小学数学总复习概念大全完整版
小学数学总复习必备知识点汇集全
小学数学必需驾驭的根本概念、数理规律及根本应用总归集第一章数和数的运算一、根本概念(一)整数1、整数的意义:自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位:计数单位依据肯定的依次排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
6、倍数和约数:假如数a能被数b(b ≠ 0)整除,a就叫做b 的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是互相依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
根本规律:一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(1)2的倍数:个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
(2)5 的倍数:个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
(3)3 的倍数:一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不肯定能被9整除,但是能被9整除的数肯定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(完整版)非常全的小学数学知识点汇总
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学数学的所有概念大全
小学数学的所有概念大全一、代数知识:整数:1、质数一个数除了1和它本身,不再有其它的约数(因数),这个数叫做质数(质数也叫做素数)。
2、合数一个数除了1和它本身,还有别的约数(因数),这个数叫做合数注意:1只有一个约数(因数),就是它本身,1既不是质数,也不是合数。
最小的质数是2,也是质数中唯一的一个偶数(偶数解释见下),其余的质数均为奇数(奇数解释见下)。
3、偶数偶数就是可以被2整除的自然数(包括)也叫做双数。
偶数通常用“2k”表示。
4、奇数奇数就是不能被2整除的自然数,也叫做单数。
奇数通常用2k+1表示注:偶数除了2以外都是合数。
偶数:能被2整除的数。
(也包括)奇数:不能被2整除的数。
5、自然数:表示物体的数量的数,最小的自然数是“0”自然数也是整数。
是正整数与负整数的分界线。
6、合数:除了“1”和它本身以外还有别的约数(因数)的数。
最小的合数“4”。
7、质数:只有“1”和它本身两个约数(因数)的数。
最小的质数是“2”。
8、“1”既不是合数也不是质数9、互质数:只有公约数(因数)“1”的两个数。
10、公约数(因数):两个数公有的约数(因数)。
11、公倍数:两个数私有的倍数。
12、质因数:把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。
13、分解质因数:把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。
14、能被2、3、5整除数的特性:能被2整除数的特性:个位上的数字是,2,4,6,8能被3整除数的特征:各位上的数字之和是3的倍数能被5整除数的特征:个位上的数字是,5能被9整除数的特征:各位上的数字之和是9的倍数.能被4或25整除数的特性:末两位上的数是4或25的倍数.能被8或125整除数的特征:末三位数是8或125的倍数.15、小数:小数的根本性质:在小数开端添上”0”或去掉”0”,小数的大小稳定.无限小数:小数部分的为数是无限的。
无限循环小数:小数局部的数位有纪律的.无限不循环小数:小数部分没规律(又叫无理数)纯循环小数:从小数部分第一位开始循环`混循环小数:不是从小数部分第一位开始循环循环节:从小数部分的某一位起.开是依次不断重复一个或几个数字.这些数字叫做循环节.16、分数分数的意义:把单位”1”平均分成若干份,取其中的一份或几份的数叫做分数.分数的基本性质:分数的分子和分母同时乘或除以一个数(除外).分数的大小不变.真分数<1.假分数≥1将一个分数的份子与分母同时同时除以他们的最大公因数,这个过程叫约分.而获得的这个分数叫最简分数.最简分数:分母与分子互质的时候.这个分数就叫最简分数.将几个异分母的分数使用分数的根本性质将分母变成一样.这个过程叫通分.在分数大小的比力中会遍及遇到通分.二、几何知识:一个封闭式图形,将他的周围围上1圈,这个圈的长度是他的周长.一个物体所占空间的大小叫做这个物体的体积.一个物体所能包容别的物体的体积叫做这个物体的容积一个物体表面的面积叫表面积三角形的内角和是180度.四边形的内角和是360度.N边形的内角和是(边长-2)×180度.外角:1条边的反向延长线与相邻的一条边所夹的角叫做外角.三角形的外角是不相邻的两个内角之和,任何关闭式的图形的外角和都是360度1、线:直线:没有端点,没有长度,无限延长射线:有一个端点,没有长度,无限延长线段:有两个端点,有长度.