波函数与方程(2)
(完整版)波动方程
y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
t 1.0s y (1.0m) cos[ π (π m1)x]
波形方程
2
(1.0m) sin(π m1)x
y/m
1.0
o
2.0
x/m
-1.0
t 1.0 s 时刻波形图
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
第二节 波动方程
用数学表达式表示波动----波函数 波函数—任意时刻任意位置处的质点的振动位移。
y y(x,t)
各质点相对于平衡位置的位移
波线上各质点平衡位置
一、平面余弦行波的波函数
1、从无穷远处来到无穷远处去
已知 原点的振动
(1)前进波(波沿X轴正方向传播) 已知:一列平面简谐波从无穷远处来到无穷远处去,沿X
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 写出波动方程的标准式
O
y
A
y Acos[2π ( t x ) ] T
t0 x0
y 0, v y 0
π
2
t
y (1.0m) cos[2π( t x ) π] 2.0s 2.0m 2
2)求t 1.0s 波形图.
已知波源的振动 y(0,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程: y(x,t)
x 0处 前进波 x 0处 后退波
y( x, t ) y( x, t )
A cos[ (t A cos[ (t
x) ux ) u
0 ] 0 ]
4、已知真实波源的振动,波源不在原点
第一章 波函数
第一章 波函数与dinger oSchr 方程 一 内容提要1 波函数的统计解释[1] 在量子力学中用波函数描述微观体系的运动状态 ; [2] 2),(t rψ表示粒子在空间出现的几率密度; [3] 波函数归一化条件1),(2=ψ⎰t r ;[4] 波函数应满足的基本条件:单值、有限、连续。
2态的叠加原理设 ,,,,321n ψψψψ是体系的可能状态,那么态的线性叠加∑ψ=ψnn n c也是体系的一个可能状态;3 dinger o Schr方程 [1] 含时间的dinger o Schr方程 ψ+ψ∇μ-=∂ψ∂),(222t r V t i[2]定态dinger o Schr方程 当)(r V 不显含时间t 时,波函数的解为定态解:/)(),(iEt er t r -ψ=ψ)(r ψ满足定态dinger oSchr 方程ψ=ψ+∇μ-E r V )](2[22该方程也是能量算符的本征值方程。
4 几率流密度)(2ψ∇ψ-ψ∇ψμ=**i j 与几率密度ψψ=ρ*满足连续性方程 0=⋅∇+∂ρ∂j t5 量子力学中的初值问题已知量子态的初态波函数)0,(r ψ,原则上可以利用S,eq 求出任意时刻的波函数),(t r ψ二 例题讲解1 粒子在一维无限深势阱中运动,阱宽为a , (1)设axASinx π=ψ)(,求归一化系数A 。
(2)设)()(x a Ax x -=ψ,求归一化系数A 并求粒子的最可几位置。
[解] (1)令12)()(2202==π=ψ⎰⎰aA dx a x ASindx x aa则 aA 2= 那么ax Sin a x π=ψ2)( (2)令130)]([)(5222==-=ψ⎰⎰a A dx x a x A dx x aa则530a A = 2 证明具有不同能量的两个束缚态,其波函数的重叠积分为零。
解:设1ψ、2ψ分别为对应能量1E 、2E 束缚态波函数,21E E ≠,要证明等式0)()(2*1=ψτψ⎰r r d 。
大学物理课件:23-2波函数与薛定谔方程
0.091
例:试求在一维无限深势阱中n=1粒子概率密度的最大值的位置。
解:一维无限深势阱中n=1粒子的概率密度为
1(x)
2
2 a
sin2
a
x
n (x)
d 1(x) 2
dx
4
a2
sin
a
x
cos
a
x0
2 sin n x
aa
因为粒子在阱内,则
sin
a
x
0
cos
a
x
0
a
x
2
由此解得最大值得位置为
在 dV 空间内发现粒子的概率: dP 2 dV *dV
概率密度 表示在某处单位体积内发现粒子的概率. Ψ 2 *
某一时刻在整个空间内发现粒子的概率为:
Ψ
2
dV
1
归一化条件
波函数的标准化条件
1)波函数具有有限性
有限空间内:
Ψ
2
dV
1
2)波函数是连续的
3)波函数是单值的
例:作一维运动的粒子被束缚在 0 x的 a范围内。已知其波函数
移动原子
六、一维简谐振子
微观领域中分子的振
动、晶格的振动、,都
可以近似地用简谐振子模
型来描述 。
一维简谐振子的经典模型
一维简谐振子的势函数:
U (x) 1 kx2 1 m2x2
2
2
k m,
m —— 振子质量, —— 固有频率,x —— 位移
相应的定态薛定谔方程为 :
2 d2 1 m 2 x2 E
2
2m
d2 dx2
U
x
x
E
x
2
量子力学 第二章 波函数和薛定谔方程
x px
t E J
二.量子力学中的测量过程 1.海森伯观察实验 2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响 不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上 它们就不可能同时具有确定的值
i p
p2 2
对自由粒子:
2 E p
2
∴
2 i 2 t 2
3.力场中运动粒子的波动方程 能量关系:
E p2 U (r , t ) 2
2 i 2 U (r , t ) t 2
4.三个算符
2 H 2 U 2
1。与宏观粒子运动不同。
2。电子位置不确定。
3。几率正比于强度,即 ( r , t )
2
结论:
波函数的统计解释:波函数在空间某一点的 强度(振幅绝对值的平方)和在该点找到粒 子的几率成正比。
2 数学表达: (r , t ) | (r , t ) |
归一化:
2 (r , t )d | (r , t ) | d 1
3 2 i ( pr Et )
e
(r ) p
1 (2)
3 2
e
i pr
(r , t )
( r ) dp dp dp x y z c( p, t ) p
其中:
而:
i Et c( p, t ) c( p) e
而在晶体表面反射后的晶电子状态
状态的迭加。
p
为各种值的
第二章波函数与薛定谔方程2
2 d 2 [ V1 ( x )] X ( x ) E x X ( x ) 2 2 dx 2 d 2 [ V2 ( y )]Y ( y ) E yY ( y ) 2 2 dy 2 d 2 [ V3 ( z )] Z ( z ) E z Z ( z ) 2 2 dz
II III
A sin x A2 cos x 1 B1e x B2 e x
C1 , B1 0
要保证有限则
e 另外,此时,
x
应趋于零,因此
I III 0 II A1 sin x A2 cos x
从物理考虑,粒子不能透过无穷高的势壁。 根据波函数的统 计解释,要求在阱壁上和阱壁 外波函数为零 根据波函数连续性条件:
设:V ( x, y, z) V1 ( x) V2 ( y) V3 ( z)
令: ( x, y, z) X ( x)Y ( y)Z ( z)
2 2 V ( x, y, z ) ( x, y, z ) E ( x, y, z ) 2
2 2 d2 d2 d2 2 2 2 X ( x )Y ( y ) Z ( z ) V1 ( x ) V2 ( y ) V3 ( z ) ( x , y , z ) E ( x , y , z ) dx dy dz
