数值计算方法课件__第一章 绪论
数值计算方法ppt
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
知识影响格局,格局决定命运! 多端互通
抽奖特权
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停!
福利特权
开通VIP后可在VI买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
Ax b 第一章 引论i 2 ,3, , n
§ 1.1 数值计算的研究对象与特点
§ 1.2 数值问题与数值方法
a11
A
a21
an
1
华长生制作
a12 a22
an2
§
aa121nn.3
误差
ann
i1
bi lij x j
xi
j1
lii
1
本章要点:
绝对误差(限)和相对误差(限) 有效数字位数及其与误差的关系
1 2!
2 f x12
*
( x1
x1* )2
2 f x1x2
*
( x1
x1* )(x2
x2* )
2 f x22
*
( x2
x2* )2
华长生制作
f (x1* , x2* )
f x1
*
E1
f x2
*
E2
22
y*的绝对误差为
E( y* )
第一章 数值计算方法 绪论.ppt
|
En
|
|
In
I
n
|
|
(1
nIn1 )
(1
nI
n1
)
|
n
|E n1|
n
!|
E0
|
初始的小扰动| E0 | 0.5108迅速积累,误差快速递增。
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: In 1 n In1
I 10
0.03059200
I 12
1
12
I 11
0.63289600
I 13
1
13
I 12
7.2276480
I 14
1
14
I 13
94.959424
I 15
1
15
I 14
1423.3914
What happened
?!
考察第n步的误差 En
(科学出版社,2001年)
• 提问:数值计算方法是做什么用的?
研究对象:数值问题——有限个输入数据(问题的自
变量、原始数据)与有限个输出数据(待求解数据)之 间函数关系的一个明确无歧义的描述。
如一阶微分方程初值问题
dy
2x
dx
y(0) 1
求函数解析表达式 y y(x)
求函数y y(x)在某些点
的
能够控制误差
设
计
便于编程实现:逻辑复杂度要小
数值计算方法-全套课件
数值计算方法
Numerical Method
数值计算方法
1
第一章 绪 论
课程简介
什么是数值计算方法? 为什么学习数值计算方法? 数值计算方法的主要内容
数值计算中的误差
误差的种类及其来源 绝对误差与相对误差 有效数字与误差 舍入误差与截断误差 误差的传播与估计 算法的数值稳定性
t
12
数值计算方法
课堂教学内 容
绪论 (1周) 非线性方程求根 (1周) 求解线性方程组的数值方法 (2周) 插值和曲线拟合 (1周) 数值微分和数值积分 (1周) 常微分方程数值解 (1周)
数值计算方法
19
教学安 排
理论
13:15~15:40
上机(助教负责)
四次 海洋大楼机房 刷校园卡
确定降落伞的最后速度
FU
加速度表示为速度的变化率
dv F dt m
如果净受力为正,物体加速运动; 如果为负,物体减速运动;如果为0, 物体速度不变。
假定向下的力为正,
FD mg
FU cv
c为比例系数,称为阻力系数(drag
coefficient(kg/s))。参数c说明了下降物
FD
体的特征,如形状或表面的粗糙程度。
4
数值计算方法
非计算机方 法
解析方法
简单问题 实际价值有限
图解法
结果准确? 三维及以下
手工方法
计算器 速度慢,很容易出现低级错误
5
数值计算方法
工程问题求解的三个 阶段
公式化
简洁表示 的基本定律
公式化
深入分析问题与 基本定律的关系
求解
用详细、通常也是复杂 的方法来求解问题
第一章 数值计算方法 绪论
er
e x
因为
e x
e x
er
e x
x x
x
e(x x)
(e )2
xx x ( x e )
( 1
e x
)2
e x
相对误差也可正可负
相对误差限——相对误差的绝对值的上界
r
/* relative accuracy */
e x
x x x
r
Def 1.3 (有效数字/*Significant Digits*/ )
0
e
记为
I
* 0
则初始误差
E0
I0
I
0
0.5 108
此公式精确成立
1
e
1 0
xn
e0
dx
In
1 e
1 x n e1 dx
0
1 e(n 1 )
In
1 n1
I 1
1
1
I 0
0.36787944
... ... ... ...