由一个点引出的两条射线,这两条射线所夹的这个局部叫做角,而XXX叫做极点.角分为几种角:锐角(大于度小于90度),直角(等于90度),钝角(大于90度小于180度),平角(等于180度),周角(等于360度)由1点做一条线段的垂线,这个点叫做垂足.当两条直线永久不订交时,就说明这两条直线相互平行.2、平面图形:三角形:三角形中最大的角是钝角的话这个三角形叫钝角三角形.三角形中最大的角是直角的话这个三角形叫直角三角形三角形中最大的角是锐角的话这个三角形叫锐角三角形从极点做与他对边的垂线段.这个垂线段的长度叫做这个三角形的高.1个三角形有三条高.当三角形有两条边的长度相等时,这个三角形叫等腰三角形,等腰三角形长度相等的两个边叫做腰,而剩下的叫底.当三角形3条边相等时,这个三角形叫等边三角形,等边三角形是非凡的等腰三角形.他的3个角都是60度.四边形:一个四边形的四个角都是直角.且任意不相邻的两条边互相平行时,这个四边形叫长方形.当四条边都相等时,且每个角是90度时,这是个正方形.正方形是特殊的长方形.当四边形的任意两条边互相平行时,这个图形是平行四边形(长方形是特殊的平行四边形).平行四边形有无数条高.当4条边长度相等时.这个图形叫菱形(菱形是特殊的平行四边形).只有一组对边相互平行时,这个图形叫梯形.梯形上面那条边叫上底.上面那条边叫下底.而梯形的左右两条边叫梯形的腰.当左右两条边的长度相等时.这个梯形叫等腰梯形.圆的周长与直径的比值始终是定值。
小学数学概念及公式大全(完整版)教学总结
小学数学概念及公式大全(完整版) 一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学总复习知识点整理(最全)
总复习小学数学复习资料第一章数和数的运算一概念(一)整数1 .整数的意义自然数和0都是整数。
2 .自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4. 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5.数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
小学数学知识点归纳梳理大全
小学数学知识点归纳梳理大全第一章数的认识1.1 自然数和零的认识1.2 整数的认识1.3 分数的认识1.4 小数的认识第二章加减法2.1 加法的基本概念和性质2.2 减法的基本概念和性质2.3 两位数的加减法2.4 三位数的加减法2.5 带有进位和借位的加减法第三章乘法与除法3.1 乘法的基本概念和性质3.2 乘法口诀表3.3 两位数的乘法3.4 三位数的乘法3.5 除法的基本概念和性质3.6 两位数的除法3.7 三位数的除法3.8 带有余数的除法第四章分数运算4.1 分数的加减法4.2 分数的乘法4.3 分数的除法4.4 分数的化简4.5 分数的比较和排序第五章小数运算5.1 小数的加减法5.2 小数的乘法5.3 小数的除法5.4 小数的化简与比较第六章数字的应用6.1 百分数的认识与转化6.2 货币和找零的计算6.3 数字的估算与近似6.4 数字的应用问题解决第七章几何图形与测量7.1 点、线、面的认识7.2 直线与曲线的区别7.3 角的认识与分类7.4 三角形的认识与分类7.5 四边形的认识与分类7.6 圆的认识与性质7.7 长度的测量7.8 面积的测量7.9 体积的测量第八章数据统计8.1 图表的阅读与制作8.2 数据的收集与整理8.3 数据的分析与解读8.4 实际问题的解决第九章逻辑推理9.1 命题、真值与逻辑连接词9.2 命题的组合与析取9.3 条件语句与拟反命题9.4 几何图形的推理第十章应用题10.1 简单应用题10.2 复杂应用题10.3 字母代数式的解答在小学阶段,数学是一个非常重要的学科,它不仅是培养学生逻辑思维和分析问题的能力,也是培养他们解决实际问题的能力的关键。
而对于老师和家长来说,掌握小学数学知识点的归纳和梳理是非常重要的,可以帮助学生更好地掌握知识并应用到实际生活中。
本文将从数的认识开始介绍,包括自然数和零、整数、分数和小数的认识。
对于每个知识点,将详细介绍其基本概念和性质,以及相应的运算规则和习题练习。
小学数学概念汇总
2022年3月23日;第1页共5页 小学总复习概念整理【1】一、整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:有限小数小数 无限循环小数无限小数 无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二、数的整除1.整除:整数a 除以整数b (b≠0),除得的商正好是整数而且没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
2.约数、倍数:如果数a 能被数b 整除,a 就叫做b 的倍数,b 就叫做a 的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。
