RC文氏桥振荡电路

合集下载

RC文氏电桥振荡电路知识分享

RC文氏电桥振荡电路知识分享

R C文氏电桥振荡电路RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。

C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。

C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。

图1 RC文氏电桥振荡器RC串并联选频网络的选频特性RC串并联网络的电路如图2所示。

RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。

图2 RC串并联网络RC串并联网络的传递函数为式(1)当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。

令式(1)的虚部为0,即可求出谐振频率。

谐振频率对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率:频率特性幅频特性相频特性文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线图3 RC串并联网络的频率响应特性曲线反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数此时反馈系数与频率f0的大小无关,此时的相角 jF=0°。

文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。

根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。

由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有振荡的建立和幅度的稳定振荡的建立所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。

由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。

实验五RC正弦波振荡电路实验

实验五RC正弦波振荡电路实验
C1
F >1 A
Z1
R3
R1 R2 C2
Z2
R4
. Uf
+
+ . Uo
RC文氏电桥振荡器的电路图
1 A 3 F 所以要求 A 当f=f0时, u 3
U R3 o Au 1 3 Uf R4
R3 2R4
C1 Z1 R1 R2 C2
R3
Z2
R4
. Uf
+
+ . Uo
图07.02.04 RC文氏桥振荡器的电路
2.2 振荡的稳定
由于Uo与Uf具有良好的线性关系,所以为了稳定输出电 压的幅值,一般应在电路中加入非线性环节。
C1 Z1 R1 R2 C2 R3
Z2
t
R4
. Uf
+
+ . Uo
带有热敏电阻稳幅的RC文氏电桥振荡器电路图
R4是具有正温度系数的热敏电阻,起振前其阻值较小, 使Au>3。当起振后,流过R4的电流加大,R4的温度升高 阻值加大,Au变小,达到振荡稳定状态时:Au =3。
该电路的振荡频率 f 0 = 起振幅值条件
Av 1 Rf R1 3
1 2RC
8-1
8-2
式中 R f R2 R3 // rd , rd 为二极管的正向动态电阻
1.电路参数确定 (1) 确定 R、C 值 根据设计所要求的振荡频率 f 0 ,由式 8-1 先确定 RC 之积,即 RC=
VSIN
y
2
五、报告要求 1.由给定的电路参数计算振荡频率,同实验值比较,分析其误差原因 2.总结文氏桥振荡电路的振荡条件 六、预习要求 复习文氏桥振荡电路的工作原理,计算振荡频率

rc文氏电桥振荡电路

rc文氏电桥振荡电路

rc文氏电桥振荡电路1. 引言RC文氏电桥振荡电路是一种常见的电子电路,可以产生稳定的振荡信号。

它由RC网络和文氏电桥组成,通过反馈机制实现自激振荡。

本文将深入探讨RC文氏电桥振荡电路的原理、特点、设计方法及应用。

2. RC文氏电桥振荡电路原理2.1 RC网络RC网络是由电阻(R)和电容(C)组成的网络,它可以作为振荡电路的基础组成部分。

当电容充电或放电时,可以产生变化的电压信号。

RC网络可以通过调节电阻和电容的数值来改变振荡频率和振幅。

2.2 文氏电桥文氏电桥是一种平衡交流电桥,由一个电感(L)和两个电容(C1和C2)组成。

当桥路平衡时,可以产生稳定的交流信号。

文氏电桥是常用的振荡电路中的重要部分,通过调节电感和电容的数值可以改变桥路的平衡条件。

2.3 自激振荡原理RC文氏电桥振荡电路是一种自激振荡电路,它基于反馈机制实现振荡。

当桥路发生微小的不平衡时,由于反馈作用,会引起振荡信号的放大,进而驱动桥路向稳定状态靠近。

通过调节RC网络和文氏电桥的参数,可以实现稳定的振荡输出。

3. RC文氏电桥振荡电路设计方法3.1 选择合适的RC网络根据实际需求和设计目标,选择合适的RC网络。

通过调节电阻和电容的数值可以调整振荡频率、振幅和波形形状。

3.2 优化文氏电桥参数由于文氏电桥的电感和电容可以直接影响振荡频率和稳定性,因此需要进行参数优化。

可以通过改变电感和电容的数值,或者通过添加调节电路来实现。

3.3 确保反馈机制稳定自激振荡电路需要一个稳定的反馈机制来保持振荡的稳定性。

可以通过添加放大器、滤波器或稳压器来实现反馈,确保振荡信号的稳定输出。

3.4 对振荡电路进行调试和测试在设计完成后,需要对振荡电路进行调试和测试。

可以通过测量输出信号的频率、振幅和波形形状来验证设计的有效性。

如果需要,可以进行参数调整和优化。

4. RC文氏电桥振荡电路的应用4.1 信号发生器由于RC文氏电桥振荡电路可以产生稳定的振荡信号,因此可以作为信号发生器使用。

【高中物理】优质课件:RC 桥式正弦波振荡电路(文氏桥振荡器)

