第六章热力学总结
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P P V V T
T
2 V O
T 1
2 1 V O P
2
能量关系 E = 0
12
O
QT A PdV RT lnV2 RT ln P1 V P
1
2
等温过程:理气吸收的热量全部用来对外做功
北京航空航天大学
一、三等一绝二循环
4、绝热过程 过程方程:PV 常数
dQ l热容C比热容Cb 摩尔热容Cm C dT
l定容(体)摩尔热容量CV,m l定压摩尔热容量CP,m
北京航空航天大学
CP ,m CV ,m R
CV CV i
跳
CV ,m i R 2
l比热容比(泊松比) CP 1 R 1 2
二、定律、定理与原理
2、热二律 l 开尔文表述 : 不可能制成一种循环动作的 热机,只从单一热源吸热,使之完全转化为有 用功而其它物体不发生任何变化. l克劳修斯表述: 热量不能自动地从低温物 体传向高温物体. 初态 末态 l可逆过程与不可逆过程 (外界亦需恢复原状) 热二律:一切与热现象有关的实际自发宏观 过程都是按一定方向进行,且是不可逆的。
dS 0或S 0 ——熵增加原理
北京航空航天大学
跳
热力学总结
例17:在1atm下,1mol水在100C变成水蒸气, 内能增加了多少 ? 知 : 汽化热 L=4.06104 J/mol, 解:水的汽化热是等温等压过 程,汽化过程 摩尔水吸热为:
P
摩尔体积:V1=18.8cm3/mol,V2=3.01 104 cm3/mol 。
TV
1
常数
P T
P
1
常数
过程曲线:绝热线 绝热线比 P P
P1 P2 V 等温线更陡 V Q P3 O 能量关系 Q = 0
1
2
V1 3 V2 V
P2V2 P1V1 i A E RT CV ,m T 2 1
T2 致冷 w Q2 Q2 系数: A Q总1 Q总2 T1 T2
北京航空航天大学
Q1 b c
V
Q1 b c
O
d Q2T2
热二
V
二、定律、定理与原理
1、热一律
Q = E+A
l符号规定:Q > 0外界向系统供热; A > 0 系统对外界作正功; E > 0 系统内能增加. l对于无限小的变化过程: dQ dE dA
北京航空航天大学
一、三等一绝二循环
5、循环过程 能量关系 过程曲线 P
E 0
O
a
m
c d
b
Q A L P dV Sabcda
热机效率 制冷系数
nV
Q吸1 Q放2 Q放2 A 1 Q吸1 Q吸1 Q吸1
Q吸 2 Q吸 2 w | A净 | | Q总 放1 | Q总 吸2
北京航空航天Leabharlann Baidu学
一、三等一绝二循环
P aT 1 6、卡诺循环 (可逆):由无摩擦 的两个 等温准静态过程和两 个绝热准静态过程组成。 d Q2T2 l卡诺正循环 ---卡诺热机 O Q 循环 A 1 2 1 T2 效率: Q1 Q1 T1 P a T1 l卡诺逆循环---卡诺致冷机
北京航空航天大学
二、定律、定理与原理
4、卡诺定理 l 在两热源 (T1,T2) 之间工作的一切可逆机 , 不论工作物质如何,效率均等于理气可逆卡 诺热机的效率:
可逆 卡 1 T2 T1
l在两热源(T1,T2)之间工作的一切不可逆机, 不论工作物质如何 ,效率都不可能大于可逆 热机的效率: T2 T1 不可逆 1
北京航空航天大学
二、定律、定理与原理
3、热二律的统计意义 l 宏观态与微观态 : 对应微观态数目越多 的宏观态出现的几率越大。或: 系统在某宏观态出现的几率与该宏观态对 应的微观态数成正比。 l 热二定律的统计意义 : 在一个不受外界 影响的孤立系统中发生的一切实际过程,都 是从几率小(微观态数少)的宏观态向几率大( 微观态数多)的宏观态进行的。