等式两边除以 x, y, z ) X ( x)Y ( y)Z ( z ) (
1 X 1 2 d 2 X V1 ( x ) 2 2 dx Y 1 2 d 2 Y V2 ( y ) 2 2 dy Z 2 d 2 Z V3 ( z ) E 2 2 dz
11-2 平面简谐波的波函数
-
x u
)=
Acos ω
t
-
x u
+
0
上页 下页 返回 退出
P处质点在时刻t 的位移为:
yP (t) =
Acos ω
t
-
x u
+
0
波 函 数
因此,波线上任一点在任一时刻的位移都能 由上式给出。此即所求的沿x 轴正方向前进 的平面简谐波的波函数。
沿x轴负方向传播的平面简谐波的波函数:
上页 下页 返回 退出
2
1
2
x2 x1
2
x
x、t 都变化:
实线:t1 时刻波形;虚线:t2 时刻波形
y
u
o
x
x x
上页 下页 返回 退出
当t=t1时,y
A
cos
t1
x u
0
当t=
t1+Δt时,y
A
cos
t1
t
x u
0
在t1和t1+Δt时刻,对应的位移用x1和x2表示,则
y(t1)
A cos
t1
x1 u
0
y
A cos
2
(
t
mx
)
0
y Acos(t mkx 0 )
k 2 角波数
y
y
A cos(t
Aei
(t
mx u
)0
m2 x
i (t
Ae
0
mk ) u
)
上页 下页 返回 退出
波动表式的意义:
x 一定:令x=x1,则质点位移y 仅是时间t 的函数。
即
y
A
cos
2波函数和薛定谔方程
第二章
波函数和薛定谔方程
三、波函数的归一化
由于粒子必定要在空间中的某一点出现,所以粒子 在空间各点出现的概率之和等于1,因而粒子在空间各点 出现的概率只决定于波函数在空间各点的相对强度,而 不决定于强度的绝对大小。换句话说,将波函数乘上一 个常数后,所描写的粒子的状态并不改变。
(r , t ) 与 C (r , t ) 表示同一个态。
2
概率密度
dW ( x, y, z, t ) 2 ( x, y , z , t ) C ( x, y , z , t ) d
§2.1 波函数的统计解释
第二章
2
波函数和薛定谔方程
C ( x, y, z, t ) d 1
归一化
C
1
( x, y, z , t ) d
§2.1 波函数的统计解释
第二章
波函数和薛定谔方程
自由粒子的波函数
Ae
i ( pr Et )
如果粒子受到随时间或位置变化的力场的作用,它的 动量和能量不再是常量,这时粒子就不能用平面波来描写,
而必须用较复杂的波来描写。一般记为:
(r , t )
描写粒子状态的波函数,它 通常是一个复函数。
c1 1 c2 2 cn n
cn n
n
§2.2 态迭加原理
第二章
波函数和薛定谔方程
二、波函数按平面波展开
以一个确定的动量 p 运动的自由粒子的状态用波函数
p (r , t ) Ae
i ( pr Et )
描写。按照态迭加原理,粒子的状态可表示为
波函数为
i (r , t ) A exp ( p r Et )
第2章 波函数与波动方程
第2章波函数和薛定谔方程既然辐射和粒子都具有波动性和微粒性,那么,如何理解这两属性呢?它们如何统一起来? 经典物理观点必须被修改。
主要表现:a. 波-粒两象性P (粒子) ν λ (波)ω=ν= h E (Planck 假设)Einstein 关系k P = (P h =λ,λπ=2k ) (de Broglie 假设) de Broglie 关系 ∴ 具有确定动量的自由粒子被一平面波所描述)Et r P (i )t r k (i AAe-⋅ω-⋅==ψb. 物理量取值不一定是连续的辐射体辐射的能量取值 ν=nh E ,2,1,0n = 氢原子的能量202n 8n a eE πε⋅-=cm 10529.0em 4a 82e 200-⋅=πε=由于平常粒子的波长1010-<λÅ,所以观察不到干涉, 衍射现象。
微观粒子,如电子1≈λÅ,因此在原子线度下可能显示出波动性。
而在宏观测量尺度下,几乎也不显示波动性。
将粒子所具有的微粒性和波动性统一起来,这在经典物理学中看来是不可能的,因经典粒子 经典波√原子性(整体性) ⨯实在物理量的空间分布 ⨯轨道 √干涉,衍射这两者是不相容的。
描述微观粒子既不能用经典粒子,也不能用经典波,当然也不能用经典粒子和经典波来描述。
§1 波函数的统计解释一、波函数的引入描述自由粒子可用平面波波函数)(Et r p ipAe -⋅=ψ来描述。
如果粒子处于随时间和位置变化的力场中运动,这样的微观粒子的运动状态也可以用较复杂的波(,)r t ψ完全描述。
二、波函数的解释1、经典物理学中粒子与波的有关概念经典概念中粒子意味着: 1.有一定质量、电荷等“颗粒性”的属性;2.有确定的运动轨道,每一时刻有一定位置和速度。
经典概念中波意味着:1. 某种实在的物理量的空间分布作周期性的变化; 2.干涉、衍射现象,即相干叠加性。
2、对波粒二象性的两种错误的看法 (1). 波由粒子组成波是由粒子组成的,把波看成是由大量粒子相互作用而在空间形成的一种疏密相间的周期分布。
第二章 波函数和 薛定谔方程 (2)
*
非相对论考虑 自由粒子: 势函数 U 0
2 px 2mE
2 1 2 px E Ek mv x 2 2m
代入
d ( x) p x 2 ( x) 2 dx
2 2
*
得 即
d 2 ( x) 2mE 2 ( x) 0 2 dx
一维自由粒子的振幅方程
IN
电子到达该处概率大 电子到达该处概率小 电子到达该处概率为零 各电子起点、终点、路径 均不确定
用 | |2 对屏上电子数分布
各光子起点、终点、路 径均不确定 用I对屏上光子数分布作 概率性描述
作概率性描述
一般 t 时刻,到达空间 r(x,y,z)处某体积dV内的粒子数 : dN N | |2 dV
2
二、量子力学的态的迭加原理
1、经典物理中,光波或声波遵守态迭加原理: 二列经典波φ1与φ2线性相加,φ=aφ1+bφ2, 相加 后的φ也是一列波,波的干涉、衍射就是用波 的迭加原理加以说明的。 量子力学的二个态的迭加原理:如果Ψ1 与Ψ2 是体系的可能状态,那么它们的 线性迭加态 Ψ=c1Ψ1+c2Ψ2,(c1 、c2是复数) 也是这个体系的一个可能状态。
一维定态薛定谔方程
3. 三维定态薛定谔方程 振幅函数
( x, y, z )
2 2 2 2m 2 2 (E U) 0 2 x y z
拉普拉斯算符
2 2 2 2 2 2 2 x y z
2m ( x, y, z ) 2 ( E U )( x, y, z ) 0
注意 :
物质波的波函数不描述介质中运动 状态(相位)传播的过程
有意义的不是本身,而是 | |2 , | |2 : 概率密度,粒子在空间分布的统计规律 : 概率幅 重要的不是 | |2 的大小,而是 | |2 在空间各点的比值, c 和 描述同一概率波函数和 薛定谔方程
第二章 波函数和薛定谔方程
2.波恩(Born)对波函数的统计解释,概率波 2.波恩 Born)对波函数的统计解释, 波恩( 水波的双狭缝干涉: 水波的双狭缝干涉:
I12 = h1 + h2 = h1 + h2 + (h h + h h )
2 2 2 * 1 2 * 1 2
= I1 + I2 +干涉项
11
子弹点射
•
1 2
ψ ψ
P1
1
2Байду номын сангаас
P
P 2
P= P +P 1 2
12
电子双缝衍射
电子的干涉现象与水波干射完全相似,但与子弹点射 完全不同。与水波干射的含意也有着本质的不同,前 者是强度,后者是接收到的电子多少!