【高中物理】优质课件:RC 桥式正弦波振荡电路(文氏桥振荡器)
高中物理
RC 桥式正弦波振荡电路
(文氏桥振荡器)
RC 桥式正弦波振荡电路(文氏桥振荡器)
用同相比例运算电路作放大电路。
Rf 2R1
以因RC同串相并比联例网运络算为电选路频有网非络常和好正的反馈网络、并引入电 压压线加串,性二联一度 极负对,管反顶故作馈点为R,作非或两为线个放R性f 网大用环络电热节构路敏。成的电桥净阻路输,,入或一电对压顶,文器点就氏的作构桥特为成振点输文荡?出氏电桥 振荡器。
输入电阻小、输出 电阻大,影响f0
可引入电压串联负反馈,使 电压放大倍数大于3,且Ri大、 Ro小,对f0影响小
应为RC 串并联网路配一个电压放大倍数略大于3、输入电 阻趋于无穷大、输出电阻趋于0的放大电路。
振荡频率 相位条件
f0
1 2RC
AF 2n
幅值条件
A•uF•u 1•F源自13A• 3
U i
正反馈 网络
选频 网络
1) RC 移相电路有几级才 可能产生正弦波振荡?
2) 若R 和C 互换呢?
选频网络和正反馈 网络是两个网络。
RC 移相式振荡电路
C C C R Rf RR
8
一节 RC 环节
移相 90
二节 RC 环节
U o
移相 180 三节 RC 环节
移相 270
对于
f0 2π
应使: Rf R1 2 Rf 2R1
Rf 不能太大,否则 正弦波将变成方波
稳幅措施
为使电 Au 为非线性,起振时,应使 Au > 3,稳幅后 Au = 3。
热敏电阻稳幅
正温度系数
Rf R1
负温度系数
8
U i R C U f
U o

文氏桥震荡原理

文氏桥震荡原理

原文地址:对文氏桥RC振荡电路的一点小实验作者:毒蛋RC振荡电路可以可以产生特定频率的正弦波,这在很多数字系统中用来产生时钟信号,最大的优点就是成本低,而且在低频时,他的体积优势也很明显,LC振荡电路在低频是体积和成本都是问题。

之前看过很多次资料一直不太理解这个振荡器的工作原理,今天又找到一点资料,顿时理解了一些,不过也只能算是基本了解了原理吧~上图就是文氏桥振荡电路的原理图,在一个运放上,分别有正反馈和负反馈,正反馈为一个RC串并联选频网络,这也就是这个电路能产生特定频率波形的原因,因此先分析选频网络图a为RC串并联选频网络,左端输入,右端输出。

当输入信号的频率足够低的时候,可以将该网络等效为中图(频率小,电容容抗远大于电阻),输出超前于输入,如果频率趋近于0,输出将为趋近于0,相位超前趋近于90°,当输入信号足够大的时候,网络等效为右图(频率大,电容容抗远小于电阻),输出将滞后于输入,如果频率趋近于无穷大,输出趋近于0,相位滞后趋近于90°。

两种情况下,信号都有衰减对这样一个网络,输出的相位总是在滞后90°和超前90°之前徘徊,那么显然,总存在一个频率,使得输出和输入同相位,而且此时信号衰减最低,为三分之一,下图为网络的幅频特性和相频特性如图,当频率在f0左右时,信号衰减小,而偏移这个频率的,衰减严重。

f0=1/2πRC对选频网络的仿真此时频率大于f0,很明显,输出的衰减已经超过1/3,而且相位滞后现在再看文氏桥振荡电路,负反馈上的反馈系数为1+Rf/R1,而正反馈系数就为该选频网络的衰减系数。

在这个运放没有输入信号的时候,会有很多干扰,这个干扰先被放大为1+Rf/R1倍,如果某个干扰的频率正好为f0时,他正好又会被衰减为1/3,所以设定1+Rf/R1=3,这样该信号就会被还原,而其他频率的信号经过这个过程后会被衰减,被抑制,这样,就选出了一个特定频率的干扰来放大,便得到了需要的正弦波。

