2.1有理数课件ppt北师大版七年级上
合集下载
认识有理数ppt课件
求
相
2、负数的相反数是正数
反
数
3、0的相反数是0
的
方
4、一个字母的相反数只需要在这个字母前面添一个“-”
法
5、一个式子的相反数只需要将这个式子用括号括起来,在前面添一个“-”
结论
原点
一个数的数量大小叫做这个数的绝对值. 有理数a 的绝对值记
作
。
练习:
|+2|=
;
|-3|=
;
|0|=
;
|1.5|=
.
1、正数的绝对值是它本身
求
相
2、负数的绝对值是它的相反数
反
数
3、0的绝对值是0
的
方
4、任何一个数都有唯一的绝对值
法
5、绝对值相等的两个数(一正一负)互为相反数。
思考: 相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5 |-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
;
(2)1.7与
互为相反数;
(3)x的相反数是
.
例2:求下列各数的相反数和绝对值:
-2, ,0,-3.8,30.
解:-2, ,0,-3.8,30的相反数分别为 2, ,0,3.8,-30
认识相反数
一、利用相反数的概念求值。 例1:已知 是-3的相反数, 是最小的正整数,则
① 已知 的相反数是-0.5, 是-2的相反数,则 ② 已知 的相反数是它本身, 是最小的质数,则
结论
两个负数比较大小,绝对值大的反而小。
练习:
1.-5 -4; 2.-2.3 -2.2; 3.-2 2; 4.2021 2022; 5.-2021 0。
北师大版(2024)七年级上册2.1.1 认识有理数 课件(共26张PPT)
解:(1)沿顺时针方向转了12圈记作-12圈; (2)-0.03g表示乒乓球的质量低于标准质量0.03g; (3)每袋大米的标准质量应为10kg,但实际每袋大米可能有50g的误 差,即每袋大米的净含量最多是10kg+50g,最少是10kg-50g
跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?
跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?
2.1 认识有理数(第2课时 相反数与绝对值)(课件)-七年级数学上册(北师大版2024)
±2 025 .
±2 025的绝对值都是2 025.
练一练
5
7.写出下列各数的绝对值:-8,3.9,- ,-10.5,0,-(-2).
2
解: | -8 | =8,
求-2的相反数的绝对值,
| 3.9 | =3.9,
即求2的绝对值.
5
|- |
2
5
= ,
2
| -10.5 | =10.5,
| 0 | =0,
的绝对值”.
| 3 | = 3, |
3
2
|=
3
2
课本例题
例2
求下列各数的相反数和绝对值:
4
-2, ,0,-3.8,30.
9
4
4
解:-2, ,0,-3.8,30的相反数分别是:2,- ,0,3.8,-30;
9
9
4 4
|-2|=2,| |= ,
9 9
|0|=0, |-3.8|=3.8, |30|=30.
两个负数比较大小,绝对值大的反而小.
C. -
的绝对值是(
A
)
B. 10
D. -10
9. 在有理数中,绝对值等于它本身的数是( D
A. 0
B. 正数
C. 负数
D. 非负数
)
10. 【新考法·分类讨论法】如果| x |=2,那么 x =( C
A. 2
B. -2
C. 2或-2
D. 2或-
)
11. 写出下列各数的相反数及绝对值:
18. 【新考法·猜想归纳法】(1)化简:
;-(+2)= -2
+(-2)= -2
(2024秋新版本)北师大版七年级数学上册 《认识有理数》PPT课件
(2)该厂实际共生产多少辆自行车?平均每天生产多少辆自
行车?
.
课堂检测
能 力 提 升 题
解:(1)以每日生产400辆自行车为标准,多出的数记作正数,
不足的数记作负数,则有
+5,-7, +10,+9,-13,+6,-3;
(2) 405+393+410+409+387+406+397 =2807(辆),
-2
-2
-|-2|=________,-|+2|=________,
|0|=________.
0
思考: 一个数的绝对值与这个数有什么关系?
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数;
(3) 0的绝对值是0.
探究新知
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
a
(1)当是正数时,|a|=____;
A.物体又向右移动了2米 B.物体又向右移动了4米
C.物体又向左移动了2米 D.物体又向左移动了4米
方法点拨:表示具有相反意义的量时,首先找到具有相反意
义的同类量,然后将其中一个量用正数表示,与其意义相反
的量就用负数表示.需注意的是:用正数、负数表示相反意义
的量时,一定要说明数量和单位.