I 10
1
10
I 9
0.08812800
I 11
1 11
I 10
0.03059200
求函数y y(x)在某些点
xi
n i 1
的近似函数值
数学问题 数值问题
数值问题的来源:
实际 问题
建立数学模型
数值 求解 问题
设计高效、可 靠的数值方法
数值 问题
重点讨论
近似结果
输出
上机 计算
程序 设计
可 收敛性:方法的可行性
则数
靠 性
稳定性:初始数据等产生的误差对结果的影响
值分
数值计算方法(精品)
《数值计算方法》科学出版社黄明游第一章绪论1.1数值计算方法研究的对象、任务与特点一、关于本课程的名称本课程及其相近课程的名称有:《计算方法》、《数值计算》、《数值计算方法》、《数值分析》、《计算数学》、《科学计算》、《科学与工程计算》,等等。
二、数值计算方法概述(一)数值计算方法属于计算数学的范畴,是研究各种数学问题的数值方法设计、分析、有关的数学理论和具体实现的一门学科。
由于近几十年来计算机的迅速发展,数值计算方法的应用已经普遍深入到各个科学领域,很多复杂的和大规模的计算问题都可以在计算机上进行计算,新的、有效的数值计算方法不断出现。
现在,科学与工程中的数值计算已经成为各门自然科学和工程技术科学的一种重要手段,成为与实验和理论并列的一个不可缺少的环节。
所以数值计算方法既是一个基础性的,同时也是一个应用性的数学学科,与其它学科的联系十分紧密。
由于大量的问题要在计算机上求解,所以要对各种数值计算方法进行分析,其内容包括:误差、稳定性、收敛性、计算工作量、存贮量和自适应性,这些基本的概念用于刻画数值方法的适用范围、可靠性、准确性、效率和使用的方便性等。
当代实际的科学与工程计算中,计算问题往往是复杂的和综合的。
但是有一些最基础、最常用的数值计算方法,它们成为通常大学数值计算方法课程的内容。
本书主要讨论这些方法及其分析,它们包括逼近问题(函数的插值和逼近,数值积分和微分),线性代数问题(方程组和特征值问题)和非线性方程及方程组的数值解法问题,以及常微分方程的数值解法等。
这些是数值计算方法最基础的内容,不仅可以直接应用于实际计算,同时也是其它数值计算问题所用到的方法及其分析的基础。
(二)数值计算方法(或称计算方法)是研究数学问题求数值解的算法和有关理论的一门学科,它的理论与方法随计算工具的发展而发展。
在古代,人类研究的数学问题几乎总与计算有关,而计算工具的简陋,使求解问题受到很大限制。
现代科学技术日新月异,尤其是计算机技术飞速发展,人类可以用计算机进行复杂的数值计算、数据处理(包括图形,图像,声音,文字),计算机不仅是现代计算工具,而且已成了我们工作环境的一部分。
数值计算方法复习提纲PPT
b) 若矩阵 A 对某个算子范数满足 ||A|| < 1,则 必有: I±A可逆、 I A 1 1
1|| A||
4) 矩阵的条件数: cond(A)=||A||||A-1||
-7-
17:40
❖ 迭代法原理及收敛条件:求解 Ax=b (★)
1) 充分条件: x=Bx+f, ||B||<1
第6章 数值积分
基本概念:
❖ 数值积分(机械求积公式)的一般形式 ❖ 求积公式的代数精度(计算、证明)
Akba
插值型求积公式:
❖ 插值求积公式的构造方法(★) 1) n+1积分结点的插值型求积公式至少具有n次代数精度 2) n+1个积分结点构造n阶Newton-Cotes积分公式,若n为偶数则具有 n+1次代数精度
1) 步骤
2) 估算某点的近似值:
❖ Nn(x)=f(x0)+f[x0,x1](x-x0)+…+f[x0,x1,…,xn] (x-x0)(x-x1)…(x-xn-1)
-11-
17:40
Hermit插值
❖ 基本思想 ❖ 插值多项式的构造方法
1) Lagrange型构造法(基函数构造法) 2) Newton型构造法(重节点的差商)
2) f[x 0 , ,x n ] i n 0 (x i x 0 ) (x i x i f 1 ( )x i x ) i( x i 1 ) (x i x n )
f[x0,,xn]
f
(n)()
(n)!