RC文氏电桥振荡电路

RC文氏电桥振荡电路

RC文氏电桥振荡电路RC文氏电桥振荡器的电路如图1所示,RC串并联网络是正反馈网络,由运算放大器、R3和R4负反馈网络构成放大电路。

C1R1和C2R2支路是正反馈网络,R3R4支路是负反馈网络。

C1R1、C2R2、R3、R4正好构成一个桥路,称为文氏桥。

图1 RC文氏电桥振荡器RC串并联选频网络的选频特性RC串并联网络的电路如图2所示。

RC串联臂的阻抗用Z1表示,RC并联臂的阻抗用Z2表示。

图2 RC串并联网络RC串并联网络的传递函数为式(1)当输入端的电压和电流同相时,电路产生谐振,也就是式(1)是实数,虚部为0。

令式(1)的虚部为0,即可求出谐振频率。

谐振频率对于文氏RC振荡电路,一般都取R=R1 = R2,C=C1 = C2时,于是谐振角频率:频率特性幅频特性相频特性文氏RC振荡电路正反馈网络传递函数的幅度频率特性曲线和相位频率特性曲线如图3所示。

(a) 幅频特性曲线 (b) 相频特性曲线图3 RC串并联网络的频率响应特性曲线反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数当满足R=R1 = R2,C=C1 = C2条件,且当f=f0时的反馈系数此时反馈系数与频率f0的大小无关,此时的相角jF=0°。

文氏RC振荡电路可以通过双连电位器或双连电容器来调节振荡电路的频率,即保证R=R1 = R2,C=C1 = C2始终同步跟踪变化,于是改变文氏桥RC振荡电路的频率时,不会影响反馈系数和相角,在调节频率的过程中,不会停振,也不会使输出幅度改变。

根据振荡条件丨AF丨>1,在谐振时,放大电路的电压增益应该Au=3。

由图1可知,RC串并联网络的反馈信号加在运算放大器的同相输入端,运算放大器的电压增益由R3和R4确定,是电压串联负反馈,于是应有振荡的建立和幅度的稳定振荡的建立所谓振荡的建立,就是要使电路自激,从而产生持续的振荡输出。

由于电路中存在噪声,噪声的频谱分布很广,其中也包括f0及其附近一些频率成分。

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析这有个例子,如下:咋一看有点傻眼了,这2个二极管是干啥的,莫大疑问,需要仔细分析原理,首先既然是振荡电路需满足起振条件如图(图中都为向量):图中向量A=Uo/Ui ;F=Uf/Uo起振条件:|AF|>1且Ui 与Uf同相位,这样才能自激励当起振后又需要|AF|=1,才能稳定振荡(也就是Ui =Uf),而UA741CD是个高增益运放,把电路先做简化然后推导分析,简化如下:当此网络发生谐振时虚部为零即:此为谐振角频率如果取R1=R2=R,C1=C2=C,那么F的模如下:F的相角如下:当选频正反馈网络谐振时正反馈系数|F|=1/3,由起振条件|AF|>1 ,需要负反馈网络组成的闭环增益大于3即而起振后应该Au=3,所以需要R3/R4分别是负温度系数热敏电阻和正温度系数热敏电阻,如果不用热敏电阻,有啥办法到稳定后让放大倍数减小呢?我们先把例子中的电路改成这样:这时Au=11倍看波形已经限幅了如图,而且很容易起振:如果把R3改成30k,Au=4倍看看波形如何:如果把R3改成21k,Au=3.1倍看看波形如何:如果把R3改成20k,Au=3倍看看波形永远不会起振的,如果我们想个办法起振时候为4倍,而起振完成后变成稍稍小于3倍,不就不在限幅也能起振如下图:很明显起振时候Au=4,而起振后由于二极管导通R2//R3=18.9K,得Au≈2.89倍,得到波形如下:而例子中也是这个原理,如果运放是单电源又该咋办呢,就需要抬一下直流电平更改如下:R4//R7=R5的值,交流通路就是把V2和C3短路即可原理:V2通过R7和R4分压由于2个阻值相等,又由于运放正端输入阻抗无穷大,那么可以认为运放正端的直流电平为V2/2,而负端"虚短"缘故则也为V2/2,从而输出处也为V2/2的直流电平(也可以看出一个电压跟随器,所以负端和输出都为V2/2的直流电平),交流通路就是把R7和R1接地,由于R4//R7=R5,交流通路没变,所以还是满足振荡条件的。

实验七 集成电路RC正弦波振荡电路(有数据)

实验七  集成电路RC正弦波振荡电路(有数据)

实验七 集成电路RC 正弦波振荡电路一、实验目的1.掌握桥式RC 正弦波振荡电路的构成及工作原理。

2.熟悉正弦波振荡电路的调整、测试方法。

3.观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。

二、实验仪器1.双踪示波器2.低频信号发生器3.频率计三、实验原理正弦波震荡电路必须具备两个条件是:一必须引入反馈,而且反馈信号要能代替输入信号,这样才能在不输入信号的情况下自发产生正弦波震荡。

