BCD ∠.∵∠B =48°,18048132BCD ∴∠=︒-︒=︒,1662ACE BCD ∴∠=∠=︒. ∵AE =AC ,66AEC ACE ∴∠=∠=︒,180114BAE AEC ∴∠=︒-∠=︒,故答案为:114°.9.若菱形的周长为20,一条对角线长为6,则另一条对角线长为_______. 【答案】8【详解】解:如图,∵菱形的周长为20,∴AB=AD=CD=BC=5,AO=CO=3,AC⊥BD,BO=DO,∴BO=224AB AO-=∴BD=8,故答案为:8.10.一个菱形的边长为5,两条对角线的长度之和为14,则此菱形的面积为___________.【答案】24【详解】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=12AC,DO=BO=12BD,AC⊥BD,∵AC+BD=14,∴OD+AO=7①,∵∠AOB=90°,∴OD2+OA2=25②,由①②两式可得49-2OD•OA=25,解得:OD•OA=12,∴BD•AC=2OD•2OA=4OD•OA,∴菱形面积=12BD•AC=2OD•OA=24.故答案为:24.11.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD的面积是_____cm2.【答案】96【详解】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=12AC=6cm,OB=OD,∴OB=2222106AB OA-=-=8(cm),∴BD=2OB=16cm,∴S菱形ABCD=12AC•BD=12×12×16=96(cm2).故答案为:96.12.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AM⊥CD于点M,已知AC=6,BD=8,则AM=_____.【答案】24 5【详解】解:∵四边形是ABCD菱形,∴AC⊥BD,142OD BD==,1=32OC AC=,11==68=2422ABCDS AC BD⨯⨯菱形,∴△DOC是直角三角形,∴225 CD OD OC=+=,∵AM⊥CD,∴=ABCD S AM CD 菱形, ∴245AM =. 故答案为:24513.如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且∠BAE =∠DAF .求证:AE =AF .【答案】见解析 【详解】证明:∵四边形ABCD 是菱形, ∴∠B =∠D ,AB=AD , 在△ABE 和△ADF 中,B D AB AD BAE DAF ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABE ≌△ADF (ASA ), ∴AE =AF .14.已知:如图,△ABC 为锐角三角形,AB >AC . 求作:BC 边上的高AD .作法:①以点A 为圆心,AB 长为半径画弧,交BC 的延长线于点E ;②分别以点B ,E 为圆心,以AB 长为半径画弧,两弧相交于点F (不与点A 重合); ③连接AF 交BC 于点D . 线段AD 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接AE,EF,BF.∵AB=AE= EF = BF,∴四边形ABFE是_______(________)(填推理依据).∴AF⊥BE.即AD是△ABC中BC边上的高.【答案】(1)见解析;(2)菱形,四条边相等的四边形是菱形【详解】(1)依作法补全图形,如下图.(2)菱形.四条边相等的四边形是菱形.故答案为:菱形,四条边相等的四边形是菱形.15.如图,在四边形ABCD中,AB=AD,CB=CD,点F是AC上一点,连接BF、DF.(1)证明:△ABF≌△ADF;(2)若AB//CD,试证明四边形ABCD是菱形.【答案】(1)见解析;(2)见解析.【详解】(1)证明:在△ABC和△ADC中,∵AB AD AC AC BC DC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB ADBAF DAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△ADF(SAS);(2)解:∵AB∥CD,∴∠BAC=∠DCA,∵△ABF≌△ADF,∴∠BAF=∠DAC,∴∠DAC=∠DCA,∴AD=DC,∵AB=AD,∴AB=DC,又AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴平行四边形ABCD是菱形.16.如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且与AE交于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AC=6,BD=8,AM⊥BC于M,求AM的长.【答案】(1)见解析;(2)24 5【详解】(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,AO=12AC=3,BO=12BD=4,∴AB5,∴BC=AB=5,∴BC•AM=12 AC•BD,即5AM=12×6×8,∴AM=245.【过关检测】1.下面性质中,菱形不一定具备的是()A.四条边都相等B.每一条对角线平分一组对角C.邻角互补D.对角线相等【答案】D【解析】A. 菱形的四条边都相等,说法正确,不符合题意;B. 菱形的每一条对角线平分一组对角,说法正确,不符合题意;C. 菱形的邻角互补,说法正确,不符合题意;D. 菱形的对角线不一定相等,说法不正确,符合题意.故选D.2.如图,菱形ABCD 中,点E ,F 分别是AC ,DC 的中点.若EF =5,则菱形ABCD 的周长为( )A .15B .20C .30D .40【答案】D【解析】解:∵E 、F 分别是AC 、DC 的中点, ∴EF 是△ADC 的中位线, ∴AD =2EF =2×5=10, ∴菱形ABCD 的周长=4AD =4×10=40. 故选:D .3.如图,菱形 ABCD 的顶点 C 在直线 MN 上,若∠1=50°,∠2=20°,则∠BDC 的度数为()A .20°B .30°C .35°D .40°【答案】C【解析】∵∠1=50°,∠2=20° ∴18012110BCD ︒︒∠=-∠-∠= ∵四边形ABCD 为菱形 ∴BC BD = ∴1(180)352BDC BCD ︒︒∠=-∠= 故选:C .4.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,下列结论:①AC ⊥BD ;②OA=OB ;③∠ADB=∠CDB ;④△ABC 是等边三角形,其中一定成立的是( )A .①②B .③④C .②③D .①③【答案】D【解析】根据菱形的对角线互相垂直平分可得:①正确;②错误;根据菱形的对角线平分一组内角可得③正确.④错误.故选D .5.已知菱形的边长为6cm ,一个内角为60°,则菱形较短的对角线长是( ) A .6cm B .63cmC .3cmD .33cm【答案】A【解析】如图,四边形ABCD 是边长为6cm 的菱形,且60BAD ∠=︒则1116,,,,30222AD cm OA AC OD BD AC BD DAO BAD ===⊥∠=∠=︒ 在Rt AOD △中,2213,332OD AD cm OA AD OD cm ===-=26,263BD OD cm AC OA cm ∴====663cm cm <∴菱形较短的对角线长是6cm故选:A .6.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A .∠ABC =∠ADC ,∠BAD =∠BCDB .AB =BCC .AB =CD ,AD =BC D .∠DAB +∠BCD =180°【答案】D 【解析】解:四边形ABCD 是用两张等宽的纸条交叉重叠地放在一起而组成的图形,//AB CD ∴,//AD BC ,∴四边形ABCD 是平行四边形(对边相互平行的四边形是平行四边形);过点D 分别作BC ,CD 边上的高为AE ,AF .则AE AF =(两纸条相同,纸条宽度相同);平行四边形ABCD 中,ABC ACD S S ∆∆=,即⨯=⨯BC AE CD AF ,BC CD ∴=,即AB BC =.故B 正确;∴平行四边形ABCD 为菱形(邻边相等的平行四边形是菱形).ABC ADC ∠=∠∴,BAD BCD ∠=∠(菱形的对角相等),故A 正确; AB CD =,AD BC =(平行四边形的对边相等),故C 正确;如果四边形ABCD 是矩形时,该等式成立.故D 不一定正确. 故选:D .7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点C 作CE ⊥AD 于点E ,连接OE ,若OB =8,S 菱形ABCD=96,则OE 的长为( )A .3B .5C .6D .8【答案】C【解析】∵四边形ABCD 是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=16,∵S菱形ABCD═12AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=12AC=6,故选C.8.