❖ Ne推 wton插值论 f 公(x 式)的 构: P n 造(x ()★f,若 [ )x 0, ,x k] a 0 n ,,k k n n
第一章数值计算方法绪论
er ( y )
e ( y ) f(x)f(x) x xx f ( x ) xx f(x) x
x f(x) f(x)
er (x)
相对误差条件数
注:关于多元函数 yf(x1,x2,...xn ,)可类似讨论, 理论工具:Taylor公式
2、向后误差分析法:把舍入误差的累积与导出 A 的已
数值计算方法
第0章 课程介绍
什么是数值计算方法? 数值计算方法特点 数值计算方法重要性 本课程主要内容 本课程要求
什么是数值计算方法?
实际 问题
建立数学模型
近似结果 输
上机
出
计算
设计高效、 可靠的数值 方法
程序 设计
什么是数值计算方法? 数值计算方法是一种研究并解决数学问题的数值
若 x 的每一位都是有效数字,则x 称是有效数。
特别地,经“四舍五入”得到的数均为有效数
5.定理:
将 x 近似值 x 表示为 x 0.a 1a2 ak an 10m,
若 x * 有k位有效数字,则
; | er
|
1 2a1
10(k1)
x 反之,若
er
1 , 10(k1) 则
注:(1)
近似数
x
1
,
x
2
四则运算得到的误差分别为
| e(x1 x2)| |e(x1)e(x2)|,
er ( x1 x2 )
e(x1) x1 x2
e(x2) x1 x2
,
(避免两近似数相减)
e
(
x x
1 2
)
x1e(x2) x2e(x1) x22
数值计算方法第一章
数值计算方法第一章(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§ 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。
由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法;(3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等从如上内容可以看出,计算方法的显着特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如 +++=!21!111e 的计算是无穷过程,当用!1!21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了截断误差e e n -.3当用计算机计算n e 时,因为舍入误差的存在,我们也只能得到n e 的近似值*e ,也就是说最终用*e 近似e ,该近似值既包含有舍入误差,也包含有截断误差.当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差. 由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显着特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入误差对计算结果的影响是否很大.对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期着名的数学家秦九韶就提出求n 次多项式0111a x a x a x a n n n n ++++-- 值的如下快速算法n a s =;k n a t -=;t sx s += ),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数64x 可以通过如下快速算法计算出其值x s =;s s s ⋅=;循环6次如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.4§ 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义 用*x 作为量x 的近似,则称)(:**x e x x =-为近似值*x 的绝对误差. 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界ε,即有ε≤-=x x x e **)( 称正数ε为近似值*x 的绝对误差限,简称误差. 这样得到不等式εε+≤≤-**x x x工程中常用ε±=*x x表示近似值*x 的精度或真值x 所在的范围.误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量m m cm s μ50001230000005.023.15.0123±=±=±= 为此,我们需要引入相对误差定义 用0*≠x 作为量x 的近似,称)(:**x e xx x r =-为近似值*x 的相对误差. 当*x 是x 的较好近似时,也可以用如下公式计算相对误差***)(x x x x e r -=显然,相对误差是一个无量纲量,它不随使用单位变化. 如式中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值*x 的相对误差限)(*x r ε,它是相对误差绝对值的较小上界. 结合式和,*x 相对误差限可通过绝对误差限除以近似值的绝对值得到,即***)()(x x x r εε= 为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义 设量x 的近似值*x 有如下标准形式 p n m a a a a x 21*.010⨯±=()p m p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中}9,,1,0{}{1 ⊂=p i i a 且01≠a ,m 为近似值的量级. 如果使不等式5n m x x -⨯≤-1021* 成立的最大整数为n ,则称近似值*x 具有n 位有效数字,它们分别是1a 、2a 、… 和 n a . 特别地,如果有p n =,即最后一位数字也是有效数字,则称*x 是有效数.从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例 设量π=x ,其近似值141.3*1=x ,142.3*2=x ,722*3=x . 