二是要有外加的选频网络,用于确定震荡频率。

因此震荡电路由四部分电路组成:1、放大电路,2、选频网络,3、反馈网络,4、稳幅环节。

实际电路中多用LC 谐振电路或是RC 串并联电路(两者均起到带通滤波选频作用)用作正反馈来组成震荡电路。

震荡条件如下:正反馈时Of i X F X X ==/,Oi O X F A X A X ==/,所以平衡条件为1=F A ,即放大条件1=F A ,相位条件πϕϕn F A 2=+,起振条件1>F A。

本实验电路常称为文氏电桥震荡电路,由2p R 和1R 组成电压串联负反馈,使集成运放工作于线性放大区,形成同相比例运算电路,由RC 串并联网络作为正反馈回路兼选频网络。

分析电路可得:0,112=+=A p R R Aϕ 。

当C C C R R R p ====2111,时,有)1(31RC RC j F ωω-+= ,设RC 10=ω,有200)(91ωωωω-+=F ,)(3100ωωωωϕ--=arctg F 。

当0ωω=时,0,31==F F ϕ ,此时取A 稍大于3,便满足起振条件,稳定时3=A 。

填空题:(1)图11.1中,正反馈支路是由 RC 串并联电路 组成,这个网络具有 选频 特性,要改变振荡频率,只要改变 R 或 C 的数值即可。

(2)图11.1中,1R P 和R 1组成负反馈,其中 Rp 是用来调节放大器的放大倍数,使A V ≥3。

四、实验内容1.按图11.1接线。

文氏桥振荡电路仿真分析

文氏桥振荡电路仿真分析

模电大作业文氏桥振荡电路仿真分析报告一、任务要求文氏电桥振荡器是一种常用的RC 振荡器,用来产生低频正弦信号。

图6是一个典型电路,它由运算放大器和RC 串并联选频网络组成。

电阻F1R ,F2R 组成负反馈网络,电压增益约为F1F2F1()/R R R +。

(1)设计电路参数使0500Hz f =。

(2)计算RC 串并联选频网络的频响特性。

(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

图6 文氏电桥震荡电路二、 仿真软件搭建的电路与仿真分析过程(1) 选取R 1=R 2=R ,C 1=C 2=C ,从RC 串并联选频网络的选频特性可知,f 0=12πRC=500Hz 。

所以可以选取R=1.6k Ω,C=200nF 。

(2) 令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC1,则Z 1=RCj Rω+1,Z 2=R Cj ω1+,反馈系数为)//(j 31211...ωωωωo o oZ Z Z f UU F-+=+==。

由此可得RC 串并联选频网络的幅频特性与相频特性分别是22.)//(31ωωωωO O F-+=3)//(arctanωωωωϕO O F --=图形如图6-1,6-2.当f=f 0,即ω=ω0,|U f |=13|U o |,φf =0o 。

当ω=ω0时,即f=f 0时,F =13,所以A =A u =3,只要为RC 串并联选频网络配一个电压放大倍数等于3的放大电路就可以构成正弦波振荡电路。

考虑到起振条件,所选放大电路的电压放大倍数应该略大于3。

根据起振条件和幅值平衡条件,A u =U o U p=1+RF2R F1≥3,即R F2≥2R F1。

一般R F2取值略大于2R F1。

根据上述原理,可以用Multisim 搭建出如图1的电路:图1(3) 在R F2回路串联两个并联的二极管和电阻R F3,利用电流增大时二极管动态电阻减小、电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。

rc文氏电桥振荡电路

rc文氏电桥振荡电路

rc文氏电桥振荡电路RC文氏电桥振荡电路是一种常用于信号处理和通讯领域的电路。

该电路由四个电阻和两个电容构成,具有非常高的灵敏度和精度。

本文将对RC文氏电桥振荡电路的原理、特点、应用以及设计方法进行介绍,以期能够为电子工程师和爱好者提供一些参考和指导。

RC文氏电桥振荡电路的原理RC文氏电桥振荡电路是一种能够自产生振荡信号的电路。

其基本原理是利用阻抗匹配条件和反馈机制,将输入信号增强后输出为稳定的正弦波信号。

具体来说,RC文氏电桥振荡电路由四个电阻分别为R1、R2、R3和R4以及两个电容C1和C2构成。

其中,R1和R2形成一个电压分压器,将输入信号Vinput分成两个电压V1和V2。

R3和R4与C2串联成为共振回路,该回路的频率为f0=1/(2πR3C2)。

当电压分压器输出的两个电压相等时,C1和C2之间的电压差为0,则RC文氏电桥处于稳定状态。

此时输出的信号由共振回路自产生,成为和共振回路频率相同的正弦波信号,其振幅由输入信号决定。

特点RC文氏电桥振荡电路具有以下特点:1. 灵敏度高,可以产生稳定的正弦波信号;2. 频率稳定,可以通过改变电容和电阻的值实现对频率的调整;3. 反馈机制有效,可以使输出信号稳定,而不会随着时间的推移而衰减;4. 通用性强,适用于信号处理、通讯、测试等多个领域。