质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
合数至少有3个约数。
最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有:4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
小学数学总复习知识整理(全)
小学数学总复习资料第一章数和数的运算一、概念(一)整数1、整数的意义:自然数和0都是整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的因数。
倍数和因数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除。
个位上是0或5的数,都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数。
自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
公因数只有1的两个数,叫做互质数。
成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
一到六年级数学概念整理资料
一到六年级数学概念整理资料一年级数学概念。
1. 数的认识。
- 0 - 20各数的认识,包括数的读写、数的顺序、数的大小比较等。
例如,11读作十一,15大于13。
- 基数和序数的概念,基数表示物体的数量,如3个苹果;序数表示物体的顺序,如第3个小朋友。
2. 数的运算。
- 加法的含义:把两个数合并成一个数的运算。
例如,1 + 2 = 3,表示1和2合起来是3。
- 减法的含义:从一个数里去掉一部分,求剩下的部分。
如3 - 1 = 2,表示3里面去掉1还剩2。
3. 图形认识。
- 认识长方体、正方体、圆柱、球等立体图形。
能区分它们的形状特征,如长方体有6个面,相对的面大小相等。
- 认识长方形、正方形、三角形、圆形等平面图形。
例如,正方形四条边一样长,四个角都是直角。
4. 钟表的认识。
- 认识时针和分针,时针短,分针长。
- 整时的认识,分针指向12,时针指向几就是几时,如时针指向3,分针指向12,就是3时。
二年级数学概念。
1. 数与代数。
- 100以内数的认识,包括数的组成(如35是由3个十和5个一组成)、数的读写、数的大小比较等。
- 100以内的加减法,相同数位对齐,从个位加起或减起。
进位加法和退位减法的计算方法,如计算28+36时,个位8 + 6 = 14,向十位进1,十位2+3 + 1=6,结果是64;计算42 - 19时,个位2不够减9,从十位借1当10,12 - 9 = 3,十位4 - 1 - 1 = 2,结果是23。
- 乘法的初步认识,乘法是求几个相同加数和的简便运算。
例如,3+3+3+3 = 3×4 = 12。
- 除法的初步认识,平均分的概念,把一些物品分成几份,每份分得同样多叫平均分。
除法是已知两个因数的积与其中一个因数,求另一个因数的运算。
如把12个苹果平均分成3份,每份4个,可以用12÷3 = 4表示。
2. 图形与几何。
- 角的初步认识,角有一个顶点和两条边。
直角是一种特殊的角,三角板上有一个直角。
小学数学总复习大全
小学数学总复习大全第一部分:数的认识和运算一、数的认识1. 自然数:包括0、1、2、3、4、5、6、7、8、9……,以及它们的顺序和大小关系。
2. 整数:包括正整数、0和负整数,如3、2、1、0、1、2、3……3. 分数:表示一个整体被等分后的部分,如1/2、3/4等。
4. 小数:表示整数与分数之间的数,如0.5、2.75等。
5. 质数与合数:质数是只能被1和它本身整除的数,如2、3、5、7等;合数是除了1和它本身外,还能被其他数整除的数,如4、6、8、9等。
二、数的运算1. 加法:将两个数相加得到它们的和,如3 + 4 = 7。
2. 减法:从一个数中减去另一个数得到它们的差,如7 4 = 3。
3. 乘法:将两个数相乘得到它们的积,如3 × 4 = 12。
4. 除法:将一个数分成若干等分,得到每个等分的大小,如12÷ 4 = 3。
5. 混合运算:加减乘除混合在一起的运算,如2 + 3 × 4 5 ÷ 2。
6. 分数运算:分数的加减乘除运算,如1/2 + 3/4 = 5/4。
7. 小数运算:小数的加减乘除运算,如0.5 × 2.75 = 1.375。
8. 质数与合数的运算:质数和合数的加减乘除运算,如2 + 3 = 5。
9. 整数运算:整数的加减乘除运算,如3 2 = 5。
小学数学总复习大全第二部分:计量单位与时间一、计量单位1. 长度单位:千米、米、分米、厘米、毫米,用于测量物体的长短。
2. 面积单位:平方千米、平方米、平方分米、平方厘米,用于测量物体的表面积。
3. 体积单位:立方米、立方分米、立方厘米,用于测量物体的体积。
4. 质量单位:吨、千克、克,用于测量物体的重量。
5. 容量单位:升、毫升,用于测量液体的体积。