如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B,F为圆心,以大于BF的长为半径画弧交于点G,做射线AG交BC与点E,若BF=12,AB=10,则AE的长为().A.17 B.16 C.15 D.14【答案】B【解析】由尺规作图的过程可知,直线AE是线段BF的垂直平分线,∠FAE=∠BAE,∴AF=AB,EF=EB,∵AD∥BC,∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴BA=BE,∴BA=BE=AF=FE,∴四边形ABEF是菱形,∴AE⊥BF∵BF=12,AB=10,∴BO=12BF=6∴228AB BO-=∴AE=2AO=16 故选B .9.如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=70°,则∠EDC 的大小为______.【答案】15°【解析】解:根据菱形的对角相等得∠ADC=∠B=70°. ∵AD=AB=AE , ∴∠AED=∠ADE .根据折叠得∠AEB=∠B=70°. ∵AD ∥BC ,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE )÷2=55°. ∴∠EDC=70°-55°=15°. 故答案为:15°. 10.如图所示,菱形ABCD 的对角线的长分别为3和6,P 是对角线AC 上任一点(点P 不与点,A C 重合),且//PE BC 交AB 于,E //PF CD 交AD 于,F 则阴影部分的面积是_______.【答案】92【解析】解:如下图所示,设AP 与EF 相交于O 点,∵四边形ABCD 为菱形,∴BC//AD ,AB//CD ,∵PE//BC ,PF//CD ,∴PE//AF ,PF//AE .∴四边形AEFP 是平行四边形,∴POF AOE S =S △△,且∵菱形ABCD 对角线长分别为3、6, ∴ABCD 1S =36=92⨯⨯菱形, ∴ABC ABCD 19S =S =S =22△阴影菱形, 故答案为:92. 11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,AE ∥BD ,OE 与AB 交于点F. (1)试判断四边形AEBO 的形状,并说明理由;(2)若OE=10,AC=16,求菱形ABCD 的面积.【答案】(1)四边形AEBO 为矩形,理由见解析(2)96【解析】(1)四边形AEBO 为矩形,理由如下:∵菱形ABCD 的对角线AC 、BD 相交于点O∴AC ⊥BD ,∵BE ∥AC ,AE ∥BD ,∴BE ⊥BD ,AE ⊥AC ,∴四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形∴AB=OE=10,∵AO=AC=8,∴OB=∴BD=12,故S 菱形ABCD =AC×BD=×16×12=96 12.某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m ),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)【答案】需要()21210+m 的铁棍. 【解析】由题意,知两个大菱形的边长为:2210.60.2105+= (m) . 小菱形的边长为:2210.30.11010+=(m) . 所以三个菱形的周长的和为:11108104210510⨯+⨯=(m) . 所以所需铁棍的总长为:1.8×9+2.4×2+210=()21210+m . 答:需要()21210+m 的铁棍.13.作图题:如图在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB 、BC 为边的菱形,并完成填空:点D 的坐标是 ,线段BC 的长是 ;(2)请计算菱形ABCD 的面积.【答案】(1)(2,1)D -,BC 17=;(2)15.【解析】解:(1)如图所示:(2,1)D -,BC =221417+=;(2)111224433141415222B ABCD A C S S ⎛⎫==⨯-⨯⨯-⨯⨯-⨯⨯= ⎪⎝⎭=菱形. 14.如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点O 的直线EF 与AB 、CD 分别交于点E 、F ,连接DE 、BF .(1)求证:四边形BEDF 是平行四边形;(2)若AD =4, AC =8,且OF =CF ,求四边形BEDF 的面积【答案】(1)详见解析;(2)3233【解析】解:(1)在矩形ABCD 中,OB =OD ,CD ∥AB ,∴∠FDO =∠EBO ,在△OFD与△OEB中FDO EBODOF BOE OD OB∠∠∠∠⎧⎪⎨⎪⎩===,∴△OFD≌△OEB(AAS),∴OF=OE,∵OB=OD,∴四边形BEDF是平行四边形;(2)在矩形ABCD中,AD=4,AC=8,∴AD=OA=OD=4,∴△AOD是等边三角形,∴∠DCA=30°,∠DOA=60°,∵OF=CF,∴∠FOC=∠FCO=30°,∴∠DOF=90°,∴四边形BEDF是菱形,在Rt△DOF中,∠FDO=30°,OD=4,∴OF∵AC=BD=8,∴菱形BEDF的面积为:12BD•2OF=BD•OF.。
专题1-1 菱形的性质与判定-重难点题型(举一反三)(北师大版)(解析版)
专题1.1 菱形的性质与判定-重难点题型【北师大版】【题型1 菱形的性质(求角度)】【例1】(2020秋•萍乡期末)如图,四边形ABCD为菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.20°B.25°C.30°D.35°【分析】先根据菱形的性质得OD=OB,AB∥CD,BD⊥AC,则利用DH⊥AB得到DH⊥CD,∠DHB =90°,所以OH为Rt△DHB的斜边DB上的中线,得到OH=OD=OB,利用等腰三角形的性质得∠1=∠DHO,然后利用等角的余角相等即可求出∠DHO的度数.【解答】解:如图:∵ABCD是菱形∴AD=AB,BO=OD,∴∠BAD=2∠CAD=50°∴∠ABD=(180°﹣∠BAD)÷2=65°∵DH⊥AB,BO=DO∴HO=DO∴∠DHO=∠BDH=90°﹣∠ABD=25°故选:B.【点评】本题考查菱形的性质,直角三角形斜边中线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式1-1】(2021•南岗区模拟)如图,在菱形纸片ABCD中,∠A=60°,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C′处,则∠DEC的大小为()A.30°B.45°C.60°D.75°【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,如图所示:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P 为AB 的中点,∴DP 为∠ADB 的平分线,即∠ADP =∠BDP =30°,∴∠PDC =90°,∴由折叠的性质得到∠CDE =∠PDE =45°,在△DEC 中,∠DEC =180°﹣(∠CDE +∠C )=75°.故选:D .【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.【变式1-2】(2021春•海淀区校级期中)如图,在菱形ABCD 中,点M 、N 分别交于AB 、CD 上,AM =CN ,MN 与AC 交于点O ,连接BO .若∠OBC =62°,则∠DAC 为 °.【分析】由全等三角形的性质可证△AOM ≌△CON ,可得AO =CO ,由等腰三角形的性质可得BO ⊥AC ,即可求解.【解答】解:∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC ,BC ∥AD ,∴∠MAO =∠NCO ,∠BCA =∠CAD ,在△AOM 和△CON 中,{∠MAO =∠NCO ∠AOM =∠CON AM =CN,∴△AOM ≌△CON (AAS ),∴AO =CO ,又∵AB =BC ,∴BO ⊥AC ,∴∠BCO =90°﹣∠OBC =28°=∠DAC ,故答案为:28.【点评】本题考查了菱形的性质,全等三角形的判定和性质,掌握菱形的性质是本题的关键.【变式1-3】(2021春•汉阳区期中)如图,在菱形ABCD 中,∠BAD =110°,AB 的垂直平分线交AC 于点N ,点M 为垂足,连接DN ,则∠CDN 的大小是 .【分析】根据菱形的性质得出DC =BC ,∠DCN =∠BCN ,∠CAB =12∠DAB =55°,∠ABC =∠ADC ,DC ∥AB ,求出∠ADC =∠ABC =70°,根据全等三角形的判定得出△DCN ≌△BCN ,根据全等三角形的性质得出∠CDN =∠CBN ,根据线段垂直平分线的性质得出AN =BN ,求出∠NBA =∠CAB =55°,再求出答案即可.