试回答这三个近似值分别有几位有效数字,它们是有效数吗 解 这三个近似值的量级1=m ,因为有312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x 571428571428.3*3=x312*310211021005.0001.0--⨯=⨯=≤=- x x 所以*1x 和*3x 都有3位有效数字,但不是有效数. *2x 具有4位有效数字,是有效数.二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数),,,(21n x x x f y =有近似值),,,(**2*1*n x x x f y =,利用在点),,,(**2*1n x x x 处的泰勒公式(Taylor Formula),可以得到)(),,,()(*1**2*1**i i ni n i x x x x x f y y y e -≈-=∑= )(),,,(*1**2*1i ni n i x e x x x f ∑==其中ii x ff ∂∂=:,*i x 是i x 的近似值,)(*i x e 是*i x 的绝对误差),,2,1(n i =. 式表明函数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值.从式也可以推得如下函数值的相对误差传播近似计算公式6)(),,,()(***1**2*1*i r i ni ni r x e y x x x x f y e ∑=≈对于一元函数)(x f y =,从式和可得到如下初值误差传播近似计算公式)()()(***x e x f y e '≈)()()(*****x e yx x f y e r r '≈式表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例 试建立函数n n x x x x x x f y +++== 2121),,,(的绝对误差(限)、相对误差的近似传播公式,以及{}ni i x 1*0=>时的相对误差限传播公式.解 由公式和可分别推得和的绝对误差、相对误差传播公式如下∑∑==≈ni i ini ni x e x e x x x f y e 1**1**2*1*)()(),,,()(=∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(=进而有∑∑∑===≤≤≈ni in i in i ix x e x e y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni i x y 1**)()(εε当{}ni i x 1*0=>时,由式推得相对误差限的近似传播公式)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x y x x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑例 使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值8.704*=b mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限5.0)(*=a εmm ,5.0)(*=b εmm面积ab S =,由式得到近似值***b a S =的绝对误差近似为)()()(*****b e a a e b S e +≈7进而有绝对误差限55.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε mm 2 相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§ 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项.算例 表达式)1(1111+=+-x x x x ,在计算过程中保留7位有效数字,研究对不同的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈×10-16,能够表示的数的绝对值在区间×10-308,×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 111)(1+-=x x x y 和算法2: )1(1)(2+=x x x y 的误差时,精确解用双精度的计算结果代替. 我们选取点集301}{=i i π中的点作为x ,比较两种方法误差的差异.从图可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,x 1和11+x 是相近数,用算法1进行计算时出现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式分析出. 鉴于此,算法设计时,应该避免相近数相减.在图中我们给出了当x 接近1-时,两种算法的精度比较,其中变量x 依次取为{}3011=--i i π. 从图中可以看出两种方法的相对误差基本上都为710-,因而二者的精度相当.8图 算例中两种算法的相对误差图(+∞→x )图 算例中两种算法的精度比较)1(-→x算例 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的1x 的系数为零,这时可解出2x ;其次将2x 带入第一个方程,进而求得1x (在第三章中称该方法为高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b .9算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为...25000187.01=x ,...49999874.02=x ,用不同的算法计算出的结果见表.