6. 时间单位:年、月、日、时、分、秒,用于测量时间的长短。
二、时间1. 时间的表示:通过小时、分钟、秒来表示时间,如2小时30分钟。
小学数学知识点总结大全完整版
小学数学知识点总结大全数学基础知识数的概念1.自然数:正整数和0,用于表示物体个数和序号。
2.整数:包括正整数、负整数和0,用于表示物体个数、序号和相反意义的量。
3.小数:由整数部分和小数部分组成,用于表示十分之几、百分之几、千分之几等。
4.分数:表示两个整数之间的关系,分子表示部分数量,分母表示整体被分成了几份。
数的运算1.加法:将两个数合并成一个数的运算。
2.减法:已知两个数的和与其中的一个数,求另一个数的运算。
3.乘法:求几个相同加数和的运算。
4.除法:已知两个数的积与其中的一个数,求另一个数的运算。
5.幂运算:求一个数的n次方的运算。
计量单位1.长度单位:米、分米、厘米、毫米等。
2.面积单位:平方米、平方分米、平方厘米、平方毫米等。
3.体积单位:立方米、立方分米、立方厘米、立方毫米等。
4.质量单位:克、千克、吨等。
5.时间单位:秒、分钟、小时、天、月、年等。
6.货币单位:元、角、分等。
分数的运算1.分数加法:分母相同的分数相加,分子相加;分母不同的分数需要通分后相加。
2.分数减法:同分母分数相减,分子相减;异分母分数需要通分后相减。
3.分数乘法:分子相乘的积作为新分数的分子,分母相乘的积作为新分数的分母。
4.分数除法:将除法转换为乘法,即除以一个分数等于乘以其倒数。
小数的运算1.小数加法:将小数点对齐,按位相加,保留相应位数的小数。
2.小数减法:同小数点对齐,按位相减,保留相应位数的小数。
3.小数乘法:忽略小数点,按整数乘法计算,然后根据因数中小数点后的位数确定结果中小数点的位置。
4.小数除法:将除数乘以10的整数次幂,使其成为整数,然后进行整数除法,最后将商的小数点向左移动相应的位数。
平面几何1.点:没有长度、宽度和高度的物体。
2.线段:有两个端点的线段,可以测量长度。
3.射线:有一个端点,无限延伸的线段。
4.直线:无端点,无限延伸的线段。
5.角:由两条射线的公共端点形成的图形。
6.三角形:由三条边组成的图形。
1~6年级数学概念大全
数学概念全梳理
1~6年级数学概念大全
一、数的认识
● 1.1 整数与小数
⏹整数:包括正整数、0和负整数。
⏹小数:分为有限小数、无限循环小数和无限不循环小数。
⏹ 1.2 分数
⏹定义:表示整体的一部分。
⏹分类:真分数、假分数和带分数。
⏹ 1.3 十进制
⏹定义:计数法的一种,每相邻两个数位之间的进率是10。
二、数的运算
● 2.1 加法与减法
⏹基本运算规则。
⏹ 2.2 乘法与除法
⏹基本运算规则。
⏹ 2.3 四则混合运算
⏹定义:包含加减乘除的运算。
⏹运算顺序:先乘除后加减,括号内的优先。
三、图形与几何
● 3.1 基本图形
⏹直线、射线、线段、角、三角形、四边形等。
⏹ 3.2 面积与周长
⏹面积:表示图形所占的平面大小。
⏹周长:表示图形的边界长度。
⏹ 3.3 立体几何
⏹长方体、正方体、圆柱、圆锥等。
四、统计与概率
● 4.1 统计图表
⏹条形图、折线图、扇形图等。
⏹ 4.2 平均数、中位数和众数
⏹平均数:所有数的和除以数的个数。
⏹中位数:一组数按大小顺序排列后,位于中间位置的数。
⏹众数:一组数中出现次数最多的数。
⏹ 4.3 概率初步知识
⏹定义:某一事件发生的可能性大小。
五、综合与实践
● 5.1 数学问题解决策略
⏹分析法、综合法、枚举法等。
⏹ 5.2 数学游戏与数学谜题
⏹数独、魔方等数学智力游戏。
(完整版)新人教版小学数学总复习知识概念大全,推荐文档
新人教版小学数学总复习知识概念大全第一单元数与代数(一)数的认识0、负数】1、一个物体也没有,用 0 表示。
0 和 1、2、3……都是自然数。
自然数是整数。
2、最小的一位数是 1,最小的自然数是 0。
3、零上 4 摄氏度记作+4℃;零下 4 摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成 4。
4、像+4、19、+8844 这样的数都是正数。
像-4、-11、-7、-155 这样的数都是负数。
5、0 既不是正数,也不是负数。
正数都大于 0,负数都小于 0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
7、通常情况下,盈利用正数表示,亏损用负数表示。
8、通常情况下,上车人数用正数表示,下车人数用负数表示。
9、通常情况下,收入用正数表示,支出用负数表示。
10、通常情况下,上升用正数表示,下降用负数表示。
1、分母是 10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是 10。
3、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