【解答】解:连接BN ,∵四边形ABCD 是菱形,∴DC =BC ,∠DCN =∠BCN ,∠CAB =12∠DAB =12×110°=55°,∠ABC =∠ADC ,DC ∥AB , ∴∠CDA +∠DAB =180°,∵∠BAD =110°,∴∠ADC =180°﹣110°=70°,∴∠ABC =70°,在△DCN 和△BCN 中,{DC =BC ∠DCN =∠BCN CN =CN,∴△DCN ≌△BCN (SAS ),∴∠CDN =∠CBN ,∵MN是AB的垂直平分线,∴AN=BN,∴∠NBA=∠CAB=55°,∴∠CDN=∠CBN=∠ABC﹣∠NBA=70°﹣55°=15°,故答案为:15°.【点评】本题考查了平行线的性质,菱形的性质,线段垂直平分线的性质,等腰三角形的性质,全等三角形的性质和判定等知识点,能综合运用知识点进行推理和计算是解此题的关键.【题型2 菱形的性质(求长度)】【例2】(2020秋•遂川县期末)如图,在菱形ABCD中,BC=10,点E在BD上,F为AD的中点,FE ⊥BD,垂足为E,EF=4,则BD长为()A.8B.10C.12D.16【分析】连接AC交BD于O,由菱形的性质得OB=OD,AD=BC=10,AC⊥BD,再证EF是△AOD 的中位线,得OA=2EF=8,然后由勾股定理求出OD=6,即可求解.【解答】解:连接AC交BD于O,如图所示:∵四边形ABCD是菱形,∴OB=OD,AD=BC=10,AC⊥BD,∵FE⊥BD,∴FE∥AC,∵F为AD的中点,∴EF是△AOD的中位线,∴OA=2EF=8,∴OD=√AD2−OA2=√102−82=6,∴BD=2OD=12,故选:C.【点评】本题考查了菱形的性质、三角形中位线定理以及勾股定理等知识;熟练掌握菱形的性质和三角形中位线定理是解题的关键.【变式2-1】(2021春•武汉期中)如图四边形ABCD 为菱形,点E 为BC 的中点,点F 在CD 上,若∠DAB =60°,∠DF A =2∠EAB ,AD =4,则CF 的长为( )A .45B .45√3C .65D .85 【分析】延长AE ,DC 交点于点G ,过点F 作FH ⊥AD ,交AD 的延长线于H ,由平行线的性质和等腰三角形的判定可得AF =FG ,由“AAS ”可证△CEG ≌△BEA ,可得AB =CG =4,利用勾股定理可求解.【解答】解:延长AE ,DC 交于点G ,过点F 作FH ⊥AD ,交AD 的延长线于H ,∵CD ∥AB ,∴∠EAB =∠G ,∠DAB =∠HDF =60°,∵∠DF A =2∠EAB =∠G +∠F AG ,∴∠G =∠F AG ,∴AF =FG ,∵点E 为BC 的中点,∴BE =CE ,在△CEG 和△BEA 中,{∠G =∠BAE ∠CEG =∠AEB CE =BE,∴△CEG ≌△BEA (AAS ),∴AB =CG =4,设DF =x ,∴FC =4﹣x ,∴FG =8﹣x =AF ,∵HF ⊥AD ,∠HDF =60°,∴∠DFH =30°,∴DH =12x ,HF =√32x ,∵AF 2=HF 2+AH 2,∴(8﹣x )2=34x 2+(4+12x )2,∴x =125,∴CF =85,故选:D .【点评】本题考查了菱形的性质,全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.【变式2-2】(2020秋•黄岛区期末)如图,在菱形ABCD 中,AB =13cm ,AC =24cm ,E ,F 分别是CD 和BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG 的长度为 10 cm .【分析】连接对角线BD ,交AC 于点O ,证四边形BDEG 是平行四边形,得EG =BD ,利用勾股定理求出OD 的长,BD =2OD ,即可求出EG .【解答】解:连接BD ,交AC 于点O ,如图:∵菱形ABCD的边长为13cm,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13cm,EF∥BD,∵AC、BD是菱形的对角线,AC=24cm,∴AC⊥BD,AO=CO=12cm,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,∵OB=OD=√AD2−AO2=√169−144=5(cm),∴BD=2OD=10(cm),∴EG=BD=10(cm),故答案为:10.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.【变式2-3】(2021春•洪山区期中)如图,在菱形ABCD中,AB=BD,点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G,若BG=3,DG=5,则CD=.【分析】先证△BCD是等边三角形,可得∠C=∠CBD=60°,由“SAS”可证△BED≌△CFB,可得∠CBF=∠BDE,由直角三角形的性质可求BH,DH的长,由勾股定理可求解.【解答】解:如图,过点D作DH⊥BF于H,∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∵AB =BD ,∴AB =BC =CD =AD =BD ,∴△BCD 是等边三角形,∴∠C =∠CBD =60°,在△BED 和△CFB 中,{BD =BC ∠CBD =∠C BE =CF,∴△BED ≌△CFB (SAS ),∴∠CBF =∠BDE ,∴∠DGF =∠FBD +∠GDB =∠FBD +∠CBF =60°,∵DH ⊥BF ,∴∠GDH =30°,∴GH =12DG =52,DH =√3GH =5√32,∴BH =BG +GH =112,∴BD =√BH 2+DH 2=√1214+754=7, ∴CD =BD =7,故答案为7.【点评】本题考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.【题型3 菱形的性质(等积法)】【例3】(2021•雁塔区校级模拟)如图,菱形ABCD 的对角线AC ,BD 交于点O .过O 作OE ⊥AB 于点E .延长EO 交CD 于点F ,若AC =8,BD =6,则EF 的值为( )A .5B .125 C .245 D .485【分析】由在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =6,AC =8,可求得菱形的面积与边长,继而求得答案.【解答】解:在菱形ABCD 中,BD =6,AC =8,∴OB =12BD =3,OA =12AC =4,AC ⊥BD ,∴AB =√OA 2+BO 2=√32+42=5,∵S 菱形ABCD =12AC •BD =AB •EF ,即12×6×8=5EF , ∴EF =245.故选:C .【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半或底乘以高.【变式3-1】(2020秋•南山区期末)如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,且AC =6,BD =8,过A 点作AE 垂直BC ,交BC 于点E ,则BECE 的值为( )A .512 B .725 C .718 D .524 【分析】利用菱形的性质即可计算得出BC 的长,再根据面积法即可得到AE 的长,最后根据勾股定理进行计算,即可得到BE 的长,进而得出结论.【解答】解:∵四边形ABCD 是菱形,∴CO =12AC =3,BO =12BD =4,AO ⊥BO ,∴BC =√CO 2+BO 2=√32+42=5,∵S 菱形ABCD =12AC •BD =BC ×AE ,∴AE =12×6×85=245.在Rt △ABE 中,BE =√AB 2−AE 2=√52−(245)2=75, ∴CE =BC ﹣BE =5−75=185,∴BE CE 的值为718,故选:C .【点评】本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形的四条边都相等;菱形的两条对角线互相垂直平分.【变式3-2】(2021春•无锡期中)如图,在菱形ABCD 中,AB =10,AC =16,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为 .【分析】利用菱形的性质以及勾股定理,求得OB 的长,继而可求得BD 的长,然后由菱形的面积公式可求得线段DE 的长.【解答】解:如图,设AC 与BD 的交点为O ,∵四边形ABCD是菱形,∴AO=OC=8,BO=DO,AC⊥BD,∴BO=√AB2−AO2=√100−64=6,∴BD=12,∵S菱形ABCD=AB•DE=12AC•BD,∴DE=16×1220=9.6,故答案为9.6.【点评】此题考查了菱形的性质、勾股定理.注意菱形的对角线互相垂直平分.【变式3-3】(2021•天津二模)如图,在菱形ABCD中,∠ADC=120°,AB=3,点E在BC上,且BE =2EC,BF⊥AE,垂足为F,则BF的值为.【分析】过E作EM⊥AB,交AB延长线于M,根据菱形的性质求出BC=3,求出BE=2,求出∠BEM =30°,根据含30°角的直角三角形的性质求出BM,根据勾股定理求出EM,求出AE,根据三角形的面积求出答案即可.