13
电子干涉实验的结论: 电子干涉实验的结论: 大量电子在同一个实验中的统计结果,或者是一个 大量电子在同一个实验中的统计结果, 电子在多次相同实验中的统计结果。 电子在多次相同实验中的统计结果。
8
何为波包? 何为波包?
波包是各种波数(长)平面波的迭加。波包的频率是 波矢的函数( ω = ω(k)),我们将频率作泰勒展开
dω 1 d 2ω 2 ω(k) = ω(0) + k+ k +L 2 dk 2! dk dω d 2ω 是波包的群速度; 2 表示 ω(0)是基波,为常数;
波包的扩散;若 扩散。 由于
r Ψ(r , t) 的变化遵从薛定谔方程。 4) 的变化遵从薛定谔方程。
5
二、波函数的统计解释
r 如果粒子处于随时间和位置变化的力场 U(r , t) 中,它 的动量和能量不再是常量(或不同时为常量), ),粒子 的动量和能量不再是常量(或不同时为常量),粒子 的状态就不能用平面波描写, 的状态就不能用平面波描写,而必须用较复杂的波描 一般记为: 写,一般记为:
第二章 波函数和薛定谔方程
§2.5 一维谐振子
思考题: • 对称性 动量表象
§2.5 一维谐振子
思考题: • n维谐振子体系等间距能级 n个粒子 元激发(elementary exitation) 集合产生湮 灭算符
§2.6 一维薛定谔方程的普遍性质
一维非奇性势薛定谔方程的束缚态无简并
第二章 波函数和Schroinger方程
质子在钯中的波函数 /groups/materials%20characterisation/hydrogen%20in%20palladium.s html
薛定谔 ERWIN SCHRODINGER (1887-1961)
§2.8 三维薛定谔方程(辏力场情况)
角度部分的解
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
§2.8 三维薛定谔方程(辏力场情况)
• 勒让德多项式的性质
别名
§2.8 三维薛定谔方程(辏力场情况)
§2.7 势垒贯穿
如果讨论的是势阱而不是势垒,那么只需要作代换
§2.7 势垒贯穿
共振透射的条件和共振能量
§2.8 三维薛定谔方程(辏力场情况)
• • •
• •
辏力 普遍性质 若U(r)处处有界=>波函数处处有界 若U(r)有极小值,则体系平均能量必大于势场 的极小值 能量算符的本征值比大于势场的极小值 若无穷远处势场为零,则能量本征值小于零 的能谱必定是分立谱,对应束缚态
§2.5 一维谐振子
• • Motivation: 数学上: 学会一套规范化的求解薛定谔方程的方案 通过数学,看物理
《波函数与波动方程》课件
1932年海森堡获得诺贝尔 物理学奖。
举例
1. 设一维粒子具有确定的动量p0,即动量的 不确定度Δp=0. 相应的波函数为平面波
p0 (x) eip0 x/
2
所以 p0 (x) 1 ,即粒子在空间各点的几率 都相同(不依赖于x)。即粒子的位置是完全 不确定,即 Δx=∞ 。
P1 1 2
P2 2 2
P12 1 2 2 1 2 2 2 (12* 1*2 )
P1 P2 2 P1P cos
1 2
1,2 称为波函数(描述粒子波动性的函数 称为波函数),也就是说,接收器上某位置电子 数的多少,将由波函数的模的平方 2 来表征。
空间若有两个波,强度则应由波函数 1 2 的模的平方来描述。
2. 粒子是由波函数 (x,t) 来描述,但波函数并不能 告诉你,t0 时刻测量时,粒子在什么位置。粒子位 置可能在x1,可能在 x2, ,而在 x1 x1 dx 中发现 粒子的几率为 (x1,t0) 2 dx 。
也就是说, (x,t0) 2 在某 x 处越大,则在 时刻
测量发现粒子在该处的机会越多。(这表明,我
但是,这种描述是什么意思呢?它没有回答, 电子是一个个出现的问题;也没有回答,空间 电子稀疏时,但时间足够长后,干涉花纹照样 出现。
几率诠释—几率波
Max Born真正将量子粒子的微粒性和波 动性统一起来。
如电子用一波函数 (x)来描述,则
1. 从上面分析可以看到,在 x x dx 范围内, 接收到电子多少是与 P(x)dx (x) 2 d的x 大小有关;
们讲的是能预言到什么,但我们不能说出测量的
结果)。
我们如何来理解这一点呢?因如果对一个体 系去测量发现粒子可能就处于x1 ,只测得一个值。
19-8一、波函数、二、薛定谔方程
对于在势场中作三维运动粒子薛定谔方程为: 对于在势场中作三维运动粒子薛定谔方程为:
− h2 2 ∂ψ v ψ ∇ ψ + U(r, t) = ih 2m ∂t
∇ =
2
+ 2+ 2 ∂x2 ∂y ∂z
∂
2
∂
2
∂
2
称
2 为拉普拉斯算符, 拉普拉斯算符, ∇
(下一页) 下一页)
16
四、定态薛定谔方程
y( x, t ) = Ae
−i 2π (νt − x λ )
(下一页) 下一页)
2
物质波用什么样的波函数描述? 物质波用什么样的波函数描述? 一个沿x轴正向运动 能量为E,动量为P的自由粒子对 轴正向运动, 一个沿 轴正向运动,能量为 ,动量为 的自由粒子对 应于沿x轴正向传播的单色平面物质波 其波函数为: 轴正向传播的单色平面物质波, 应于沿 轴正向传播的单色平面物质波,其波函数为:
ν =E h
i t x − (E −p ) e h 0
(下一页) 下一页)
4
ψ(x, t) =ψ
方向传播的三维情况 三维情况, 考虑到自由粒子沿 r 方向传播的三维情况, 波函数可写为: 波函数可写为:
i vv t − (E −p⋅r) e h 0
v
v ψ(r, t) =ψ
其中波函数模的平方为: 其中波函数模的平方为:
2
(下一页) 下一页)
17
1 − h 2 1 ∂ f (t) v 2m ∇ ϕ + U(r)ϕ = ih f (t) ∂ t ϕ
2
方程左边只是空间坐标的函数, 方程左边只是空间坐标的函数, 右边只是时间的函数, 右边只是时间的函数, 只有两边都等于一个常数等式才能成立。 只有两边都等于一个常数等式才能成立。 令这一常数为E 令这一常数为 。则:
第2章 波函数与薛定谔方程
二、波函数的统计解释
电子(微观粒子)到底是什么? 它既不是经典的粒子,也不是经典的波。它是粒子 和波动两重性矛盾的统一。实际上是粒子“颗粒性” (具有一定的质量和电荷等属性的客体,但不与粒
6
子具有确定轨道相对应,这是由于位置和动量不能 同时具有确定的值,即测不准关系,后讲)与波的 “相干叠加性”(呈现干涉、衍射等现象,但不与 某种实在物理量在空间分布的周期性变化相对应) 的统一。
ˆ i p
3 ˆ 则 p * ( r ) p ( r ) d r
20
可表为
ˆ ) p (,p
动量算符
上式表明,动量平均值与波函数的梯度密切相关 (与波数 k 成正比)。 动能T=p2/2m和角动量L=r×p的平均值也可类似 求出。 一般说来,粒子的力学量A的平均值可如下求出
2
A-1/2称为归一化因子。波函数归一化与否,并 不影响几率分布。
12
注意:1)象平面波等一些理想波函数,它 们不能归一化。对此的归一化问题将在后 边介绍; 2)对于归一化的波函数仍有一个模为1的 因子不定性,即相位(phase)不定性。
e i 1
e
i
2
2
13
三、统计解释对波函数提出的要求
3
一、 波动、粒子两重性矛盾的分析
1 把电子看成是物质波包
包括波动力学的创始人薛定谔、德布罗意等人把 电子波理解为电子的某种实际结构,即看成三维 空间中连续分布的某种物质波包,因而呈现出了 干涉、衍射等现象。波包的大小即电子的大小, 波包的群速度即电子运动的速度。按经典自由粒 子能量,并利用德布罗意关系可得
量子力学第二章波函数和方程.