4、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:(1)先要弄清保留几位小数;(2)根据需要确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表:1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
小学数学全面知识点总结
小学数学全面知识点总结一、数的认识1. 数的认识:自然数、0和整数的认识。
2. 数的读写:认识各位数、写出数的读法和写法。
3. 数的大小比较:认识数的大小关系,比较大小的方法。
4. 数的分类:奇数和偶数的认识。
二、数的加减法1. 加法概念:认识加法的意义,掌握数的加法规则。
2. 加法计算:认识进位,学会各种进位运算的方法。
3. 减法概念:认识减法的意义,掌握数的减法规则。
4. 减法计算:认识借位,学会各种借位运算的方法。
5. 加减法综合计算:学会加减法综合计算的方法。
三、数的乘除法1. 乘法概念:认识乘法的意义,掌握数的乘法规则。
2. 乘法口诀:掌握乘法口诀表,学会快速计算乘法。
3. 乘法计算:掌握乘法计算的方法和技巧。
4. 除法概念:认识除法的意义,掌握数的除法规则。
5. 除法计算:掌握除法计算的方法和技巧。
6. 乘除法综合计算:学会乘除法综合计算的方法。
四、数的倍数和约数1. 倍数的概念:认识倍数的概念,学会判断一个数是否是另一个数的倍数。
2. 倍数的性质:掌握倍数的性质和应用。
3. 约数的概念:认识约数的概念,学会找出一个数的所有约数。
4. 约数的性质:掌握约数的性质和应用。
五、分数和小数1. 分数的认识:认识分数的概念和表示方法。
2. 分数的大小比较:学会比较分数的大小。
3. 分数的加减乘除:学会分数的加减乘除运算。
4. 小数的认识:认识小数的概念和表示方法。
5. 小数的加减乘除:学会小数的加减乘除运算。
六、长度、面积和体积1. 长度的认识:认识长度的概念,学会长度的单位和换算。
2. 面积的认识:认识面积的概念,学会面积的单位和换算。
3. 体积的认识:认识体积的概念,学会体积的单位和换算。
七、时间、钟点和日历1. 时间的认识:认识时间的概念,学会时间的单位和换算。
2. 钟点的认识:认识钟点的概念,学会读写时间和解决时间问题。
3. 日历的认识:认识日历的概念,学会使用日历解决问题。
八、图形的认识1. 点、线、面的认识:认识基本图形的概念和性质。
最全面小学数学知识点归纳总结
最全面小学数学知识点归纳总结小学数学是培养孩子逻辑思维和数学思维的基础阶段,在小学数学的学习中,有一些重要的知识点需要重点掌握。
下面是针对小学数学的最全面知识点归纳总结(精华版):一、数的认识:1.自然数的认识:1、2、3、4...2.零的认识:了解‘0’的概念。
3.负数的认识:了解负数概念及负数与正数关系。
4.分数和小数的认识:了解分数和小数的含义及互相转换关系。
二、数的运算:1.加减法运算:认识加减法的概念及运算法则。
2.乘法运算:学会乘法口诀及乘法的运算法则。
3.除法运算:了解除法的意义及运算法则。
4.分数运算:分数的加减法、乘法和除法运算。
5.小数运算:小数的加减法、乘法和除法运算。
6.综合运算:综合运用四则运算解决问题。
三、计算技巧:1.消去法:运用演算法进行运算简化。
2.翻倍法:运用倍数进行运算简化。
3.取近似法:学会合理估计数值。
4.整体法:发现问题中的整体规律,用整体推导解决问题。
四、数的认识与计算中的性质:1.数字的整体性质:了解数字由位数组成,及位数的意义。
2.原数和向上、向下取整:了解向上、向下取整的原理及应用。
3.数轴的应用:能在数轴上表示和比较数。
4.逆数与倒数:认识逆数的概念及逆数与倒数的关系。
5.数字的零头:学会去尾法。
6.倍与比:了解倍与比的概念及应用。
五、数量关系:1.大小比较:能辨别数值的大小关系。
2.数量与合,差,积和商的关系:了解数量之间的基本关系。
3.数倒和数互换:能将数值按照一定规则进行倒读或重新排列。
4.估计与精确:能根据实际情况进行估算或得到精确值。
六、数表与运算:1.乘法口诀表:熟记乘法口诀并能独立运用。
2.100以内的加减乘除计算表:能熟练进行100以内的加减乘除运算。
3.单位换算表:学会常用单位间的换算关系。
七、图形与运动:1.坐标系和坐标轴:学会在坐标系中表示点的位置。
2.图形的基本属性:学会识别和描述图形的形状、边长和角度等基本属性。
3.面积与周长的认识:了解面积与周长的概念及计算方法。
(完整版)小学数学必背知识点汇总汇总
(完整版)小学数学必背知识点汇总汇总小学数学必背知识点汇总基本性质※小数的基本性质:在小数末尾添上零或者去掉零,小数的大小别变。
※分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小别变。
※比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值别变。
※比例的基本性质:在比例里,两个外项的积等于两个内项的积。
※比例尺=图上距离÷实际距离(单位要相同)※商别变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小别变。