【解答】解:过E作EM⊥AB,交AB延长线于M,则∠EMB=90°,∵四边形ABCD是菱形,AB=3,∠ADC=120°,∴∠D=∠ABC=120°,BC=AB=3,∴∠EBM =60°,∴∠BEM =90°﹣∠EBM =30°,∵BE =2EC ,BC =3,∴BE =2,∴BM =12BE =1,由勾股定理得:EM =√BE 2−BM 2=√22−12=√3,∴AM =AB +BM =4,由勾股定理得:AE =√AM 2+EM 2=√42+(√3)2=√19,∵S △ABE =12×AE ×BF =12×AB ×EM , ∴√19×BF =3×√3,解得:BE =3√5719,故答案为:3√5719. 【点评】本题考查了菱形的性质,三角形的面积,直角三角形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.【题型4 菱形的判定(选择条件)】【例4】(2021春•岳麓区校级月考)在四边形ABCD 中,对角线AC ,BD 相交于点O ,且OA =OC ,OB =OD .若要使四边形ABCD 为菱形,则可以添加的条件是( )A .∠AOB =60° B .AC ⊥BD C .AC =BD D .AB ⊥BC【分析】由条件OA =OC ,OB =OD 根据对角线互相平分的四边形是平行四边形可得四边形ABCD 为平行四边形,再由矩形和菱形的判定定理即可得出结论.【解答】解:∵OA =OC ,OB =OD ,∴四边形ABCD 为平行四边形,A 、∵∠AOB =60°,∴不能得出四边形ABCD 是菱形;选项A 不符合题意;B、∵AC⊥BD,∴四边形ABCD是菱形,故选项B符合题意;C、∵AC=BD,∴四边形ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴四边形ABCD是矩形,故选项D不符合题意;故选:B.【点评】此题主要考查了菱形的判定、矩形的判定;关键是掌握对角线互相垂直的平行四边形是菱形.【变式4-1】(2021春•静海区月考)已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有()A.①③B.②③C.③④D.①②③【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【解答】解:①▱ABCD中,AC⊥BD,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD是菱形;故①正确;②▱ABCD中,∠BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故②错误;③▱ABCD中,AB=BC,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD是菱形;故③正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形;故④错误.故选:A.【点评】此题考查了菱形的判定与矩形的判定定理.此题难度不大,注意掌握菱形的判定定理是解此题的关键.【变式4-2】(2021•莲湖区二模)如图,在▱ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是菱形,这个条件是()A.OM=12AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND【分析】由平行四边形的性质可知:OA=OC,OB=OD,再证明OM=ON即可证明四边形AMCN是平行四边形,由对角线互相垂直的平行四边形可得到菱形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵BD⊥AC,∴MN⊥AC,∴四边形AMCN是菱形.故选:C.【点评】本题考查了菱形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.【变式4-3】(2021春•上城区校级期中)如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是菱形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AB=AC,那么四边形AEDF是菱形.其中,正确的有.(只填写序号)【分析】根据平行四边形的判定和菱形的判定解答即可.【解答】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,故①正确;∵∠BAC=90°,四边形AEDF是平行四边形,∴四边形AEDF是矩形,故②错误;∵AD平分∠BAC,四边形AEDF是平行四边形,∴四边形AEDF是菱形,故③正确;∵AB=AC,四边形AEDF是平行四边形,不能得出AE=AF,故四边形AEDF不一定是菱形,故④错误;故答案为:①③.【点评】此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.【题型5 菱形的判定(证明题)】【例5】(2021•南京二模)如图,在▱ABCD中,点E、F在对角线BD上,BE=DF.(1)求证:四边形AECF是平行四边形;(2)若BD平分∠ABC,求证:四边形AECF是菱形.【分析】(1)由平行四边形的性质得OA=OC,OB=OD,再证OE=OF,即可得出结论;(2)根据对角线互相垂直的平行四边形是菱形即可证明.【解答】证明:(1)如图,连接AC,与BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=FD,∴OB﹣BE=OD﹣DF,即OE=OF.∴四边形AECF是平行四边形;(2)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,即AC⊥EF;由(1)得:四边形AECF是平行四边形,∴四边形AECF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定与性质、等腰三角形的判定等知识;熟练掌握菱形的判定与性质和平行四边形的判定与性质是解题的关键.【变式5-2】(2021•浦东新区二模)已知:如图,在四边形ABCD中,AB∥DC,对角线AC、BD交于点O,过点C作CE⊥CD交AB的延长线于点E,联结OE,OC=OE.(1)求证:OE=12AC;(2)如果DB平分∠ADC,求证:四边形ABCD是菱形.【分析】(1)过O作OF⊥CE于F,由等腰三角形的性质得CF=EF,再证OF是△ACE的中位线,得OA=OC,即可得出结论;(2)证△AOB≌△OCD(ASA),得OB=OD,则四边形ABCD是平行四边形,再证BC=DC,即可得出结论.【解答】证明:(1)过O作OF⊥CE于F,如图所示:∵OC=OE,∴CF=EF,∵OF⊥CE,CE⊥CD,∴OF∥CD,∵AB∥DC,OF∥AB,∴OF∥AB,∴OF 是△ACE 的中位线,∴OA =OC ,∴OE =12AC ;(2)∵AB ∥DC ,∴∠OAB =∠OCD ,在△AOB 和△OCD 中,{∠OAB =∠OCD OA =OC ∠AOB =∠COD,∴△AOB ≌△OCD (ASA ),∴OB =OD ,∴四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADB =∠CBD ,∵DB 平分∠ADC ,∴∠ADB =∠CDB ,∴∠CBD =∠CDB ,∴BC =DC ,∴平行四边形ABCD 是菱形.【点评】本题考查了菱形的判定、平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的判定和等腰三角形的判定与性质是解题的关键.【变式5-3】(2021•玄武区一模)如图,在平行四边形ABCD 中,E ,F 是对角线BD 上的点,且BE =DF ,连接AE ,CF .(1)求证△ADE ≌△CBF ;(2)连接AF ,CE ,若AB =AD ,求证:四边形AFCE 是菱形.【分析】(1)由“SAS ”可证△ADE ≌△CBF ;(2)先证四边形ABCD 是菱形,AC ⊥BD ,AO =CO ,BO =DO ,可得EO =FO ,即可得结论.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ADE =∠CBF ,∵BE =DF ,∴BF =DE ,在△ADE 和△CBF 中,{AD =CB ∠ADE =∠CBF DE =BF,∴△ADE ≌△CBF (SAS );(2)连接AC ,交BD 于点O ,∵AB =AD ,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∵BE =DF ,∴EO =FO ,∴四边形AECF 是平行四边形,又∵AC ⊥BD ,∴四边形AECF 是菱形.【点评】本题考查了菱形的判定和性质,平行四边形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.【变式5-3】(2021•余杭区一模)如图,在平行四边形ABCD 中,点O 是BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =50°,则当∠ADE = °时,四边形BECD 是菱形.【分析】(1)由AAS 证明△BOE ≌△COD ,得出OE =OD ,即可得出结论;(2)先由平行四边形的性质得∠BCD =∠A =50°,AB ∥CD ,则∠ADC =180°﹣∠A =130°,再由菱形的性质得BC ⊥DE ,则∠COD =90°,得∠ODC =90°﹣∠BCD =40°,即可求解.