北京航空航天大学
二、定律、定理与原理
l熵S是系统状态的单值函数,系统某宏观态 的熵是该状态对应的可能微观态数的量度; 也是分子热运动无序度的度量 l系统某宏观态对应的微观态数越多(越无序) 热力学几率越大熵越大平衡态熵最大 l 熵增加原理:孤立系统中发生的一切实 际过程,都是熵增过程;孤立系统中进行的可 逆过程 , 都是熵相等过程 ; 达到平衡态时系 统的熵最大:
卡
l 卡诺热机效率是一切热机效率的最高极 限,指出了提高热机效率的途径。
北京航空航天大学
二、定律、定理与原理
5、熵和熵增加原理 l热力学几率定义: 任一宏观态所对应的 微观状态数目。 l熵S定义(微观): ---玻尔兹曼的熵公式
S k ln
(或玻尔兹曼关系式或玻尔兹曼原理)
l熵定义(宏观):当系统由平衡态 1平衡态 2 时 , 其熵的增量等于系统沿任何可逆过程 由状态1到状态2的dQ/T的积分: 2 dQ S2 S1 1可 逆 T ---克劳修斯熵公式
一、三等一绝二循环
1、等容(体)过程 P R m R 常 数 过程方程: T V M V 过程曲线: 1 等容线 O V 能量关系 A = 0
P 2 P 2
1
T
T O
2 1
O
V
i i Q V E C V ,m T RT VP 2 2
等容过程:理气吸收的热量全部用来增加它的内能。
E Q p A Cv ,m T2 T1 i RT
等压过程: 理想气体吸收的热量,一部分用 于对外作功,另一部分用于增加系统的内能.
北京航空航天大学
2
一、三等一绝二循环
3、等温过程 过程方程: p1V1 p2V2 RT 常数 过程曲线:等温线 P 1
北京航空航天大学
一、三等一绝二循环
2、等压过程 过程方程:V m R 常 数 T M P V 2 T 过程曲线: P 2 1 2 1 等压线 1 能量关系 QP CP ,m T2 T1
V2 V1
O
V
O
T
O
P
A PdV P (V2 V1) RT
T
2 V O
T 1
2 1 V O P
2
能量关系 E = 0
12
O
QT A PdV RT lnV2 RT ln P1 V P
1
2
等温过程:理气吸收的热量全部用来对外做功
北京航空航天大学
一、三等一绝二循环
4、绝热过程 过程方程:PV 常数
dQ l热容C比热容Cb 摩尔热容Cm C dT
l定容(体)摩尔热容量CV,m l定压摩尔热容量CP,m
北京航空航天大学
CP ,m CV ,m R
CV CV i
跳
CV ,m i R 2
l比热容比(泊松比) CP 1 R 1 2
二、定律、定理与原理
2、热二律 l 开尔文表述 : 不可能制成一种循环动作的 热机,只从单一热源吸热,使之完全转化为有 用功而其它物体不发生任何变化. l克劳修斯表述: 热量不能自动地从低温物 体传向高温物体. 初态 末态 l可逆过程与不可逆过程 (外界亦需恢复原状) 热二律:一切与热现象有关的实际自发宏观 过程都是按一定方向进行,且是不可逆的。
dS 0或S 0 ——熵增加原理
北京航空航天大学
跳
热力学总结
例17:在1atm下,1mol水在100C变成水蒸气, 内能增加了多少 ? 知 : 汽化热 L=4.06104 J/mol, 解:水的汽化热是等温等压过 程,汽化过程 摩尔水吸热为:
P
摩尔体积:V1=18.8cm3/mol,V2=3.01 104 cm3/mol 。
TV
1
常数
P T
P
1
常数
过程曲线:绝热线 绝热线比 P P
P1 P2 V 等温线更陡 V Q P3 O 能量关系 Q = 0
1
2
V1 3 V2 V
P2V2 P1V1 i A E RT CV ,m T 2 1
T2 致冷 w Q2 Q2 系数: A Q总1 Q总2 T1 T2
北京航空航天大学
Q1 b c