一.公式长方体有12条棱:4条长,4条宽,4条高,六个面;正方本有12条棱:每条棱都相等,有六个面,每个面都相等。
长立方体体积=长×宽×高正方体体积=棱长×棱长×棱长圆柱体体积=半径2× ×高圆锥体体积=半径2× ×高×税后利息=本金×存款时刻×利率×(1-20%)二.运算意义三.运算定律及性质加法交换律:a +b =b +a 加法结合律:a +b +c =a +(b+c加减法的速算法:a -b =a -c -d 、 a+b =a +c +d减法的性质:a -b -c =a -(b +c )乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c 乘法分配律:(a+b ×c=a×c+b×c 积别变的性质:a×b=(a×c×( b÷c 除法的性质:a÷b÷c=a÷(b×c 商别变的性质:a÷b=(a÷c ÷(b÷c、a÷b=(a×c ÷(b×c四.数的整除1.约数和倍数:假如数 a 能被数 b 整除,a 就叫做 b 的倍数,b 就叫做a 的约数。
(完整版)小学数学总复习知识点整理(最全)
(完整版)小学数学总复习知识点整理(最全)总复习小学数学复习资料第一章数和数的运算一概念(一)整数1 .整数的意义自然数和0基本上整数。
2 .自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一具物体也没有,用0表示。
0也是自然数。
3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……基本上计数单位。
每相邻两个计数单位之间的进率基本上10。
如此的计数法叫做十进制计数法。
4. 数位计数单位按照一定的顺序罗列起来,它们所占的位置叫做数位。
5.数的整除整数a除以整数b(b ≠0),除得的商是整数而没有余数,我们就讲a能被b 整除,或者讲b能整除a 。
假如数a能被数b(b ≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,因此35是7的倍数,7是35的约数。
一具数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一具数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一具数的各位上的数的和能被3整除,那个数就能被3整除,例如:12、108、204都能被3整除。
一具数各位数上的和能被9整除,那个数就能被9整除。
能被3整除的数别一定能被9整除,然而能被9整除的数一定能被3整除。
一具数的末两位数能被4(或25)整除,那个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一具数的末三位数能被8(或125)整除,那个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
小学数学总复习知识概念大全共12页文档
数与代数(一)数的认识0、负数】0表示。
0和1、2、3……都是自然数。
自然数是整数。
2、最小的一位数是1,最小的自然数是0。
3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
4、像+4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
5、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
7、通常情况下,盈利用正数表示,亏损用负数表示。
8、通常情况下,上车人数用正数表示,下车人数用负数表示。
9、通常情况下,收入用正数表示,支出用负数表示。
、通常情况下,上升用正数表示,下降用负数表示。
1010、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
3、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
4、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
5、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
8、求小数近似数的一般方法:(1)先要弄清保留几位小数;(2)根据需要确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。
1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学总复习概念大全HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学数学(人教版)概念归类大全第一部分:数与代数一、数的认识(一)整数1、我们在数物体的时候,用来表示物体个数的1,2,3,……叫做自然数。