对于算例,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以00001.0/2-加至第二个方程,从而削去第二个方程中1x 的系数,但在计算2x 的系数时需做如下运算661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为6104.0⨯-. 因为舍入误差,给相对较大的数加以相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为6102.0⨯-. 这样,得到的变形方程组⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算00001.0/2-,因而算法设计中尽可能避免用绝对值较大的数除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的.10当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例 计算积分⎰+=1055dx x x I n 有递推公式),2,1(511 =-=-n I nI n n ,已知56ln 0=I . 采用IEEE 双精度浮点数,分别用如下两种算法计算30I 的近似值.算法1 取0I 的近似值为6793950.18232155*0=I ,按递推公式*1*51--=n n I nI 计算*30I算法2 因为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x ,取39I 的近似值为3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ,按递推公式⎪⎭⎫ ⎝⎛-=-**1151n n I n I 计算*30I算法1和算法2 的计算结果见表. 误差绝对值的对数图见图.图 算例用不同算法计算结果的误差绝对值的对数图 从表中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈-----成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈-成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法 习题一1 已知有效数105.3*1-=x ,4*210125.0⨯=x ,010.0*3=x . 试给出各个近似值的绝对误差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值*x 是x 的较好近似时,计算相对误差的计算公式x x x -*和**x x x -相差一个和2*⎪⎪⎭⎫ ⎝⎛-x x x 同阶的无穷小量.3 设x 的近似值*x 具有如式的表示形式,试证明 1) 若*x 具有n 位有效数字,则相对误差n r a x e -⨯≤11*1021)(; 2) 若相对误差n r a x e -⨯+≤11*10)1(21)(,则*x 至少具有n 位有效数字. 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) *3*2*1*1x x x y +=; 2) 3*2*2x y =; 3) *3*2*3/x x y = 6 若例题中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值3.1304*=a mm ,宽的近似值8.704*=b mm . 试估计桌子长度、宽度的绝对误差限,并求用该近似数据计算出的桌子面积的绝对误差限和相对误差限. 7 改变如下计算公式,使其计算结果更为精确. 1) 0,cos 1≠-x xx 且1<<x 2) 1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算1-e 近似值算法的可靠性.算法1 ∑=--≈m n nn e 01!)1(; 算法2 101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e ; 算法3 101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e ;9 (数值试验)设某应用问题归结为如下递推计算公式72.280=y ,251-=-n n y y , ,2,1=n 在计算时2取为具有5位有效数字的有效数*c . 试分析近似计算公式**1*5c y y n n -=-的绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗。
数值计算方法1_ppt [兼容模式]
输出的数据是解向量x , 和方程的解x1 , x2
求解微分方程
y′ = 2 x + 3 y( 0 ) = 0
不是数值问题
输入的虽是数据, 但输出的不是数据而是函数y = x 2 + 3 x
将其变成数值问题,即将其“离散化”
即将求函数 y = x 2 + 3 x
改变成求函数值 y( x1 ), y( x2 ),L , y( xn ), x1 < x2 < L < xn “离散化”是将非数值问题的数学模型化为数值问题 的主要方法,这也是计算方法的任务之一
*
E( x ) = x − x 为近似值 x *的绝对误差 , 简称误差 , 可简记为 E .
* *
15
因为准确值 x 往往是未知甚至是无法 知道的
因此 E ( x ) = x − x 往往也无法求出
* *
而只能知道 E ( x * ) = x * − x 绝对值的某个上界 , 即
| E ( x )|= | x − x|≤ ε ( x )
21
考察 y 的误差与 x , x 的误差的关系
* * 函数 f ( x1 , x 2 ) 在点 ( x1 , x2 )处的 Taylor 展开式为
*
* 1
* 2
∂f * * f ( x 1 , x 2 ) = f ( x 1 , x 2 ) + ∂x 1
1 ∂ 2 f + 2 2! ∂ x 1 ∂ f + ∂x 2 2
*
ε( y ) = 5
*
x * = 15吗?
定义2. 设 x为准确值 , x *为 x的一个近似值 , 称
* * ( ) E x x −x * Er ( x ) = = x x 为近似值 x *的相对误差 , 可简记为 E r .