应用RC文氏电桥振荡电路在通讯和信号处理领域有着广泛的应用。

常见的应用包括:1. 信号发生器和频率计,在实验室和测试中常用于产生精确的正弦波信号和测量频率;2. 闪光灯驱动器,在照相机等器材中用于产生闪光灯的高压高频驱动信号;3. 无线电接收机和发送机,在收发机中通常用于产生射频信号;4. 数字时钟和计时器,可以通过RC文氏电桥振荡电路产生精确定时信号。

设计方法RC文氏电桥振荡电路的设计需要考虑到电容和电阻的选择和匹配。

以下是一些可以参考的设计方法:1. 选择合适的电容和电阻,使得RC回路的频率等于所需的输出频率;2. 对于稳定性要求比较高的应用,需要选择高精度的电容和电阻;3. 在电路的反馈路径中添加适当的放大器可以增强信号的稳定性和输出电压的幅度。

RC文氏电桥振荡条件的分析

RC文氏电桥振荡条件的分析

2002年第16卷专刊测试技术学报V01.16Mono2002JoURNALOFTESTANDMEASUREMENTTECHNoLoGYRC文氏电桥振荡条件的分析钟德荣(南京理T人学电光学院,210094)摘要Rc义氏电桥振荡器广泛用于需要信号源的仪器设备中。

简介'广文氏电桥振荡器的工作原理,说【!f:{r“复数阻抗法”分析振荡器特性的优缺点。

建立r文氏电桥的闭环传递电路模型,运用拉氏变换对电桥电路的传递函数进行了理论推导,讨论及仿真_:_厂Rc文氏电桥振荡电路的工作及应用条件。

关键词Rc文氏电桥振荡器传递函数负反馈放火器文氏电桥振荡器是一种比较常用的RC振荡电路。

它在电子测鼙仪表仪器中作为振荡源得剑了J一泛的应用。

文氏电桥电路的分析通常采用“复数阻抗法”,它是根据振荡器同路的幅频特性及相频特性,认为电路存在着某一频率的正弦振荡,然后求出对应这个振荡的相位条件和幅度条件。

而本文从另~角度出发,运用拉氏变换对电桥电路的闭环传递函数分析,并根据放大器的增益与电路传递函数进行分析,说明文氏振荡器所处的儿种情形,且可得到放人器电压增益与振荡频率之间的数量关系。

此方法对电路分析达剑直观、具体,与“复数阻抗法”的分析相比,更便于人家理解,掌握振荡器电路的振荡过科的全貌。

一、文氏电桥式Rc正弦波振荡器电路图1图2图1中采用集成运算放火器的文氏电桥式RC止弦波振荡电路。

图2中各阻抗均写成拉氏变换形式,再借助方块图变换法则进行化简,最后得出此电路闭环传递函数可用卜.式表示:郴)2而而面蒜等两面而+收稿l|期:2002.03.23RC文氏电桥振荡条件的分析1039根据劳斯稳定判据,要使电路处于非稳定状态,(1)式中分母的s项系数必须为零或负值,即C1R1+C2R2+C1尺2一KCl尺2≤O若取届=屉=尼a=&=f则胗3,且(1)式叭驴惫‘碍嘉焉㈣s::去』堕学i㈤由此可见,为使文氏电桥处于非稳定状态,放人器的电压增益应人丁.等丁.3,而相移为零。

文氏桥振荡电路(精品)

文氏桥振荡电路(精品)

文氏桥振荡电路一、问题背景将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。

RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。

正反馈电路和负反馈电路构成一文氏电桥电桥。

文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。

二、问题简介由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。

(1)若取R1=15kΩ,试分析该振荡电路的起振条件(R f的取值);(2)仿真观察R f取不同值时,运放同相输入端和输出端的电压波形;图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2取不同值时,运放同相输入端和输出端的电压波形。

也可同时改变R f和R2的值。

图2 加入非线性环节的正弦波发生器的电路原理图三、理论分析(1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。

图3 文氏选频网络图中o U 是运放的输出量,fU 是反馈量。

为了能够使电路振荡起来,就必须通过选定参数即确定频率,使得在某一频率下o U 和fU 同相。

那么,当信号频率很低时,有1RCω>>故将会有fU 的相位超前o U 的相位,当频率接近0时,相位超前接近于90度。

相反地,当信号频率很高以至于趋于无穷大时,可以得出fU 的相位滞后o U 的相位几乎-90度。

所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。

下面就具体来求解此振荡频率。

由反馈系数1//11//foR Uj C F U R Rj Cj Cωωω==++整理可得113()F j C R C R ωω=+-若电路的信号频率为f ,令特征频率012f R C π=代入F 的表达式,可以得到0013()F f f j f f =+-。