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,AB =CD ,∴∠OEB =∠ODC ,又∵O 为BC 的中点,∴BO =CO ,在△BOE 和△COD 中,{∠OEB =∠ODC ∠BOE =∠COD BO =CO,∴△BOE ≌△COD (AAS );∴OE =OD ,∴四边形BECD 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,∴∠BCD =∠A =50°,AB ∥CD ,∴∠ADC =180°﹣∠A =130°,∵四边形BECD是菱形,∴BC⊥DE,∴∠COD=90°,∴∠ODC=90°﹣∠BCD=40°,∴∠ADE=∠ADC﹣∠ODC=90°,故答案为:90.【点评】此题主要考查了菱形的判定,平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.【题型6 菱形的判定与性质综合(最值问题)】【例6】(2020春•如东县期末)如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.3√3B.3+3√3C.6+√3D.6√3【分析】过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE=√AD2−AE2=√62−32=3√3,∴2DE=6√3.∴MA+MB+MD的最小值是6√3.故选:D.【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.【变式6-1】(2020•瑶海区二模)如图,菱形ABCD的边长为2√3,∠ABC=60°,点E、F在对角线BD 上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4B.4+√3C.2+2√3D.6【分析】如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,进而得出△AEF 周长的最小值即可.【解答】解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,即△AEF 的周长最小.∵AH=EF,AH∥EF,∴四边形EFHA是平行四边形,∴EA=FH,∵F A=FC,∴AE+AF=FH+CF=CH,∵菱形ABCD的边长为2√3,∠ABC=60°,∴AC=AB=2√3,∵四边形ABCD 是菱形,∴AC ⊥BD ,∵AH ∥DB ,∴AC ⊥AH ,∴∠CAH =90°,在Rt △CAH 中,CH =√AC 2+AH 2=√(2√3)2+22=4,∴AE +AF 的最小值4,∴△AEF 的周长的最小值=4+2=6,故选:D .【点评】本题考查轴对称﹣最短问题,菱形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.【变式6-2】(2020•寿光市二模)如图所示,四边形ABCD 中,AC ⊥BD 于点O ,AO =CO =4,BO =DO =3,点P 为线段AC 上的一个动点.过点P 分别作PM ⊥AD 于点M ,作PN ⊥DC 于点N .连接PB ,在点P 运动过程中,PM +PN +PB 的最小值等于 .【分析】证四边形ABCD 是菱形,得CD =AD =5,连接PD ,由三角形面积关系求出PM +PN =4.8,得当PB 最短时,PM +PN +PB 有最小值,则当BP ⊥AC 时,PB 最短,即可得出答案.【解答】解:∵AO =CO =4,BO =DO =3,∴AC =8,四边形ABCD 是平行四边形,∵AC ⊥BD 于点O ,∴平行四边形ABCD 是菱形,AD =√AO 2+DO 2=√42+32=5,∴CD =AD =5,连接PD ,如图所示:∵S △ADP +S △CDP =S △ADC ,∴12AD •PM +12DC •PN =12AC •OD ,即12×5×PM +12×5×PN =12×8×3, ∴5×(PM +PN )=8×3,∴PM +PN =4.8,∴当PB 最短时,PM +PN +PB 有最小值,由垂线段最短可知:当BP ⊥AC 时,PB 最短,∴当点P 与点O 重合时,PM +PN +PB 有最小值,最小值=4.8+3=7.8,故答案为:7.8.【点评】本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理、最小值问题以及三角形面积等知识;熟练掌握菱形的判定与性质是解题的关键.【变式6-3】(2020春•赣州期末)如图所示,在菱形ABCD 中,AB =4,∠BAD =120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC 、CD 上滑动,且E 、F 不与B 、C 、D 重合.(1)证明不论E 、F 在BC 、CD 上如何滑动,总有BE =CF ;(2)当点E 、F 在BC 、CD 上滑动时,分别探讨四边形AECF 的面积和△CEF 的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.【分析】(1)(1)先求证AB =AC ,进而求证△ABC 、△ACD 为等边三角形,得∠4=60°,AC =AB 进而求证△ABE ≌△ACF ,即可求得BE =CF ;(2)根据△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC 即可解题;由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的周长会随着AE 的变化而变化,求出当AE 最短时,△CEF 的周长即可.【解答】解:(1)如图,连接AC ,∵四边形ABCD 为菱形,∠BAD =120°,∴∠BAC =60°,∵△AEF 是等边三角形,∴∠EAF =60°,∴∠1+∠EAC =60°,∠3+∠EAC =60°,∴∠1=∠3,∵∠BAD =120°,∴∠ABC =60°,∴△ABC 和△ACD 为等边三角形,∴∠4=60°,AC =AB ,∴在△ABE 和△ACF 中,{∠1=∠3AB =AC ∠ABC =∠4,∴△ABE ≌△ACF (ASA ).∴BE =CF ;(2)四边形AECF 的面积不变,△CEF 的周长发生变化.理由如下:由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF ,故S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值,作AH ⊥BC 于H 点,则BH =2,S 四边形AECF =S △ABC =12BC ⋅AH =12BC ⋅√AB 2−BH 2=4√3.△CEF 的周长=CE +CF +EF =CE +BE +EF =BC +EF =BC +AE由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的周长会随着AE 的变化而变化,且当AE 最短时,△CEF 的周长会最小=4+√AB 2−BH 2=4+2√3.【点评】本题考查了菱形的性质;三角形全等的判定与性质;垂线段的性质等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.【题型7 菱形的判定与性质综合(多结论问题)】【例7】(2020春•中山市校级月考)如图,▱ABCD中,对角线AC、BD相交于点O,AD=12AC,M、N、P分别是OA、OB、CD的中点,下列结论:①CN⊥BD;②MN=NP;③四边形MNCP是菱形;④ND平分∠PNM.其中正确的有()A.1 个B.2 个C.3 个D.4 个【分析】证出OC=BC,由等腰三角形的性质得CN⊥BD,①正确;证出MN是△AOB的中位线,得MN∥AB,MN=12AB,由直角三角形的性质得NP=12CD,则MN=NP,②正确;周长四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;由平行线的性质和等腰三角形的性质证出∠MND=∠PND,则ND平分∠PNM,④正确;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,OA=OC=12AC,∵AD=12AC,∴OC=BC,∵N是OB的中点,∴CN⊥BD,①正确;∵M、N分别是OA、OB的中点,∴MN是△AOB的中位线,∴MN∥AB,MN=12AB,∵CN⊥BD,∴∠CND=90°,∵P是CD的中点,∴NP=12CD=PD=PC,∴MN=NP,②正确;∵MN∥AB,AB∥CD,∴MN∥CD,又∵NP=PC,MN=NP,∴MN=PC,∴四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;∵MN∥CD,∴∠PDN=∠MND,∵NP=PD,∴∠PDN=∠PND,∴∠MND=∠PND,∴ND平分∠PNM,④正确;正确的个数有3个,故选:C.【点评】本题考查了平行四边形性质和判定,三角形中位线定理,直角三角形斜边上的中线性质,等腰三角形的性质等;熟练掌握三角形中位线定理、等腰三角形的性质、直角三角形斜边上的中线性质是解题的关键.