数值计算方法与算法-45页PPT文档资料
第5章 解线性方程组的直接法
• 全主元消元法
原理:在Gauss消元过程中,先选取所有元素模最大者, 将其换行至左上角位置,再作消元。由此得到分解 A = P L U Q,P和Q为置换方阵,L中各元素的模都 ≤1, U中各元素的模都≤同行对角元素的模。
条件:A 行列式非零。 运算量:O(n3)
yix (ix 1 i 1 xix)yix 1 i (1 x xx ii), xi xxi 1
第1章 插值
2(h0 h1 )
h1
M1 d1 d0 h1M 0
h1
2(h1 h2 )
hn2
S(x) a ixi a 3 im0 a ,(x x x (i)3)
i 0
i 1
• M关系式
Si(x)M 6i (x xii 1 1 x x)i3(xi 1xi)x (i 1x) M 6 i 1 (x x i 1 xix )i3(xi 1xi)x (xi)
R i,02i个分点的 R i,j R 梯 i,j 1R 形 i,j 1 4 j R 积 1 i 1 ,j 1, 分 1j , i
例题 4
•
构造积分 I(f)
2h
f
(x)d
x的数值积分公式
h
I ( f ) = a0 f (-h) + a1 f (0) + a2 f (2h)。
yi (xixj)
ji
• Newton插值
n
pn(x) ai (xxj), aii阶差 f[x0, 商 ,xi] i 0 j i
第1章 插值
• 差商
f[ x 0 ] f( x 0 ) , f[ x 0 , ,x k ] f[ x 1 , ,x k x ] k fx [ 0 x 0 , ,x k 1 ]
《计算机数值方法教学课件》数值计算方法绪论共33页
问题之间的误差称为模型误差。
例1:自由落体问题。我们用
s t 1 gt2
2
来描述自由落体下落时,距 离与时间来自关系。若自由落体在时间t的实际下落 距离为:S% t
则 s%t s(t ) 就是模型误差。
t0
s% t
t1
教材I的参考书目
1 《计算方法引论》,徐萃薇.高等教育出版社,1985.
2 《数值分析》,李庆扬,王能超,易大义.华中理工大学出版社, 1986
3《 Numerical Analysis 》, Richard L. Burden, J. Douglas Faires. 高等教育出版社,第七版.
教材I的参考书目
2
例2:用带毫米刻度的直尺测量某正方形的边长。
012 3 如图示,则该正方形的边长为 2.74 cm。误差小 于 0.05 cm.
(3) 方法误差(Truncation Error)
在解决实际问题时,数学模型往往很复杂, 因而不易获得解析解。这就需要建一套行之有效 的近似方法或数值方法。模型准确解与数值方法
(2) 观测误差 (Observation Error)
由于仪器的精度、试验手段、环境变化,以 及人的工作状态和能力等因素的影响,而使测量数 据带有误差。把这种因测量因素而引起的原始数据
的不准确称为 观测误差(测量误差)。
例如在测量物体长度和温度等物理量时,均会 存在观测误差(测量误差)。
在例1公式 s t 1 gt 2 中,g, t 都包含有观测误差。
授课内容安排
第一章 线性代数方程组数值解法 第二章 常微分方程数值解法 第三章 偏微分方程的数学性质 第四章 有限差分法的基本概念 第五章 线性偏微分方程的有限差分法 第六章 流体力学控制方程的有限差分法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:0.2300有4位有效数字,而00023只有2位有效数 0.2300有 位有效数字, 00023只有 位有效数 只有2 12300如果写成0.123× 如果写成0.123 则表示最多只有3 字。12300如果写成0.123×105,则表示最多只有3 位有效数字。数字末尾的0不可随意省去! 位有效数字。数字末尾的0不可随意省去!