一个物体也没有,用0表示,0也是自然数。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
自然数的单位是1。
自然数和0都是整数。
连续自然数相差1。
2、像…,-3,-2,-1,0,1,2,3…这样的数统称整数。
整数的个数是无限的。
3、一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10,这样的计数法叫做十进制计数法。
整数和小数都是按照十进制计数法写出的数。
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个整数含有数位的个数叫做位数。
最小的一位数是1。
4、整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
(例如)读作:一百零二亿五千零二十万零五十。
5、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
(例如)七十亿零三百万四千6、准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
(例如)把改写成以“万”做单位的数是 125430 万;改写成以“亿”做单位的数亿。
7、近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
(例如)省略“亿”后面的尾数约是 13 亿。
8、四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。
(例如)省略 345900 “万”后面的尾数约是 35 万;省略“亿”后面的尾数约是47 亿。
9、整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。
(例如)6÷3=2(或2×3=6),那么我们就说6能被3整除(或6能被2整除),或3能整除6(或2能整除6)。
10、如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。
倍数和约数是相互依存的。
(例如)6÷3=2(或2×3=6),那么6就是3和2的倍数,2和3就是6的因数(或a的约数)。
11、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身。
一个数最小的倍数等于它最大的约数。
(例如)9的最小的因数是1,最大的因数是9,最小的倍数是9。
12、个位上是0、2、4、6、8的数,都能被2整除。
(例如)2758的个位是8,所以2758能被2整除。
个位上是0或者5的数,都能被5整除。
(例如)975的个位是5,所以975能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
(例如)2748的各位和2+7+4+8=21,因为21能被3整除,所以2748就能被3整除。
13、一个数各位数上的和能被9整除,这个数就能被9整除。
(例如)2745的各位和2+7+4+5=18,因为18能被9整除,所以2745就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
(例如)10316的末两位是16,因为16能被4整除,所以10316就能被4整除;1350的末两位是50,因为50能被25整除,所以1350就能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
(例如)10816的末三位是816,因为816能被8整除,所以10816就能被8整除;7250的末三位是250,因为250能被125整除,所以7250就能被125整除。
14、能被2整除的数叫做偶数。
0也是偶数。
最小的偶数是0。
连续偶数相差2。
不能被2整除的数叫做奇数。
最小的奇数是1。
连续奇数相差2。
15、一个数,如果只有1和它本身两个因数,叫做质数(或素数)。
(例如)因为37只有1和37这两个因数,所以37是质数。
最小的质数是2。
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
既是质数又是偶数的数只有2。
一个数,如果除了1和它本身,还有别的因数,叫做合数。
(例如)因为91除了有因数1和91外,还有因数7、13,所以91是合数。
最小的合数是4。
1既不是质数也不是合数。
16、每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(例如)把48分解质因数:48=2×2×2×2×3。
把一个合数分解质因数,通常用短除法。
先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
17、几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
18、公因数只有1的两个数是互质数。
一定是互质数的情况有:①1和任何自然数;②相邻的两个自然数;③两个不同的质数。