(三) 自由粒子满足的方程
描写自由粒子波函数:
A
exp
i
(
p
•
r
Et )
应是所要建立的方程的解。
将上式对 t 微商,得:
i E
第二章 波函数 和 Schrodinger 方
程
§2.1 波函数的统计解释
子弹
光波
波:I≠I1+I2
光栅衍射
I Eo2
I Nh N
I大处 I小处 I=0
到达光子数多 到达光子数少 无光子到达
电子衍射
I | |2
IN
电子到达该处概率大 电子到达该处概率小 电子到达该处概率为零
= |C1 Ψ1|2+ |C2Ψ2|2 + [C1*C2Ψ1*Ψ2 + C1C2*Ψ1Ψ2*]
电子穿过狭缝 1出现在P点
的几率密度
电子穿过狭缝 2出现在P点
的几率密度
相干项 正是由于相干项的 出现,才产生了衍
射花纹。
一般情况下,如果Ψ1和Ψ2 是体系的可能状态,那 末它们的线性叠加 Ψ= C1Ψ1 + C2Ψ2 也是该体系的一个可能状态.
量不再是常量(或不同时为常量)粒子的状态就不能用平面波
描写,而必须用较复杂的波描写,一般记为:
(r, t )
描写粒子状态的 波函数,它通常 是一个复函数。
经典概念中 粒子意味着
1.有一定质量、电荷等“颗粒性”的属性;
2.有确定的运动轨道,每一时刻有一定 位置和速度。
第二章波函数与薛定谔方程
第二章 波函数与薛定谔方程2.1 设22()exp )2(x x A αψ-=,α为常数, 求归一化常数A . 解:由波函数满足的归一化条件()21x dx ψ+∞-∞=⎰有2222222222()exp 12()x x x x dx A dx A e dx A e dx αααψ+∞+∞+∞+∞---∞-∞-∞-∞-====⎰⎰⎰⎰由积分公式2x e dx +∞--∞=⎰有()()222211x x y e dx ed xe dy ααα+∞+∞+∞----∞-∞-∞===⎰⎰⎰即22221x A e dx A α+∞--∞==⎰,归一化常数A =2.2 设粒子波函数为(,,)x y z ψ ,求在(,)x x dx +范围中找到粒子的概率.解:在(,)x x dx +范围内找到粒子的概率为2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎛⎫⎪⎝⎭⎰⎰.2.3 设在球坐标系中,粒子波函数表为(,,)r ψθϕ,求:(1)在球壳(,)r r dr +中找到粒子的概率;(2)在(,)θϕ方向的立体角d Ω中找到粒子的概率.解:(1)在球壳(,)r r dr +中找到粒子的概率为()22|(,,)|r d r dr ψθϕΩ⎰; (2)在(,)θϕ方向的立体角d Ω中找到粒子的概率()22|(,,)|r r dr d ψθϕΩ⎰.2.4求平面单色波为00()p i x p x ψ⎛⎫⎪⎝⎭=在动量表象中的形式. 解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e2ipx p x t dx ϕψπ+∞--∞=⎰得单色平面波动量表象中的形式为()()()()001112122111,t ()e e 222ii p x px px p p x dx e dx ϕψπππ⎛⎫ ⎪⎝⎭+∞+∞---∞-∞⎛⎫ ⎪ ⎪⎝⎭==⎰⎰()()001e2i p p xdx p p δπ+∞---∞==-⎰即平面单色波的波函数在动量表象中的表示形式为()()00,p p t p p ϕδ=-.2.5 粒子在0x x =点的量子态为δ函数00()()x x x x ψδ=-,试在动量表象中写出此量子态的形式.解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e 2i px p x t dx ϕψπ+∞--∞=⎰得δ函数在动量表象中量子态的形式为()()()()00012211211()e e21,t ()2e 2ip i ip x x x x p p x dx x x dx δϕπψππ+∞-----∞+∞∞-===⎰⎰即量子态为δ函数的波函数在动量表象中表示形式为()()00121,t e2i px x p ϕπ-=.2.6 证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证0v ∇⨯=,其中/v j ρ=,ρ为概率密度,j 为概率流密度.证明:概率密度为()()(),,,r t r t r t ρψψ*=概率流密度为()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇根据薛定谔方程式可导出几率守恒方程,并定义几率流密度()()()()()(),,ln ,ln ,2,,2r t r t jv r t r t mi r t r t miψψψψρψψ***⎡⎤⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦∇∇==-=∇-∇()()()()()ln ,ln ,l 2,,n 2r t i m r r t r t t mi ψψψψ**⎡⎤⎣⎦=∇-=∇可见v 正比于一个标量场()(),,r t r t ψψ* 的对数的梯度.梯度场无旋,故v是一个无旋场(0v ∇⨯=).2.7 设粒子在复势场()()()12V r V r iV r =+ 中运动,其中()1V r 和()2V r为实数,证明粒子的概率不守恒,并求出在某一空间体积中粒子概率“丧失”或“增加”的速率.解:根据薛定谔方程及其复数共轭形式()22122i V iV t m ψψψ∂=-∇++∂ (2.7.1)()22122i V iV t mψψψ***∂-=-∇+-∂ (2.7.2)ψ**(2.7.1) -ψ*(2.7.2)得()222222i iV t t m ψψψψψψψψψψ*****⎛⎫ ⎪⎝⎭∂∂+=-∇-∇+∂∂()2222iV mψψψψψψ***=-∇⋅∇-∇+ (2.7.3)即()()222V t mi ψψψψψψψψ****∂+∇⋅∇-∇=∂,可以写为 22j V tρρ∂+∇⋅=∂(2.7.4)其中()()(),,,r t r t r t ρψψ*=,()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇.上式右边不为零,这意味着粒子的几率不守恒.将上式对空间Ω积分,则得3322Sd r jds d rV t ρρΩΩ∂+=∂⎰⎰⎰ 故某一空间体积中粒子概率“丧失”或“增加”的速率为3322S V d r jds d r t ρρΩΩ∂=-+∂⎰⎰⎰ .2.8 设()()()1212,0E E r c r c r ψψψ=+ ,问(),0r ψ是否为定态,为什么?求(),r t ψ.解:(1)由于定态是体系能量具有确定值的状态,而题中波函数(),0r ψ处于能量1E 的本征态()1E r ψ与能量2E 的本征态()2E r ψ 的叠加状态,故(),0r ψ 不是定态;(2) t 时刻的波函数为()()()121212,i i E t E t E E r t c r e c r eψψψ--=+.2.9 计算1ikr e ψ=和2ikr e r ψ-=相应的概率流密度,并由所得结果说明这两个波函数描述的是怎样传播的波.