文氏桥式rc振荡电路 振幅可调-概述说明以及解释

文氏桥式rc振荡电路 振幅可调-概述说明以及解释

文氏桥式rc振荡电路振幅可调-概述说明以及解释1.引言1.1 概述概述部分的内容:文氏桥式RC振荡电路是一种常见的电路结构,通过使用电阻和电容元件,实现了信号的振荡输出。

在该电路中,通过反馈网络的作用,信号可以循环地输入和输出,形成稳定的振荡波形。

本文旨在介绍文氏桥式RC振荡电路的原理,并探讨如何通过调节电路元件来实现振幅的可调性。

通过对其特性和工作原理的分析,我们将深入了解这一电路结构的工作机制,以及如何通过合理的调整可以实现振幅的可调。

在正文部分,我们将详细介绍文氏桥式RC振荡电路的原理。

我们将从电路结构和基本元件开始,逐步解释电路中各个部分的功能。

此外,我们还将介绍文氏桥式RC振荡电路的工作原理和其特点。

在振幅可调的方法部分,我们将探讨如何通过调节电路中的元件来实现振幅的可调。

通过调整电阻或电容的数值,我们可以改变电路中的反馈系数,从而达到调节振幅的目的。

我们将介绍一些常用的调节方法,并对其原理进行解释。

最后,我们将在结论部分对文氏桥式RC振荡电路的特点进行总结,并展望未来的发展方向。

同时,我们将对本文的主要观点和结论进行回顾,并对读者进行进一步的思考和探索的启发。

通过本文的阅读,读者将能够全面了解文氏桥式RC振荡电路的工作原理和特点,以及如何通过调节电路元件实现振幅的可调性。

同时,读者还能够对该领域的研究进行一定的展望,并为未来的实际应用提供一些思考和指导。

文章结构部分的内容可以描述整篇文章的组织结构和各个部分的主要内容,以便读者可以更好地了解文章的框架和内容安排。

例如:1.2 文章结构本文分为引言、正文和结论三个部分。

在引言部分,我们将概述文氏桥式RC振荡电路的基本原理、目的和研究背景。

接下来的正文部分将详细介绍文氏桥式RC振荡电路的原理和振幅可调的方法,包括相关的理论知识和实验验证。

最后,在结论部分,我们将总结文氏桥式RC振荡电路的特点,并提出进一步研究的展望。

在正文部分的2.1节,我们将详细介绍文氏桥式RC振荡电路的原理。

文氏桥振荡电路

文氏桥振荡电路

文氏桥振荡电路一、问题背景将RC串并联选频网络和放大器结合起来即可构成RC振荡电路,放大器件可采用集成运算放大器。

RC串并联选频网络接在运算放大器的输出端和同相输入端之间,构成正反馈,接在运算放大器的输出端和反相输入端之间的电阻,构成负反馈。

正反馈电路和负反馈电路构成一文氏电桥电桥。

文氏电桥振荡器的优点是:不仅振荡较稳定,波形良好,而且振荡频率在较宽的范围内能方便地连续调节。

二、问题简介由文桥选频电路和同相比例器组成的正弦波发生器如图1 所示。

(1)若取R1=15kΩ,试分析该振荡电路的起振条件(Rf的取值);(2)仿真观察Rf取不同值时,运放同相输入端和输出端的电压波形;图1 由文桥选频电路和放大器组成正弦波发生器的电路原理图(3)若在反馈回路中加入由二极管构成的非线性环节(如图2所示),仿真观察R2 取不同值时,运放同相输入端和输出端的电压波形。

也可同时改变Rf和R2的值。

图2 加入非线性环节的正弦波发生器的电路原理图三、理论分析(1)由图一的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图三所示。