V
Q1 b c
O
d Q2T2
热二
V
二、定律、定理与原理
1、热一律
Q = E+A
l符号规定:Q > 0外界向系统供热; A > 0 系统对外界作正功; E > 0 系统内能增加. l对于无限小的变化过程: dQ dE dA
北京航空航天大学
一、三等一绝二循环
5、循环过程 能量关系 过程曲线 P
E 0
O
a
m
c d
b
Q A L P dV Sabcda
热机效率 制冷系数
nV
Q吸1 Q放2 Q放2 A 1 Q吸1 Q吸1 Q吸1
Q吸 2 Q吸 2 w | A净 | | Q总 放1 | Q总 吸2
北京航空航天Leabharlann Baidu学
一、三等一绝二循环
P aT 1 6、卡诺循环 (可逆):由无摩擦 的两个 等温准静态过程和两 个绝热准静态过程组成。 d Q2T2 l卡诺正循环 ---卡诺热机 O Q 循环 A 1 2 1 T2 效率: Q1 Q1 T1 P a T1 l卡诺逆循环---卡诺致冷机
北京航空航天大学
二、定律、定理与原理
4、卡诺定理 l 在两热源 (T1,T2) 之间工作的一切可逆机 , 不论工作物质如何,效率均等于理气可逆卡 诺热机的效率:
可逆 卡 1 T2 T1
l在两热源(T1,T2)之间工作的一切不可逆机, 不论工作物质如何 ,效率都不可能大于可逆 热机的效率: T2 T1 不可逆 1
北京航空航天大学
二、定律、定理与原理
3、热二律的统计意义 l 宏观态与微观态 : 对应微观态数目越多 的宏观态出现的几率越大。或: 系统在某宏观态出现的几率与该宏观态对 应的微观态数成正比。 l 热二定律的统计意义 : 在一个不受外界 影响的孤立系统中发生的一切实际过程,都 是从几率小(微观态数少)的宏观态向几率大( 微观态数多)的宏观态进行的。
北京航空航天大学
二、定律、定理与原理
l熵S是系统状态的单值函数,系统某宏观态 的熵是该状态对应的可能微观态数的量度; 也是分子热运动无序度的度量 l系统某宏观态对应的微观态数越多(越无序) 热力学几率越大熵越大平衡态熵最大 l 熵增加原理:孤立系统中发生的一切实 际过程,都是熵增过程;孤立系统中进行的可 逆过程 , 都是熵相等过程 ; 达到平衡态时系 统的熵最大:
卡
l 卡诺热机效率是一切热机效率的最高极 限,指出了提高热机效率的途径。
北京航空航天大学
二、定律、定理与原理
5、熵和熵增加原理 l热力学几率定义: 任一宏观态所对应的 微观状态数目。 l熵S定义(微观): ---玻尔兹曼的熵公式
S k ln
(或玻尔兹曼关系式或玻尔兹曼原理)
l熵定义(宏观):当系统由平衡态 1平衡态 2 时 , 其熵的增量等于系统沿任何可逆过程 由状态1到状态2的dQ/T的积分: 2 dQ S2 S1 1可 逆 T ---克劳修斯熵公式
一、三等一绝二循环
1、等容(体)过程 P R m R 常 数 过程方程: T V M V 过程曲线: 1 等容线 O V 能量关系 A = 0
P 2 P 2
1
T
T O
2 1
O
V
i i Q V E C V ,m T RT VP 2 2
等容过程:理气吸收的热量全部用来增加它的内能。
E Q p A Cv ,m T2 T1 i RT
等压过程: 理想气体吸收的热量,一部分用 于对外作功,另一部分用于增加系统的内能.
北京航空航天大学
2
一、三等一绝二循环
3、等温过程 过程方程: p1V1 p2V2 RT 常数 过程曲线:等温线 P 1
北京航空航天大学
一、三等一绝二循环
2、等压过程 过程方程:V m R 常 数 T M P V 2 T 过程曲线: P 2 1 2 1 等压线 1 能量关系 QP CP ,m T2 T1
V2 V1
O
V
O
T
O
P
A PdV P (V2 V1) RT