解:由微商关系式:x y z e e e x y z∂∂∂∇=++∂∂∂ ,r r r e r ∇==,3211r r e r r r ∇=-=-(1)1ψ的概率流密度为:1ikr e r ψ=,1ikr e rψ-*= ()()()2122211ikr ikrikr ikrik ik ikr r r r e r e r ikr e e ikre r e r r rr r r ikr e e r ψ⎛⎫⎪⎝⎭∇-∇-∇-∇-∇=∇===∇= 或()111111ikrikrikr ikr ikr ikr ikr ikr r r r ikr e e ike e e e ike r e r e e e rrr r r r r r ψ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∇=∇=∇+∇=∇+-∇=-= ()()()2212211ikrikr ikr ikr ikr i r r i r k k e r e r ikr e e ikre r e r r rr r r ikr e e r ψ-*------⎛⎫⎪⎝⎭∇-∇+-∇-∇=∇===--∇=+∇ ()()()()()11111,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikrikr ikr r r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦-+=--112r ikr ikr e mi r r ⎛⎫ ⎪⎝⎭--=+2rk e mr =即()12,r k j r t e mr=描述的是沿径向向外传播的球面波; (2) 2ψ的概率流密度为:2ikr e r ψ-=,2ikr e rψ*= ()()()2222211ikr ikrikr ikr ikri r kr ikr e r e r ikr e e ikre r e ikr e e r r r rr r r ψ-------⎛⎫⎪⎝⎭∇-∇+-∇-+∇-∇=∇===-∇= ()()()2222211ikr ikrikr ikrikr ikr r ikr e r e r ikr e e ikre r ik e r r rr r r e r e r ψ*⎛⎫⎪⎝⎭∇-∇-∇-∇=∇====∇∇- ()()()()()22222,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikr ikr ikrr r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+-=-- ()33112r ikr ikr e mi r r ⎛⎫ ⎪ ⎪⎝⎭-+-=-2rk e mr =-即()22,r k j r t e mr=-描述的是沿径向向内传播的球面波.2.10 粒子在一维势场中运动,若所处的外场均匀但与时间有关,即()(),V x t V t =,试用分离变量法求解一维薛定谔方程.解:由一维薛定谔波动方程()()()222,,,2i x t V x t x t t m x ψψ⎡⎤⎢⎥⎣⎦∂∂=-+∂∂ , 采用分离变量法求特解,令其特解可表示为()()(),x t x f t ψϕ=,带入一维薛定谔波动方程有()()()()()()()()()()2222i x f t x f t V t x f t t m x ϕϕϕ∂∂=-+∂∂ ()()()()()()()()2222x i f t f t x V t x f t t m xϕϕϕ∂∂=-+∂∂方程两边同时除以()()x f t ϕ可得()()()()()22212f t i x V t f t t m x x ϕϕ∂∂=-+∂∂ ()()()()()22212f t i V t x f t t m x x ϕεϕ∂∂-=-≡∂∂其中ε是既不依赖于t ,也不依赖于x 的常数.(1)此时关于时间部分为:()()()f t i V t f t tε∂-=∂ 方程两边同时对时间t 积分得()()()()()()00000ln tt t t t df i d d V d d i f d V d t f d d ττττετττττε-=⇒-=⎰⎰⎰⎰⎰()()()()00ln ti V d t ti f t V d t f t e ττεττε⎛⎫ ⎪⎝⎭-+⎛⎫ ⎪⎝⎭⎰=-+⇒=⎰(2)关于坐标的部分为:()()()()2222221202d d m x x x m x dx dx εϕεϕϕϕ-=⇒+=此二阶齐次微分方程的解为()x Ae ϕ±=由上述两部分可知()()()()0,t i V d t x t x f t Ae eττεψϕ⎛⎫ ⎪ ⎪⎝⎭-+±⎰==其中A 和ε均为常数,分别由归一化条件和初试条件决定.2.11 粒子在无限深方势阱中(0x a <<)中运动,对处于定态()n x ψ的粒子,证明:2ax =,()222226112a x x n π⎛⎫ ⎪⎝⎭-=-, 0p =,()222n p p mE -=,讨论n →∞的情况,并与经典计算结果比较.解:一维无限深方势阱内(0x a <<)粒子的波函数为()n n x x a πψ⎛⎫⎪⎝⎭=, 能量本征值为22222n n E ma π= .(1) ()()0n n n x n x x x x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==⎰⎰200cos 12sin 1222a a n x a n x x x a dx dx a a ππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎰⎰ 0020022cos sin 1111122aaa a n x n x x a a dx dx x a a a n πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎰⎰2a=(2)()222202n x a n x x x x dx a a ππ⎛⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝-=-⎰22222002212sin 1cos 222a a a n x a n x x dx x dx a a a a ππ⎛⎫⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭⎝⎭⎝⎭=-=--⎰⎰ 22220000112112cos cos 4a a a a n x a n xx dx x dx dx x dx a a a a a aππ=--+⎰⎰⎰⎰2222222260132412a a a a n n ππ⎛⎫ ⎪⎝⎭=--+=-(3)()()()(n n i i n x n x p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫-∇-∇ ⎪ ⎪⎝⎭⎝⎭==⎰⎰22022sin cos sin aan n x n x n n x i dx i dx a a a a a πππππ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-=-=⎰⎰0022022cos cos 222sin aaaa n x i n x n a a a n n x n i dx i a a a ππππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-==-=-⎰0=(4)()()222222220sin 2sin an n n x x x a n x p p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∂∂--∂∂-==⎰⎰2222222230022sin sin sin a an n x n a a a a n x n x dx dx a a πππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--==⎰⎰002222223301221cos sin 222a a a n x a n x x a n a n n a a dx πππππ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭-==-⎰22222n mE n a π==2.12 考虑质量为m 的粒子被限制在宽度为a 的一维无限深势阱();;0,2,2ax V x a x ⎧⎪⎪⎨⎪⎪⎩<=∞> 中运动,(1)粒子的能级和相应的波函数;(2)粒子处于基态的动量分布. 解:(1)在阱内体系所满足的定态薛定谔方程是2222d E m dx ψψ=- ,2a x < (2.12.1)在阱外,定态薛定谔方程为()2222V x d E m dx ψψψ+=- ,2a x > (2.12.2) (2.12.2)式中,()x V →∞.