【变式7-1】(2020春•如东县校级月考)如图,平行四边形ABCD中,对角线AC,BD交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.下列结论正确的是()①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG 是菱形.A .③⑤B .①②④C .①②③④D .①②③④⑤ 【分析】由中点的性质可得出EF ∥CD ,且EF =12CD =BG ,结合平行即可证得②正确,由BD =2BC 得出BO =BC ,即而得出BE ⊥AC ,由中线的性质可知GP ∥BE ,且GP =12BE ,AO =EO ,证△APG ≌△EPG 得出AG =EG =EF 得出①正确,再证△GPE ≌△FPE 得出④再求,证出四边形BEFG 是平行四边形,⑤③不正确;此题得解.【解答】解:设GF 和AC 的交点为点P ,如图:∵E 、F 分别是OC 、OD 的中点,∴EF ∥CD ,且EF =12CD ,∵四边形ABCD 为平行四边形,∴AB ∥CD ,且AB =CD ,∴∠FEG =∠BGE ,∵点G 为AB 的中点,∴BG =12AB =12CD =FE ,在△EFG 和△GBE 中,{BG =FE∠FEG =∠BGE GE =EG,∴△EFG ≌△GBE (SAS ),即②正确,∴∠EGF =∠GEB ,GF =BE ,∴GF ∥BE ,∵BD =2BC ,点O 为平行四边形对角线交点,∴BO =12BD =BC ,∵E 为OC 中点,∴BE ⊥OC ,∴GP ⊥AC ,∴∠APG =∠EPG =90°∵GP ∥BE ,G 为AB 中点,∴P 为AE 中点,即AP =PE ,且GP =12BE ,在△APG 和△EGP 中,{AP =EP∠APG =∠EPG GP =PG,∴△APG ≌△EPG (SAS ),∴AG =EG =12AB ,∴EG =EF ,即①正确,∵EF ∥BG ,GF ∥BE ,∴四边形BGFE 为平行四边形,∴GF =BE ,∵GP =12BE =12GF ,∴GP =FP ,∵GF ⊥AC ,∴∠GPE =∠FPE =90°在△GPE 和△FPE 中,{GP =FP∠GPE =∠FPE EP =EP,∴△GPE ≌△FPE (SAS ),∴∠GEP =∠FEP ,∴EA 平分∠GEF ,即④正确.∵BG =FE ,GF =BE ,∴四边形BEFG是平行四边形,没有条件得出BEFG是菱形,⑤③不正确;故选:B.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、中位线定理以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.【变式7-2】(2020春•香洲区校级期中)如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF ≌△CGB;④S菱形ABCD=AB2;⑤2DE=√3DC;⑥BF=BC,正确结论的有()个.A.1B.2C.3D.4【分析】由菱形的性质及等边三角形的性质就可以得出∠GDB=∠GBD=30°,得出∠GDC=∠GBC=90°,DG=BG,由四边形的内角和为360°就可以求出∠BGD的值,由直角三角形的性质就可以得出CG=2GD就可以得出BG+DG=CG,在直角三角形GBC中,CG>BC=BD,故△BDF与△CGB不全等,由三角形的面积关系可判断④,结合④和菱形的性质进而得出结论.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD.∠A=∠BCD.∵∠A=60°,∴∠BCD=60°,∴△ABD是等边三角形,△BDC是等边三角形.∴∠ADB=∠ABD=60°,∠CDB=∠CBD=60°.∵E,F分别是AB,AD的中点,∴∠BFD=∠DEB=90°,∴∠GDB=∠GBD=30°,∴∠GDC=∠GBC=90°,DG=BG,∴∠BGD=360°﹣90°﹣90°﹣60°=120°,故①正确;在△CDG 和△CBG 中,{CD =CB CG =CG DG =BG,∴△CDG ≌△CBG (SSS ),∴∠DGC =∠BGC =60°.∴∠GCD =30°,∴CG =2GD =GD +GD ,∴CG =DG +BG .故②正确.∵△GBC 为直角三角形,∴CG >BC ,∴CG ≠BD ,∴△BDF 与△CGB 不全等.故③错误;∵S 菱形ABCD =2S △ADB =2×12AB •DE=AB •(√3BE )=AB •√32AB =√32AB 2,故④错误;∵DE =√3BE =√32AB =√32CD ,∴2DE =√3CD ,故⑤正确;∵BD >BF ,BD =BC ,∴BC >BF ,故⑥错误.∴正确的有:①②⑤共三个.故选:C .【点评】此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通.【变式7-3】(2021春•开州区校级期中)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①∠DBC=60°:②△AED≌△DFB;③GC与BD一定不垂直;④∠BGE的大小为定值.其中结论正确的是()A.①②③B.①②④C.①③④D.②③④【分析】先证明△ABD为等边三角形,即可得到∠DBC的度数;根据“SAS”即可证明△AED≌△DFB;因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;依据三角形外角性质即可得到∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°=∠DBC,又∵AE=DF,AD=BD,∴△AED≌△DFB,故①、②正确;当点E,F分别是AB,AD中点时,由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故③错误;∵∠BGE =∠BDG +∠DBF =∠BDG +∠GDF =60°,为定值,故④正确;综上所述,正确的结论有①②④,故选:B .【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,利用全等三角形的性质是解题的关键.【题型8 菱形的判定与性质综合(动点问题)】【例8】(2020秋•青山区期末)如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .53 【分析】连接BD ,证出△ADE ≌△BDF ,得到AE =BF ,再利用AE =t ,CF =2t ,则BF =BC ﹣CF =5﹣2t 求出时间t 的值.【解答】解:连接BD ,∵四边形ABCD 是菱形,∴AB =AD ,∠ADB =12∠ADC =60°,∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°,又∵∠ADB =60°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠ADE =∠BDFAD =BD ∠A =∠DBF ,∴△ADE≌△BDF(ASA),∴AE=BF,∵AE=t,CF=2t,∴BF=BC﹣CF=5﹣2t,∴t=5﹣2t∴t=5 3,故选:D.【点评】本题主要考查了菱形的性质,全等三角形的判定与性质、等边三角形的判定与性质等知识,解题的关键是运用三角形全等得出AE=BF.【变式8-1】(2021春•洪山区期中)如图,菱形ABCD中,∠BAD=60°,AB=8,对角线AC,BD交于点O,E是线段OC上一动点,F是射线AD上一动点,若∠BEF=120°,则在点E运动的过程中,EF 长度为整数的个数有()A.6个B.5个C.4个D.3个【分析】由“SAS”可证△DAE≌△BAE,可得DE=BE,∠ADE=∠ABE,由四边形内角和定理和等腰三角形的判定可证EF=DE=BE,由BE的取值范围可求解.【解答】解:如图,连接DE,∵四边形ABCD是菱形,。
1.1.1菱形的性质与判定北师版
D
O
解:∵四边形ABCD是菱形, ∴AB=AD(菱形的四条边相等), B AC⊥BD(菱形的对角线互相垂直), 1 1 OB=OD= BD 6 3 (菱形的对角线互相平分) 2 2 在等腰三角形ABD中, ∵∠BAD=60° ∴△ABD是等边三角形 ∴AB=BD=6 在Rt△AOB中,由勾股定理,得
B
定理:菱形的四条边都相等。
符号语言: ∵四边形ABCD是菱形, ∴AB=BC=CD=AD。 A
定理:菱形的对角线互相垂直。
D C
B
符号语言: ∵四边形ABCD是菱形, ∴AC⊥BD。
如图,在菱形ABCD中,对角线AC与BD 相交于点O,∠BAD为60°,BD=6,求 菱形的边长AB和对角线AC的长
菱形的性质
B
C D
A
一组邻边相等的平行 四边形叫做菱形.
记一记
有一组邻边相等的平行四边形叫做菱形 一组邻边相等
菱形
平行四边形
菱形是特殊的平行四边形,它具有平行四 边形的一切性质.即
菱形是中心对称图形,对角线的 交点是对称中心. 菱形的对边平行且相等. 菱形的对角相等,邻角互补. 菱形的对角线互相平对称图形吗? 它是轴对称图形吗?如果是,有几条对称轴? 对称轴之间有什么位置关系?
菱形是中心对称图形
A B D
菱形是轴对称图形
(2)从图中你能得到哪些 结论?并说明理由.