如果几个数中任意两个都互质,就说这几个数两两互质。
19、自然数按能否被2 整除的特征可分为奇数和偶数;自然数按约数的个数分为质数、合数和1。
20、如果两个数是互质数,它们的最大公因数就是1,最小公倍数是它们的乘积;(例如)3和5因为是互质数,所以3和5的最大公因数是1,最小公倍数是3×5=15。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数,较小数就是这两个数的最大公因数。
(例如)24和6因为24是6的倍数,所以24和6的最大公因数是6,最小公倍数是24。
21、求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,一直除到所得的商只有公因数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公因数。
22、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公因数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
(二)小数1、把整数“1”平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数是整数部分,从右向左依次分别是个位、十位、百位、千位……;小数点右边的数是小数部分,从左向右依次分别是十分位、百分位、千分位……3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5、在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高位是十分位;整数部分的最低位是个位。
(1)小数的小数部分的位数是有限的,就叫做有限小数(纯小数和带小数)。
①整数部分是零的小数,叫做纯小数。
②整数部分不是零的小数,叫做带小数。
(2)小数部分的数位是无限的小数,叫做无限小数(无限循环小数和无限不循环小数)。
①一个小数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做(无限)循环小数(纯循环小数和混循环小数)。
Ⅰ:循环节从小数部分第一位开始的,叫做纯循环小数。
Ⅱ:循环节不是从小数部分第一位开始的,叫做混循环小数。
②一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
8、一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首位和末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
9、小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
10、小数点的移动引起小数的大小变化:小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……;小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……(三)分数1、把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,表示其中的一份的数,叫做分数单位。
2、在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
3、分数的读法:读分数时,先读分母,再读“分之”,然后读分子,分子和分母按照整数的读法来读。
4、分数的写法:先写分数线,再写分母,最后写分子。
5、两个整数相除,它们的商可以用分数表示。
即:a÷b=ba (b≠0) 6、分数的分类(真分数和假分数)(1)分子比分母小的分数叫做真分数。
真分数小于1。
(2)分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
①分子是分母倍数的假分数,可以化成整数。
②分子不是分母倍数的假分数,可以化成带分数(假分数可以写成整数与真分数合成的数,通常叫做带分数)。
7、把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。
8、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
9、分子和分母是互质数的分数,叫做最简分数。
10、表示一个数是另一个数的百分之几的数叫做百分数(也叫做百分率或百分比)。
百分数通常用"%"来表示。
11、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
12、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
13、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。
14、商店降价出售商品,叫做打折扣出售,统称“打折”。