根据波函数所满足的连续性和有限性条件,只有当0ψ=时,(2.12.2)式才能成立,所以有0ψ=,2ax >(2.12.3) 该条件为解(2.12.1)式时所需的边界条件.为书写简便,引入记号1222mEα⎛⎫⎪⎝⎭= (2.12.4) 则(2.12.1)式简写为2220d dx αψψ+=,2a x <它的解是sin cos A x B x ψαα=+,ax <(2.12.5) 根据ψ的连续性,由(2.12.3)式20a ψ⎛⎫± ⎪⎝⎭=,代入(2.12.5),有22sin cos 0aaA B αα+=, 22sin cos 0aaA B αα-+=.由此得到2sin 0aA α=,2cos 0aB α=. (2.12.6)A 和B 不能同时为零,否则ψ到处为零,这在物理上是没有意义的.因此,我们得到两组解:(1) 0A =,2cos 0aα= (2.12.7) (2) 0B =,2sin 0aα= (2.12.8)由此可求得22anαπ=,1,2,3,n = (2.12.9)对于第一组解,n 为奇数;对于第二组解,n 为偶数. 0n =对应于ψ恒为零的解,n 等于负整数时解与n 等于相应正整数时解线性相关(仅差一负号),都不取.由(2.12.4)式和(2.12.9)式,得到体系的能量为22222n n E maπ= ,n 为正整数. (2.12.10) 将(2.12.7)式、(2.12.8)式依次代入(2.12.5)式中,并考虑(2.12.9)及(2.12.3)两式,得到一组解的波函数为sin ,20,2n n aA x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正偶数 (2.12.11)另一组解的波函数为cos ,20,2n n aB x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正奇数 (2.12.12)由归一化条件21dx ψ∞-∞=⎰可得常数A B ==(2)粒子处于基态时1n =,体系的能量为22122E ma π= ,波函数为1x aπψ=,对应于动量空间的波函数为:()()221a a i i px px p x e dx x e dx a πϕψ∞---∞-⎫⎛⎫⎪ ⎪⎪⎝⎭⎭==⎰22c os 2aipx a ap x e dx a π--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭==⎰ 其中积分项2cosaipx a x edx a π--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰采用两次分部积分求出: 222222cossin sin a i px a a ai ipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-⎰⎰222sin i ai a p p aipx a i eep a a x e dx a πππ---⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ (I)222222cossincos aipx a a aiipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=---⎰⎰2cos aipx a i a p x e dx aππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=-⎰ (II) 结合(I)、(II)两式可得2222222222cos 2cos i a i a p p ai px a a ap a e e a p p a x e dx a πππππ---⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭+= ⎪ ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎝⎭⎝⎭- ⎪ ⎪⎝⎭⎝⎭=⎰即()22cos a i px a ap a p x e dx a ππϕ--⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭== . 粒子处于基态的动量分布为()222224cos 221ap ap a p p a a p a πππϕπ⎛⎫ ⎪⎝⎭=⎡⎤⎛⎫⎛⎫++ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.14 粒子在如图所示的势阱中运动,设粒子处于第n 个束缚态,相应的能级为n E ,如0n V E ,求粒子在阱外出现的概率.解:00E V <<的情况下粒子处于束缚态:在阱外2ax ≥,定态波动方程为 ()022220V d m E dx ψψ--=令β=考虑到束缚态边界条件(x →∞处,()0x ψ→),方程应取如下形式的解(),2,2xx a Ae x x a Be x ββψ-⎧⎪⎪⎨⎪⎪⎩≥=≤-常数A 与B 由归一化条件确定(由于势场具有对称性A B =).在阱内2ax ≤,定态波动方程表示为22220d mE dx ψψ+= 令k =波函数偶宇称态的解为()cos x C kx ψ ,奇宇称态的解为()sin x D kx ψ . (a) 偶宇称态,波函数()x ψ及其微商()x ψ'在2ax =处是连续的; 22cos cos 2a a x x a xaC kx C k AeAe ββ==--=⇒=()()222cos sin 2xa a x x aAeC kx akC k Ae βββ-==-''-=⇒=-两式相比可得到能级公式为tan 2ka kβ=. 如0n V E ,k β=→=,()2122n ka π+→ ()2222222222+xa a aa a xB A A Aee e e dx Bedx dx x ββββββββψ∞------∞+===⎰⎰⎰阱外带入关系式2cos 2aa C k Ae β-=得()222cos 2C kax dx ψβ=⎰阱外()222221sin 22cos aa C C a ka kdx C kx dx x ψ-+==⎰⎰阱内由于()2122n ka π+→,所以2cos 02ka →,sin 0ka →,粒子出现在阱外的概率远小于粒子出现在阱内的概率()()2222C a dx dx x x ψψ≈≈⎰⎰全空间阱内粒子出现在阱外的概率为()()220222c cos 2=o 2=s =222C k ka V a E dxC a a dxa x x βββψψ⎰⎰全空间阱外22220222221cos 21tan 112ka k k E k V a k ββ⎝⎭====+⎛⎫+ ⎪+⎝⎭=+⎝⎭⎝⎭.2.16 利用厄米多项式的递推关系()()()11220n n n H H nH ξξξξ+--+=,()()12n n H nH ξξ-=',求证()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+,()()11()n n n d x x x dx ψα-+⎤⎥⎥⎦=, 并由此证明()n x ψ态下0x =,2nE V =,0p =,222n p m E T ==. 