注:
绝对误差限 绝对误差限/* accuracy */
ε
e = x x ≤ ε 如:π = 3.14159
1 5 π π ≤ ×10 (π = 3.1415926) 2 绝对误差还不能完全表示近似值的好坏 绝对误差还不能完全表示近似值的好坏
Def 1.2(相对误差/* relative error */ )
在理论上等价。 在理论上等价。
* 当N → +∞时, EN = I N I N → 0
计算 ∫0 e -x
1
2
dx 的总体误差 < 0 .005 + 0 .001 = 0 .006
Def 1.4(数值稳定性/* Numerical
Stability */)
一个算法如果输入数据有扰动(即误差),而计算 一个算法如果输入数据有扰动(即误差),而计算 ), 过程中舍入误差不增长,则称此算法是数值稳定的, 过程中舍入误差不增长,则称此算法是数值稳定的,否则 此算法就称为不稳定的。 此算法就称为不稳定的。
r
解不等式可得 n > 5.69,即 n = 6,应取 π* = 3.14159。 , , 。
三、数值算法及稳定性 /* Numerical
Algorithm and Stability */
n
例3 计算下列多项式的值 p(x) = a0 x ++ an1 x + an a0 , a1,an , x 为已知数据 分析: 输入数据为 a0 ,, an , x ,输出数据为 p(x),若直接由 分析: 2 n
i = 2,3,, n
Ax = b
中国石油大学(华东) 数学与计算科学学院
提问:数值计算方法是做什么用的? 提问:数值计算方法是做什么用的?
数值问题——有限个输入数据(问题的自 有限个输入数据( 研究对象:数值问题 有限个输入数据 变量、原始数据)与有限个输出数据(待求解数据) 变量、原始数据)与有限个输出数据(待求解数据)之 间函数关系的一个明确无歧义的描述。 间函数关系的一个明确无歧义的描述。 如一阶微分方程初值问题
,再乘相应的系数 an1 , an2 ,, a0并 + 相加, 次加法, 相加,则要做次 n(n+1) 乘法和 n 次加法,占用个 2n +1 2 存储单元。 存储单元。
x算出 x ,, x
秦九韶方法,也称为Horner算法 秦九韶方法,也称为Horner算法 Horner 用递推公式表示为 只用 n次乘法和
π = 3.14
1 5 e ≤ ×10 6位 位 2
1 2 e ≤ ×10 3位 位 2
m∈ Z, a1, a2 ,, an ∈{0,1,, 9} 的截取按四舍五入规则), ),则称 为有 n位有效 (即 an 的截取按四舍五入规则),则称 x 数字, 数字,精确到 10mn。 例1: π = 3.1415926535897932; π = 3.1415 : 有几位有效数字?请证明你的结论。 问:π 有几位有效数字?请证明你的结论。
∫
1 0
e
x2
x4 x6 x8 dx = ∫ ( 1 x + + ) dx 0 2! 3! 4! 1 2 1e 1 1 1x 1 1 1 = 11/ + × × + × 1 3 2! 5 0 3! 7 4! 9
1
≤
∫
e
dx ≤
取 ∫0 e
1
x2
dx ≈ S 4 ,
S4
R4
/* Remainder */
1 In1 = (1 In ) n
方法:先估计一个IN ,再反推要求的 n ( n << N )。 再反推要求的I 方法:先估计一个 。
1 1 ∵ < IN < 注意此公式与公式一 e( N + 1) N +1
1 1 1 + 可取 I = ≈ IN 2 e( N + 1) N + 1
N
注:
的每一位都是有效数字, 称是有效数 若 x 的每一位都是有效数字,则 x称是有效数
特别, 四舍五入” 特别,经“四舍五入”得到的数均为有效数
Th .1将 x 的近似值 x 表示为x = ±0.a1a2 ak an ×10, 1 1 ×10(k1) 是有效数字, 若 ak 是有效数字,则相对误差不超过 ; 21 er ,且有 er ≤ ×10k 反之, 反之,若已知相对误差 , 2 必为有效数字。 则ak 必为有效数字。
n∫ xn1e1 1 x 1 I0 = ∫ e dx = 1 ≈ 0.63212056 I0 0 e e 8 则初始误差 E0 = I0 I0 < 0.5×10
I1 = 11 I0 = 0.36787944 ............ I10 = 110 I9 = 0.08812800 I11 = 111 I10 = 0.03059200 I12 = 112 I11 = 0.63289600 I13 = 113 I12 = 7.2276480 I14 = 114 I13 = 94.959424 I15 = 115 I14 = 1423.3914
此公式精确成 此公式精确成 精确 立
What happened?!