图3 文氏选频网络图中是运放的输出量,是反馈量。

为了能够使电路振荡起来,就必须通过选定参数即确定频率,使得在某一频率下和同相。

那么,当信号频率很低时,有故将会有的相位超前的相位,当频率接近0时,相位超前接近于90度。

相反地,当信号频率很高以至于趋于无穷大时,可以得出的相位滞后的相位几乎-90度。

所以,在信号频率由0到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。

下面就具体来求解此振荡频率。

由反馈系数整理可得若电路的信号频率为f,令特征频率代入F的表达式,可以得到。

为了使反馈的量足够大,要求F的模尽可能大,由上面的关系式不难得到,当时,F的模有最大值。

同时为了能够起振,又要求电路的电压放大倍数A与反馈系数F之间满足关系这就要求整理得到。

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路

文氏电桥正弦波振荡电路文氏电桥正弦波振荡电路是一种基于反馈机制的电路,其具有稳定性高、频率精确等特点,被广泛应用于科学研究和工程实践中。

本文将从原理、电路设计、电路参数选择和实验结果等方面介绍文氏电桥正弦波振荡电路。

一、原理文氏电桥正弦波振荡电路的基本原理是利用反馈作用,使电路产生无衰减的振荡输出。

具体而言,电路中的电阻、电容和二极管等元件按一定的组合方式组成文氏电桥,而在桥路两侧则连有放大器,形成反馈回路。

在适当的条件下,电路会自动产生电流变化,进而输出一定频率的正弦波信号。

二、电路设计文氏电桥正弦波振荡电路的电路设计分为数个环节。

首先需要确定电路的振荡频率,然后根据频率选择合适的电容和电阻,进而计算桥路的元件数值。

接下来需要设计合适的反馈放大器电路,以及通过电压稳压电路来为电路提供稳定的电源。

最后将设计好的电路原理图转化为PCB电路板的布局和线路连接。

三、电路参数选择在具体的电路设计中,需要根据实际需要来确定电路元件的数值和参数。

一般而言,电路的振荡频率和输出幅度是最为重要的参数。

对于振荡频率而言,需要选择合适的电容和电阻来计算桥路的RC值。

同时还要考虑到放大器的增益和回路的稳定条件等问题。

对于输出幅度而言,则需要控制放大器的放大倍数和主反馈路径的电阻值等参数。

四、实验结果实验结果表明,文氏电桥正弦波振荡电路能够稳定产生一定频率的正弦波输出。

同时对于不同频率和不同电路参数的组合,电路的输出特性也不同。

实验中还可以通过调整电路参数和反馈路径来调制输出信号的相位和形状。

综合而言,文氏电桥正弦波振荡电路是一种基于反馈机制和RC 元件的电路,具有很多优良的特性。

在实际应用中,可以根据具体需求和实验条件进行合适的修改和调整,以产生更加稳定、精确和可控的信号输出。

文氏桥振荡电路仿真分析

文氏桥振荡电路仿真分析

模电大作业文氏桥振荡电路仿真分析报告一、任务要求文氏电桥振荡器是一种经常使用的RC 振荡器,用来产生低频正弦信号。

图6是一个典型电路,它由运算放大器和RC 串并联选频网络组成。

电阻F1R ,F2R 组成负反馈网络,电压增益约为F1F2F1()/R R R +。

(1)设计电路参数使0500Hz f =。

(2)计算RC 串并联选频网络的频响特性。

(3)利用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

图6 文氏电桥震荡电路二、 仿真软件搭建的电路与仿真分析进程(1) 选取R 1=R 2=R,R 1=C 2=C,从RC 串并联选频网络的选频特性可知,R 0=12R RCΩ,C=200nF 。

(2) 令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC1,则Z 1=RCj Rω+1,Z 2=R Cj ω1+,反馈系数为)//(j 31211...ωωωωo o oZ Z Z f UU F-+=+==。

由此可得RC 串并联选频网络的幅频特性与相频特性别离是22.)//(31ωωωωO O F-+=3)//(arctanωωωωϕO O F --=图形如图6-1,6-2.当f=R 0,即ω=R 0,|R R |=13|R R |,R R =0R 。

当ω=R 0时,即f=R 0时,R =13,因此R =R R =3,只要为RC 串并联选频网络配一个电压放大倍数等于3的放大电路就能够够组成正弦波振荡电路。

考虑到起振条件,所选放大电路的电压放大倍数应该略大于3。

依照起振条件和幅值平稳条件,R R =R R R R =1+RR2R R1≥3,即R R 2≥2R R 1。

一样R R 2取值略大于2R R 1。

依照上述原理,能够用Multisim搭建出如图1的电路:图1(3) 在R R 2回路串联两个并联的二极管和电阻R R 3,利用电流增大时二极管动态电阻减C 2R 2R 1C 1R R+- + -R R图6-1 RC 串并联选频网络1 ω/ωOF图6-2 RC 串并联选频网络的频率1/31 ω/ωOφF900-900小、电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳固。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2 文氏选频网络
R C
>>ω1
90RC 文氏桥振荡电路
一、文氏桥振荡电路简介
如图所示,将RC 串并联选频网络和集成运放 TL082结合起来即可构成RC 振荡电路。