证明:(1)谐振子波函数()()22n n x H ξψξ-=,其中xξα=,α=关于Hermite 多项式有递推关系()()()11220n n n H H nH ξξξξ+--+=22ξ-得()()()22222211220n n n H H H ξξξξξξ---+--+=()()()2222221102n n n H H H ξξξξξξα---+--+= (*)()()()1120n n n x x xx αψ+--+=由此即得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=(2) 由()()2n n x H ξψξ-=,()()()()()()()()222222x x x n n n n d d d dx dx dx d dx x H x e H x e H x αααψααα---⎫⎫⎛⎫⎪⎪ ⎪=+⎨⎬⎪ ⎪⎪⎭⎝⎭⎭= ()()()()()2222212x x n n x e H x e n H x αααααα---⎫⎛⎫⎪ ⎪=-+⎬⎪⎪⎝⎭⎭(()()()()2222212x x n n x H x n H x ααααα---=-+代入(*)的变形式得()()()222222112n n n H H H ξξξαξξξ---+-=+()(()()()()2222212x x n n n d x dx x H x n H x αααψαα---=-+()()()()22222112122x n n n H H n H x αξξαξξα--+---=-++⎫⎪⎪⎭()()()1112n n n x x x αψ⎫⎪⎪⎭+--=- ()()11n n x x α-+⎤⎥⎥⎦=(3)()()111n n n n nx x dx dx x x ψαψψ+∞+∞**-∞-+-∞⎤⎥⎥⎦==⎰⎰()()11n n n n x x dx dx ψψψψ-++∞+∞**-∞-∞=0=(4)()222222111222n n n n n n V m x m x m x V dx dx dx ωωωψψψψψψ+∞+∞+∞***-∞-∞-∞⎛⎫ ⎪⎝⎭====⎰⎰⎰由(1)得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+再乘以x 得()()2111()n n n x x x x ψψψα-+⎤⎥⎥⎦=()()()()2211n n n n x x x x αα-+⎫⎤⎤⎪⎥⎥⎪⎥⎦⎦⎤⎥=⎭⎥⎦()()()()2222112n n n n x x x ψα-+⎤⎥⎦=++ ()()()()()222222112n n n n n n x xdx n dx x x x ψψψψα+∞+∞**-∞-∞-+⎧⎫⎤⎨⎬⎩=⎭=⎥⎦+++⎰⎰()()()()222002112n n n n n n x dx n x dx x dx ψψψψψψα+∞+∞**-++∞∞*--∞-∞⎫⎪=++⎬⎪⎩⎭⎰ ()2212n α=+()()222222212111122221112222n n n n E m x m m V ωωωωα=++⎛⎫=+= ⎪⎝⎭==(5)()()11n n n n n n n d d i dx dx i i x dx d p d x x xψψψψψα+∞+∞+∞**-∞-∞-+*-∞--⎤⎛⎫-⎥ ⎪⎝⎭⎥⎦===⎰⎰⎰()()11000n n n n i x x dx dx ψψαψψ-++∞+∞**-∞-∞⎫⎪=-=⎬⎪⎭(6)()()22221121222nn n nnd dm dx m dxxpT dxmx dxαψψψ+∞+∞**-∞--∞+⎧⎫⎤⎪⎪⎥⎨⎬⎥⎪⎪⎛⎫--⎪⎝⎭⎦⎩⎭===⎰⎰()()()() 222 2n nn nn n mx x dx dx x x αααψψ+∞+∞*-*-∞∞+-⎧⎫⎧⎫⎤⎤⎪⎪⎪⎪⎥⎥⎨⎬⎨⎬⎥⎥⎪⎪⎪⎪⎫⎪-⎬⎪⎭⎦⎦⎩⎭⎩⎭=()()()()220022214nn n nnndx dxx xnmx dxψψψψαψψ+∞+∞**-∞+-∞-⎫⎪⎪⎬⎪⎪⎪⎩⎭+∞*-∞+-=-⎰⎰⎰()222111222212144nm nn Enm mωωα⎛⎫⎪⎪⎝⎭⎛⎫⎪⎝⎭+==+=+=2.17 质量为m的粒子处于势阱()220;,1,20;xxxm xVω∞⎧>=≤⎪⎨⎪⎩中,求粒子的可能能量.提示:利用谐振子波函数()nxψ的奇偶性()()()1nn nx xψψ-=-.解:线性谐振子对应于本正函数()()221212122!xn nnx e H xnαααπψ-⎛⎫⎪=⎪⎝⎭,α=的本征值为12nE nω⎛⎫=+⎪⎝⎭.题中0x≤区域,粒子的波函数满足()0xϕ=.0x>区域粒子的波函数满足边界条件()00ϕ=,()0ϕ∞=,由波函数的连续性可知()00ϕ=.由谐振子波函数()nxψ的奇偶性条件()()()1nn nx xψψ-=-,我们得知只有当n取奇数时连续性条件才被满足,故此时粒子的可能能量值为()1321222nE n nωω⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,0,1,2,n=.相应的本正函数为()()21n nx xϕ+=.()()()222222121011122n n n A x dx A x dx A x dx ψψϕ+∞+∞+∞++-∞====⎰⎰⎰,故A =.2.18 设()1,r t ψ 和()2,r t ψ 是不含时势场()V r中薛定谔方程的两个解,证明对变量变化的全空间积分312d x ψψ*⎰与时间无关,即3120d d x dtψψ*=⎰. 证明:由题意得()1,r t ψ 和()2,r t ψ分别满足薛定谔波动方程()()()()22111,,,2i r t r t V r r t t m ψψψ∂=-∇+∂ (2.18.1) ()()()()22222,,,2i r t r t V r r t t mψψψ∂=-∇+∂ (2.18.2) ()1,r t ψ*⨯ ()2.18.2 - ()2,r t ψ⨯()2.18.1*()()()()()()()()222122112,,,,,,2i r t r t r t r t r t r t t mψψψψψψ***∂=∇-∇∂()()()()()22112,,,,2r t r t r t r t mψψψψ**=∇⋅∇-∇上式对全空间进行积分()()()()()()()()233122112,,,,,,2i r t r t d x r t r t r t r t d x t mψψψψψψ***∂=∇⋅∇-∇∂⎰⎰ ()()()()()22112,,,,2r t r t r t r t ds m ψψψψ**=∇-∇⋅⎰由于无穷远处波函数为零,积分项()()()()()2112,,,,r t r t r t r t ψψψψ**∇-∇⎰ 为零,即()()()132,0,d d x dtr t r t ψψ*= .。
波函数和波动方程
波函数和波动方程 的精度难以保证
汇报人:XX
分离变量法:将波动方程中的空间 和时间变量分离,得到一组常微分 方程,求解得到波动方程的解。
格林函数法:利用格林函数表示波 动方程的解,通过求解格林函数的 积分方程得到波动方程的解。
添加标题
添加标题
பைடு நூலகம்
添加标题
添加标题
傅里叶变换法:利用傅里叶变换将波 动方程从时域转换到频域,求解得到 频域中的解,再通过逆变换得到时域 中的解。
函数的演化
波函数可以是实数或复数
波函数描述了粒子在空间中 的概率分布
波函数的模方表示粒子在某 一位置出现的概率
波函数满足薛定谔方程
波函数描述了微观粒子在空间 中的状态和概率幅
波函数满足薛定谔方程,是粒 子运动状态的数学表达
波函数的模平方表示粒子在某 一位置出现的概率
波函数具有实部和虚部,分别 代表粒子的位置和动量
地震预警:通过 波动方程预测地 震波传播路径和 时间,为地震预 警提供技术支持。
PART FOUR
有限差分法:通过 离散化连续时间和 空间的波动方程, 将微分运算转化为 差分运算,从而求 解波函数在离散点
上的数值解
有限元法:将连续 的波动方程离散化 为有限个单元,通 过求解每个单元内 的波动方程,得到 波函数在离散点上
描述电磁波的传播
计算电磁波的能量 密度
分析电磁波的反射 和折射
研究电磁波的散射 和干涉现象
地震波传播规律: 波动方程能够描 述地震波在地壳 中的传播规律, 为地震学研究提 供基础。
地震定位:通过 波动方程求解震 源位置,提高地 震定位精度。
地球内部结构研 究:利用地震波 传播速度的差异, 推断地球内部结 构的特征。
波函数 薛定谔方程
玻尔在解释氢原子光谱时就提出了定态的概念雏形.定态也是量子力
学中最重要的概念之一,本节就从薛定谔方程出发,对定态的性质做一些
概括性的讨论.