考察第n步的误差 考察第 步的误差 E n | En | = | In In | = | (1 nIn1 ) (1 nIn1 )| = n |En1| = = n ! | E0 | 初始的小扰动 | E 0 | < 0 .5 × 10 8 迅速积累,误差呈递增趋势。 迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。 我们有责任改变。 公式二: 公式二: In = 1 n In1
p(x) = ((a0 x + a1 )x ++ an1 )x + an
次加法, n次加法,并占用n + 2个存储单元
b0 = a0 bi = ai + bi1x i = 1,2,, n bn = pn (x)
例4 近似计算 ∫ e
0
x2
1
x2
dx = 0.746824… …
2
展开后再积分 解法:将 e 作Taylor展开后再积分
1 1 n x 例5 计算 In = ∫0 x e dx, n = 0,1, 2,...... e
1 1 n 0 1 1 n 1 ∫0 x e dx < In < e ∫0 x e dx e
1 0 1 0
公式一: 公式一:In = 1[ xnex e
1 1 ∴ < In < e(n +1 ) n +1
上机 计算
程序 设计
数 值 方 法 的 设 计 原 则
可 靠 稳定性: 稳定性:初始数据等产生的误差对结果的影响 性 分 误差估计: 析 误差估计:运算结果不能产生太大的偏差且 能够控制误差 计 便于编程实现: 便于编程实现:逻辑复杂度要小 计算量要小:时间复杂度要小, 计算量要小:时间复杂度要小,运行时间要短 存贮量要尽量小: 存贮量要尽量小:空间复杂度要小
Def 1.3 (有效数字/*Significant Digits*/ )
与准确值的误差绝对 绝对值不超过某一位的 若近似值 x与准确值的误差绝对值不超过某一位的 半个单位, 半个单位,该位到 x的第一位非零数字共有 n ,则 位 称 x 有 n位有效数字
如: π = 3.1415926
π = 3.141592
Def 1.5 (病态问题/* ill-posed problem */)
对数学问题本身如果输入数据有微小扰动,引起 对数学问题本身如果输入数据有微小扰动, 输出数据(即问题真解)的很大扰动, 输出数据(即问题真解)的很大扰动,这就是病态问 题。 它是数学问题本身性质所决定的,与算法无关, 它是数学问题本身性质所决定的,与算法无关, 也就是说对病态问题,用任何算法(或方法) 也就是说对病态问题,用任何算法(或方法)直接计 算都将产生不稳定性。 算都将产生不稳定性。
近似值 的比值: x 的误差 e 与准确值 x 的比值:
e x x = x x
称为近似值
x
r
注:
实际计算时, 实际计算时,相对误差通常取
e 的相对误差, 的相对误差,记作 e = x
r
e 2 ( ) 2 e e e ( x x) (e ) = = = x 因为 e x x xx x (x e ) 1 x
m
的相对误差小于0.001%,至少应取几位有 例2:为使 π*的相对误差小于 效数字? 效数字? 解: 位有效数字, 假设 π* 取到 n 位有效数字,则其相对误差上限为
1 n+1 e ≤ ×10 2
r
要保证其相对误差小于0.001%,只要保证其上限满足 , 要保证其相对误差小于
1 n+1 e ≤ ×10 < 0.001% 2
收敛性: 收敛性:方法的可行性
§1
误 差
/* Error */
一、 误差的来源与分类 /* Source & Classification */
1、从实际问题中抽象出数学模型 、 —— 模型误差 /* Modeling Error */ 2、通过观测得到模型中某些参数(或物理量)的值 、通过观测得到模型中某些参数(或物理量) —— 观测误差 /* Measurement Error */ 3、数学模型与数值算法之间的误差 、 —— 方法误差 (截断误差 /* Truncation Error */ ) 截断误差 4、由于机器字长有限,原始数据和计算过程会产生新的误差 、由于机器字长有限, —— 舍入误差 /* Roundoff Error */