提示:从边、角、对角线、 面积等方面来探讨
C
菱形的性质1: 菱形的四条边都相等。
菱形的性质2:
菱形的对角线互相垂直。
已知:如图,在菱形ABCD中,AB=CD, 对角线AC与BD相交于点O. 求证:(1)AB=BC=CD=AD A (2)AC⊥BD
(完整word)菱形的性质和判定(北师版)(含答案),推荐文档
学生做题前请先回答以下问题题1 :菱形的定义是什么?答:有一组邻边相等的平行四边形是菱形.问题2 :菱形是轴对称图形吗?是中心对称图形吗?答:菱形是轴对称图形,两条对角线均为对称轴;是中心对称图形,对角线的交点为对称中心. 问题3:菱形有哪些性质?答:边:菱形的四条边都相等;对角线:菱形的对角线互相垂直平分,每一条对角线平分一组对角;面积:菱形对角线乘积的一半.问题4:菱形的判定有哪些?答:边:四条边都相等的四边形是菱形;对角线:对角线互相垂直的平行四边形是菱形.问题5: 一条对角线平分一组对角的四边形是菱形吗?答:本结论错误.一条对角线平分一组对角的平行四边形是菱形.举反例:菱形的性质和判定(北师版)每道9分) ) B.菱形的对角相等 D.菱形的每一条对角线平分一组对角 答案:C解题思路: 概念新析,考査菱形的性质,从边、角.对角线依次分析; 菱形的边! 对边平行,四条边都相等,A 对;菱形的角=对角相等.邻角互补,B 对F菱形的对角线「互相垂直,平分、每一条对角线平分一组对角,C 错,D 对” 故选C. 试题难度:三颗星知识点:菱形的性质2.菱形具有而平行四边形不具有的性质是 ( )一、单选题(共11道,1.下列说法错误的是(A.菱形的对边互相平行C •菱形的对角线相等A.对角线互相平分B.邻角互补C.每条对角线平分一组对角D.对角相等答案:C解题思路:概念新析,考查平行四边形和菱形的性质,需要对比菱形和平行四边形的性厨找出菱形具有而平行四边形不具有的性质’ 从边.角.对角线依次分桁!S形的边=邻边相等!菱形的角=和平行四边形保持一新B错,D殊S形的对角线;互相垂直,每一e对角线平分一组对角,A错‘ C对.故选C,试题难度:三颗星知识点:菱形的性质3.下列说法正确的是()A.对角线相等的平行四边形是菱形C•对角线互相垂直的四边形是菱形B•有一组邻边相等的平行四边形是菱形D.有一个角是直角的平行四边形是菱形答案:B解题思路:选项对角线相等的平行四边形是矩形,故A选项错误* 选项B I有一组邻边相等的平行四边形是菱形,是菱形的定义, 故B选项正确1选项心对角线互相垂直的平行四边形是S形,故C选项错误匚选项D=有一个角是直角的平行四边形是矩形,故D选项错i吴- 故选B.试题难度:三颗星知识点:菱形的判定4.如图,已知菱形 ABCD 的对角线AC, BD 的长分别为6, 8, AE 丄BC 于点E,则AE 的长是( )[224A. 5B. 5C. 5D.M 答案:B解题思路:在S 形目CD 中…4C 丄ED, 0C=L A C, OB = ;SD丄 一':AC=6, 5D 二&:.OC=3. 05=4:-SC=5.-_ J?厂"f _ 貝Q RD-心建良血CD - MJ 汽左* °菱言曲CD -------------- —二 <一铉=卑£,解得.!£ = ¥故选B.试题难度:三颗星知识点:菱形的性质5.菱形ABCD 的周长为8,高为1,则该菱形两邻角的度数之比为() 答案: 解题思路:A.3:1 C.5:1B.4:1D.6:1如图,由题意得,且DE=1 在中,■/ D£~-AD2二厶=30。
北师大版初三上册菱形的性质与判定讲义
北师大版初三上册1要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些专门性质:1、.菱形的四条边都相等;2、菱形的两条对角线互相垂直,同时每一条对角线平分一组对角.3、菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点确实是对称中心.菱形的面积:(1)一种是平行四边形的面积公式:底×高(2)另一种是两条对角线乘积的一半要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.典型例题:例1、下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形【答案】A【解析】A. 对角线相等的平行四边形是矩形而不一定是菱形;B. 对角线平分一组对角的平行四边形是菱形;C. 对角线互相垂直的平行四边形是菱形;D. 用两个全等的等边三角形拼成的四边形四条边形等是菱形;例2、菱形的一个内角为60°,较短的一条对角线长4,则菱形的周长为_____________。
【答案】16【解析】菱形有一个内角为60°,则较短对角线与菱形的一组邻边构成一个等边三角形,∴可得边长为4,则菱形周长为16.【点睛】此题要紧考查菱形的性质和等边三角形的判定的运用,难度不大,关键熟练把握若菱形有一个内角为60°,则较短对角线与菱形的一组邻边构成一个等边三角形.例3、菱形的两条对角线长分别是14cm 和20cm ,则它的面积为__.【答案】140cm2【解析】∵菱形的面积等于对角线乘积的一半,∴面积S=12×14×20=140(cm2). 例4、如图所示,在菱形ABCD 中,AC =8,BD =10.求:(1)AB 的长.(2)菱形ABCD 的面积.解:(1)∵ 四边形ABCD 是菱形.∴ AC ⊥BD ,AO =12AC ,OB =12BD .又∵ AC =8,BD =10.∴ AO =12×8=4,OB =12×10=5.在Rt △ABO 中,222AB OA OB =+ (2)由菱形的性质可知: 118104022S AC BD ==⨯⨯=菱形ABCD . 例5、菱形的两条对角线长为6和8,则菱形的边长为________. 解:设该菱形为ABCD ,对角线相交于O ,AC =8,BD =6,由菱形性质知:AC 与BD 互相垂直平分,例6、菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ).A.21B.4 C .1 D .2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1.例7、如图,在ABCD 中,对角线AC ,BD 相交于点O ,AB=5,AC =6,BD=8.(1)求证:四边形ABCD是菱形;(2)过点A作AH⊥BC于点H,求AH的长.【答案】(1)证明见解析(2) 245【解析】试题分析:(1)由平行四边形的对角线互相平分得到△AOB 的两条边OA、OB的长度,则依照勾股定理的逆定理判定∠AOB=90°,即平行四边形的对角线互相垂直平分,故四边形ABCD是菱形.(2)依照菱形的不变性,用不同方法求面积:平行四边形的面积=菱形的面积,可求解.试题解析:(1)证明:∵在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,∴AO=AC=3,BO=BD=4,∵AB=5,且32+42=52,∴AO2+BO2=AB2,∴△AOB是直角三角形,且∠AOB=90°,∴AC⊥BD,∴四边形ABCD是菱形;(2)解:如图所示:∵四边形ABCD是菱形,∴BC=AB=5,∵S△ABC=AC•BO=BC•AH,∴×6×4=×5×AH,解得:AH=.例8、在四边形ABCD中,AB//CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.【解析】试题分析:(1)依照平行线的性质和平行四边形的判定证明即可;(2)依照角平分线的性质和菱形的判定证明即可.试题解析:(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,∴△ADC≌△ABC(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.课后习题:1.在下列说法中,菱形对角线不具有的性质是( )A. 对角线互相垂直;B. 对角线所在的直线是对称轴;C. 对角线相等;D. 对角线互相平分.【解析】菱形的对角线互相垂直平分,菱形是轴对称图形,每一条对角线所在的直线确实是菱形的一条对称轴,故选C.2.如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=2,则菱形ABCD的周长为()A. 12B. 16C. 8D. 4【解析】试题解析:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△AOB为直角三角形.∵OE=2,且点E为线段AB的中点,∴AB=2OE=4.C菱形ABCD=4AB= 4×4=16.故选B.3.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A. 96cm2B. 48cm2C. 24cm2D. 12cm2【答案】A如图,设3AO xcm = , 4BO xcm = .∵菱形的周长为40cm ,有勾股定理得, ()()2223410x x += ,21=1216=96cm 2S ∴⨯⨯菱形 ,故选A. 4.菱形的一个内角为60°,较短的一条对角线长4,则菱形的周长为_____________。
2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案
2023-2024学年北师大版九年级数学上册《第一章菱形的性质与判定》同步练习题附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.顺次连结矩形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 √3B.2 C.√3D.13.如图,在菱形ABOC中,对角线OA在y轴的正半轴上,且OA=4,直线y=23x+43过点C,则菱形ABOC的面积是 ( )A.4 B.323C.8 D.1634.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2√3cm2 B.3√3cm2 C.4√3cm2 D.6√3cm25.如图,菱形ABCD的周长为8cm,高AE长为√3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:√2D.1:√36.如图有一张长为12,宽为8的长方形(矩形)纸片,先将其上下对折,再左右对折,最后沿着虚线剪下一个直角三角形①,若该直角三角形①的直角边长为整数,将①展开可得一个四边形,则下列哪个选项不能作为该四边形的面积()A.18 B.24 C.28 D.307.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有()个。