若势能V(r)与时间无关,则可以设
Ψ(r,t)=Ψ(r)f(t)
(15- 41)
把式(15- 41)代入式(15- 40),得到
波函数 薛定谔方程
两边同除以Ψ(r)f(t),就可以分离变量,即
波函数 薛定谔方程
薛定谔方程描述微观粒子运动的一般方程,自然也可以描 15- 36
解,由式(15- 36)可得
(15- 37)
波函数 薛定谔方程
由式(15- 35)可得
波函数 薛定谔方程
(1)这并不是薛定谔方程的证明,薛定谔方程是量子力学的基本 假定,是对大量实验观测结果的概括,它和经典力学中的牛顿三定律一 样,是不能被证明的.
波函数 薛定谔方程
图15- 13 无限深方势阱中的波函数
波函数 薛定谔方程
图15- 14所示为 无限深方势阱中的粒 子分布密度Ψ2(x).容 易看出,当n→∞时, 粒子分布密度会趋于 均匀,即在大量粒子 数条件下,量子力学 将回到经典情况.
图15- 14 无限深方势阱中的粒子分布密度
谢谢观看
波函数 薛定谔方程
若定态波函数能够满足归一化条件,即
则在无限远处,定态波函数必然迅速趋于0,即粒子不可能出现 在无穷远处,也就是粒子被限制在有限的范围内运动,这种状态就称 为束缚态,否则就称为游离态.
波函数 薛定谔方程
在经典情况下,粒子当然也不能出现在阱外,这一点与量子 力学的解并无区别.若是经典粒子,在阱内各处的势场都为零, 因此粒子在阱内均匀分布.在量子力学情况下,容易解得粒子出 现在各处的概率并不相同,随着位置的变化而变化,即粒子分布 是不均匀的.此外,在经典情况下,粒子的能量可以取任意的有 限值,即粒子的能量是可以连续变化的,但在量子力学情况下, 粒子的能量只能取一系列分立值,即能级是量子化的.图15-13所 示为无限深方势阱中的波函数Ψ(x).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构,是三维空间中连
续分布的某种物质波包。因此呈现出干涉和衍射等波动现象。波包的 大小即电子的大小,波包的群速度即电子的运动速度。
什么是波包?波包是各种波数(长)平面波的迭加。
平面波描写自由粒子,其特点是充满整个空间,这是因为平面波 振幅与位置无关。如果粒子由波组成,那么自由粒子将充满整个空间, 这是没有意义的,与实验事实相矛盾。
实验上观测到的电子,总是处于一个小区域内。例如在一个原子内, 其广延不会超过原子大小≈1 Å 。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒 子也不是波 ”,既不是经典的粒子也不是经典的波, 但是我们 也可以说,“ 电子既是粒子也是波,它是粒子和波动二重性矛盾的统 一。” 这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
返回
假设衍射波波幅用 Ψ (r) 描述,与光学相似, 衍射花纹的强度则用 |Ψ (r)|2 描述,但意义与经典波不同。
|Ψ (r)|2 的意义是代表电子出现在 r 点附近几率的大小, 确切的说, |Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx Δy Δz中 找到粒子的几率。波函数在空间某点的强度(振幅 绝对值 的平方)和在这点找到粒子的几率成比例, 据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的 基本原理。
P
O Q
感 光 屏
P
电子源
Q
结论:衍射实验所揭示的电子的波动性是: 许多电子在同一个实验中的统计结果,或 者是一个电子在许多次相同实验中的统计结果。
波函数正是为了描述粒子的这种行为而引进的,在此基
础上,Born 提出了波函数意义的统计解释。
r 点附近衍射花样的
强度 正比于该点附近感光 的数 盦, Ġ 正比于该点附近出现的电子 浰目,
§1 波函数的统计解释
(一)波函数 (二)波函数的解释 (三)波函数的性质
返回
(一)波函数
i A e xp ( p r Et )
称为 de
描写自由粒子的 平 面 波
Broglie 波。此式称为自由粒子的波函数。
•如果粒子处于随时间和位置变化的力场中运动,他的动量和能 量不再是常量(或不同时为常量)粒子的状态就不能用平面波 描写,而必须用较复杂的波描写,一般记为:
经典概念中
1.有一定2.有确定的运动轨道,每一时刻有一定 位置和速度。
经典概念中
1.实在的物理量的空间分布作周期性的变化;
波意味着
2.干涉、衍射现象,即相干叠加性。
我们再看一下电子的衍射实验
1.入射电子流强度小,开始显示电子的微粒性,长时间亦显示衍射图样 ; 2. 入射电子流强度大,很快显示衍射图样.
若
∫∞ |Ψ (r , t)|2 dτ ∞, 则 C 0, 这是没有意义的。
i (r , t ) A e xp ( p r Et )
注意:自由粒子波函数
•不满足这一要求。关于自由粒子波函数如何归一化问 题,以后再予以讨论。
(3)归一化波函数
Ψ (r , t ) 和 CΨ (r , t ) 所描写状态的相对几率是相同的,这里的 C 是常数。 因为在 t 时刻,空间任意两点 r1 和 r2 处找到粒 子的相对几率之比是:
假设衍射波波幅用 Ψ (r) 描述,与光学相似, 衍射花纹的强度则用 |Ψ (r)|2 描述,但意义与经典波不同。
|Ψ (r)|2 的意义是代表电子出现在 r 点附近几率的大小, 确切的说, |Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx Δy Δz中 找到粒子的几率。波函数在空间某点的强度(振幅 绝对值 的平方)和在这点找到粒子的几率成比例, 据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的 基本原理。
返回
(2)
平方可积
由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C∫∞ |Ψ (r , t)|2 dτ= 1, 从而得常数 C 之值为: C = 1/ ∫∞ |Ψ (r , t)|2 dτ
这即是要求描写粒子量子 状态的波函数Ψ必须是绝 对值平方可积的函数。
C ( r1 , t ) C ( r2 , t )
2
( r1 , t ) ( r2 , t )
2
可见,Ψ (r , t ) 和 CΨ (r , t ) 所以波函数有一常数因子不定性。
描述的是同一几率波,
由于粒子在全空间出现的几率等于一,所以粒子在空间各点出现的几率 只取决于波函数在空间各点强度的相对比例,而不取决于强度的绝对大 小,因而,将波函数乘上一个常数后,所描写的粒子状态不变,即 Ψ (r, t) 和 CΨ (r, t) 描述同一状态
( r , t )
描写粒子状态的 波函数,它通常 是一个复函数。
• 3个问题?
(1) 是怎样描述粒子的状态呢? (2) 如何体现波粒二象性的?
(3) 描写的是什么样的波呢?
返 回§1
P
电子源
P
O Q
感 光 屏
O Q
(1)两种错误的看法 1. 波由粒子组成
如水波,声波,由分子密度疏密变化而形成的一种分布。
• 这与经典波不同。经典波波幅增大一倍(原来的 2 倍),则相应的波动能量将为原来的 4 倍,因而代表完全不同的波动状 态。经典波无归一化问题。
这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上增 加呈现出衍射花纹。这说明电子的波动性并不是许多电子在空间聚 集在一起时才有的现象,单个电子就具有波动性。 事实上,正是由于单个电子具有波动性,才能理解氢原子 (只含一个电子!)中电子运动的稳定性以及能量量子化这样一 些量子现象。 波由粒子组成的看法夸大了粒子性的一面,而抹杀 了粒子的波动性的一面,具有片面性。