RC 串并联选 频网络接在运算放大器的输出端和同相输入端之间, 构成正反馈,接在运算放大器的输出端和反相输入端 之间的电阻,构成电压串联负反馈。

正反馈电路和负 反馈电路构成了文氏电桥电桥。

文氏电桥振荡器的优点是:不仅振荡较稳定,波 形良好,带负载能力强,而且振荡频率在较宽的范围 内能方便地连续调节,输出电压失真也比较小。

二、理论分析与计算
1、文氏选频网络(RC 串并联网络)
由图1的电路可以看出,电路在回路网络中加入了文氏选频网络,下面对文氏选频网络进行理论上的分析,从电路总提取文氏电路如图2所示。

f U •
是运放的反馈量, 是输出量。

为了保证振荡的产生,就必须满足f U •

同相位。

因为R1=R2=R ,C1=C2=C ,当频率比较低的情况下,就有
此时f U •
的相位会超前于 ,当ω趋近于零时,其相位超前接近于。

同理,相反地,当ω趋近于无穷大时,此时f U •的相位会滞后于 接近 90-。

所以在在信号频率由零到无穷大的变化过程中,必然有某一个频率,使得输出量与反馈量同相,从而形成正反馈。

下面进行定量分析。

o U •
o
U •
o U •
o U •
图1 文氏桥振荡电路
RC 串并联网络的频率特性可表示为
令 ,则上式可简化为
为了使反馈量足够大,则要求 尽可能大,由上面的关系式不难得到,当
时,F 的模有最大值
同时为了能够起振,又要求电路的电压放大倍数A 与反馈系数F 之间满足关系
这就要求
整理得到
也就是说,
的最小值是7.96K Ω,事实上,应略大于这个值。

2.当电路产生正弦振荡时,振荡电路中的负反馈
根据以上分析可知,RC 串并联网络振荡电路中,只要达到3>•
u A ,即可满
足产生正弦波振荡的起振条件。

如果u A •
的值过大,由于振荡幅度超出放大电路的线性放大范围而进入非线性区,输出波形将产生明显的失真。

另外放大电路的
)1(31
RC
RC j ωω-
+=
RC
j R
C j R RC j R
U U F f ωωω++
++=
=••
•111RC
10=ω)(
31

ωωω-+=

j F •
F ωω=031
max =
•F ||1
AF >1
13
f R A R =+

=>K R R f 96.721f R
放大倍数因受环境温度及元件老化等因素影响,也要发生波动。

以上情况都将直接影响振荡电路输出波形的质量,因此,通常在放大电路中引入负反馈以改善振荡波形。

此外如图3所示进行研究,
设运放输出电压为最大值Uo ,同相输入端电压最大值为Up ,那么由前面的分析有
那么如果波波形不失真或失真不严重的话,同相输入端电压应与输出电压同相,且同相输入端电压的幅值应为输出端电压的三分之一。

但是,如果Rf 的阻值远大于7.96K Ω,那么振荡幅度的增长使放大电路工作到非线性区域,输出波形会产生较严重的失真,此时上面所得到的描述输出电压与反馈电压的关系式将不再成立。

同时,由于在反馈网络中并没有加入限幅的环节,那么如果运放理想的话,输出电压的幅值将是无穷大,但是由于运放实际上有一个最大输出电压,所以输出电压的幅值实际上由运放的最大输出电压控制,而无法由电路的参数求出。

3.二极管的引入
当在反馈回路中加入由二极管构成的非线性环节时,由于非线性结构的影
1
3
P f f o
U U U U ==
图3 由文桥选频电路和放大器组成正弦波发生器的电路原理图
响,具体来说,利用电流增大时二极管动态电阻减小,电流减小时动态电阻增大的特点,可以输出电压稳定。

此时比例系数为
下面进行定性分析。

电路如图1。

对于正反馈网络中的的文氏选频网络来说,选定的频率仍然是不变的,而且在该频率下,同相输入端和输出端仍然满足三分之一的比例关系,即
利用二极管的非线性自动调节负反馈的强弱来控制输出电压的恒定。

振荡过程中两个二极管将交替导通和截止,其中一个处于正向导通状态的二极管与R2并联,由于二极管正向电阻随其两端电压的增大而下降,故电路的负反馈随振幅上升而增强,也就是说运放的闭环放大倍数随振幅增大而下降,直到满足振幅平衡条件为止。

这样就容易使得输出电压稳定下来,故会看到比不加二极管时幅值更小的稳定振荡。

而且由于其动态电阻的影响,Rf 可以取的最小值也可以比不加非线性环节时更小一些。

此时如果R4增大,二极管稳定输出的功能仍然存在。

但是由于电路的闭环放大倍数增加,并且对频率不是选频网络确定的其他噪音信号的抑制增强,故电路稳定输出的电压幅值将会增加。

3
4
//1R R r R A d f u ++
=•
o
p U U RC C C R R f 3
121
2121210==
=
ππ。

相关文档
最新文档