九年级数学上册第一章1菱形的性质与判定《菱形》知识讲解及例题演练(含解析)(新)北师大版
菱形【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AE F为等边三角形,从而∠AEF =60°.【答案与解析】解:连接AC.∵ 四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵ ∠B=60°,∴ △ABC是等边三角形.∴ ∠BAC=∠ACB=60°,AB=AC.∴ ∠ACF=∠B=60°.又∵ ∠EAF=∠BAC=60°∴ ∠BAE=∠CAF.∴ △ABE≌△ACF.∴ AE=AF.∴ △AEF为等边三角形.∴ ∠AEF=60°.又∵ ∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴ ∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2015春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB 的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s的速度运动,设运动时间为t (s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵ ∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴ ∠ACF=60°,即∠ACF=∠B.∵ ∠EAF=60°,∠BAC=60°,∴ ∠BAE=∠CAF.∴ △ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵ ∠BAC=∠EAF=60°,∴ ∠EAB=∠FAC.∵ ∠ABC=∠ACD=60°,∴ ∠ABE=∠ACF=120°.∵ AB=AC,∴ △ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.。
1.1+菱形的性质与判定(1)++课件+2023-2024学年北师大版数学九年级上册
12
13
14
15
自主学习反馈
返回目录
2.四边形ABCD是菱形,其中AB=4 cm,则四边形ABCD的周长是
(D)
A.5 cm
B.8 cm
C.12 cm
D.16 cm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
自主学习反馈
返回目录
3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=
2,则线段CD的的长是( A )
∴DE=12BE.
1
2
3
4
5
6
7
返回首页
6.如图,菱形ABCD中,作BE⊥AD,CF⊥AB,分别交AD,AB的 延长线于点E,F. (1)求证:AE=BF; 证明:∵四边形ABCD是菱形, ∴AB=BC,AD∥BC, ∴∠A=∠CBF, ∵BE⊥AD,CF⊥AB, ∴∠AEB=∠BFC=90°, ∴△AEB≌△BFC(AAS),∴AE=BF.
5
6
7
8
9
10
11
12
13
14
15
返回目录
自主学习反馈
(2)若AB=AE,∠BAE=36°,求∠CDE的度数. 解:∵AB=AE,∠BAE=36°, ∴∠AEB=∠ABE=180°-2∠BAE=72°. ∵△ABE≌△ADE,∴∠AED=∠AEB=72°. ∵四边形ABCD是菱形,∴AB∥CD. ∴∠DCA=∠BAE=36°. ∴∠CDE=∠AED-∠DCA=72°-36°=36°.
5.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC交BC的延
(含答案)九年级数学北师大版上册课时练第1章《菱形的性质与判定》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第1单元菱形的性质与判定一、选择题(本大题共12小题,共36分)1.菱形不具备的性质()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.323.如图,在菱形ABCD中,对角线AC,BD相交于点O,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.505.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()6.C.3D.4A.2B.527.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.83B.8C.43D.238.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△'''.当点'与点C重合时,点A与点'之间的距离为()A.6B.8C.10D.129.下列条件中,不能判定一个四边形是菱形的是()A.一组邻边相等的平行四边形B.一条对角线平分一组对角的四边形C.四条边都相等的四边形D.对角线互相垂直平分的四边形10.下列条件中,能判定▱ABCD是菱形的是()A..=B.⊥.C.=D..⊥11.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠=90∘B.=C.=.D.=.12.如图,在△ABC中,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形13.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形二、填空题(本大题共7小题,共21分)14.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.15.16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.17.18.如图,在菱形ABCD中,AB=6,∠ABC=60∘,M为AD的中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
题1:菱形的定义是什么?
答:有一组邻边相等的平行四边形是菱形.
问题2:菱形是轴对称图形吗?是中心对称图形吗?
答:菱形是轴对称图形,两条对角线均为对称轴;是中心对称图形,对角线的交点为对称中心.问题3:菱形有哪些性质?
答:
边:菱形的四条边都相等;
对角线:菱形的对角线互相垂直平分,每一条对角线平分一组对角;
面积:菱形对角线乘积的一半.
问题4:菱形的判定有哪些?
答:
边:四条边都相等的四边形是菱形;
对角线:对角线互相垂直的平行四边形是菱形.
问题5:一条对角线平分一组对角的四边形是菱形吗?
答:本结论错误.一条对角线平分一组对角的平行四边形是菱形.
举反例:
菱形的性质和判定(北师版)
一、单选题(共11道,每道9分)
1.下列说法错误的是( )
A.菱形的对边互相平行
B.菱形的对角相等
C.菱形的对角线相等
D.菱形的每一条对角线平分一组对角
答案:C
解题思路:
试题难度:三颗星知识点:菱形的性质
2.菱形具有而平行四边形不具有的性质是( )
A.对角线互相平分
B.邻角互补
C.每条对角线平分一组对角
D.对角相等
答案:C
解题思路:
试题难度:三颗星知识点:菱形的性质
3.下列说法正确的是( )
A.对角线相等的平行四边形是菱形
B.有一组邻边相等的平行四边形是菱形
C.对角线互相垂直的四边形是菱形
D.有一个角是直角的平行四边形是菱形
答案:B
解题思路:
试题难度:三颗星知识点:菱形的判定
4.如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC于点E,则AE的长是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:菱形的性质
5.菱形ABCD的周长为8,高为1,则该菱形两邻角的度数之比为( )
A.3:1
B.4:1
C.5:1
D.6:1
答案:C
解题思路:
试题难度:三颗星知识点:菱形的性质
6.如图,在平行四边形ABCD中,添加下列条件不能判断平行四边形ABCD是菱形的是( )
A.AB=BC
B.AC⊥BD
C.BD平分∠ABC
D.AC=BD
答案:D
解题思路:
试题难度:三颗星知识点:菱形的判定
7.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,则∠CDE的度数为( )
A.30°
B.25°
C.20°
D.35°
答案:A
解题思路:
试题难度:三颗星知识点:菱形的性质
8.如图,在菱形ABCD中,∠ADC=50°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB 的度数为( )
A.40°
B.50°
C.60°
D.80°
答案:B
解题思路:
试题难度:三颗星知识点:垂直平分线的性质
9.在菱形ABCD中,AE⊥BC于E,AF⊥CD于F,且E,F分别为BC,CD的中点,则∠EAF的度数为( )
A.30°
B.45°
C.60°
D.75°
答案:C
解题思路:
试题难度:三颗星知识点:菱形的性质
10.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是( )
A.AB=BC
B.AC=BC
C.∠B=60°
D.∠ACB=60°
答案:B
解题思路:
试题难度:三颗星知识点:菱形的判定
11.如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列结论错误的是( )
A.DA=DE
B.∠EAC=90°
C.BD+AD=CE
D.∠ABC=2∠E
答案:C
解题思路:
试题难度:三颗星知识点:平行四边形的性质与判定。