巩固练习
变式训练
-8.44,22,+
巩固练习
变式训练
1
1
在0, 2, -7,−5 ,3.14,−3 ,-3, +0.75中, 负数共有
3
7
( D )
A.1个
B.2个
C.3个
D.4个
探究新知
知识点 3
2.1认识有理数+第3课时数轴+课件2024-2025学年北师大版数学七年级上册
十、举一反三
4.与原点的距离为3个单位长度的点所表示的有理数是_____. 5.如图,指出数轴上点 A,B,C 所表示的数,并把-4,32,6 这三个数分别用点 D,E,F 在数轴上表示出来.
十一、课堂小结 布置作业
本节课你学到的数学知识和数学思想方法有哪些? 让学生畅所欲言谈这节课收获.
课本:
P30 随堂练习1、2、3 习题2.18(1)(2)
问题2:思考:怎样在数轴上表示一个有理数-4 ? 数轴的作用有哪些?
八、归纳总结
1、在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的 距离相等。一个数的绝对值就是这个数所对应的点到原点的距离。
2、思考交流 在数轴上画出表示下列各数的点: -4,3.5, -1.5, ,0 ,2.5. 再按数轴上从左到右的顺序,将这些数重新排成一行.你有什么发现?与 同伴进行交流。
像这样,规定了原点、单位长度和正方向的直线称为数轴。通常将数轴画成水平直线,并选择向右的方向为正方向。
-2 -1 0 1 2 3
数轴三要素:原点、正方向、单位长度,三者缺 一不可
像一个平放的 温度计。
在这条数轴上,+3可以用位于原点右边3个单位长度的点表示,-2可以用位于 原点左边2个单位长度的点表示。
三、动手操作,形成概念
1.师生动手画数轴.(边画边强调数轴画法和要点) 在一条水平直线上取一点(称为原点)表示0,选取某一长度作为单位长度,规定这条直线上向右的方向为正方向,那 么相反方向就是负方向。原点右边的点可以表示正数,原点左边的点可以表示负数。这样,所有有理数就都可以用直线 上的点表示了。
2、比较下列每组数的大小,并说明理由
⑴-9 和 +6; ⑵0 和 -1.8;
北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件
知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )
有理数ppt课件
特别地, 0 的相反数是 0.
思考a的相反数为多少?
例1 判断题,看谁回答的又对又快!
(1)-10是10的相反数 ( √ ) (2)10是10的相反数 ( × )
(3)1.5与-1.5互为相反数 ( √ )
(4)-2是相反数
(× )
23的相反数为 ,
34的相反数为
,
-6的相反数为
,
-2013的相反数为 。
2.1.3 绝对值
北师大版·七年级上册
问题引入
观察下列三组数字,他们有何特点? 有什么共同特点? 数字相同,符号不同
3和-3
5和-5
0.9和-0.9
你还能列举几组这样的数字吗?
知识点1 相反数的概念
如果两个数的符号不同,数量相同,那 么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数.
知识点2 绝对值的概念及意义
一个数的数量大小叫做这个数的绝对值.
例如3和-3的绝对值都等于3,0的绝对值等于0 用a表示一个有理数,则a的绝对值记作|a|.
读作“a的绝对值”. 例如3和-3的绝对值都等于3,记作|3|=3 |-3|=3
互为相反数的两个数的绝对值相等
例1 求下列各数的绝对值:
4
-21, 9 ,0 ,-7.8 , 21, 64, -7.9, 9.41, 10023
知识点4 有理数比较大小
正数大于0,负数小于0,正数大于负数 两个负数比大小,绝对值大的反而小
例2 比较下列每组数的大小:
(1)
﹣1
和
﹣5;
(2)
﹣
5 6
和
﹣2.7.
(1) 因为 | ﹣1| = 1, | ﹣5 | = 5 , 1<5,所以 ﹣1> ﹣ 5 .
思考a的相反数为多少?
例1 判断题,看谁回答的又对又快!
(1)-10是10的相反数 ( √ ) (2)10是10的相反数 ( × )
(3)1.5与-1.5互为相反数 ( √ )
(4)-2是相反数
(× )
23的相反数为 ,
34的相反数为
,
-6的相反数为
,
-2013的相反数为 。
2.1.3 绝对值
北师大版·七年级上册
问题引入
观察下列三组数字,他们有何特点? 有什么共同特点? 数字相同,符号不同
3和-3
5和-5
0.9和-0.9
你还能列举几组这样的数字吗?
知识点1 相反数的概念
如果两个数的符号不同,数量相同,那 么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数.
知识点2 绝对值的概念及意义
一个数的数量大小叫做这个数的绝对值.
例如3和-3的绝对值都等于3,0的绝对值等于0 用a表示一个有理数,则a的绝对值记作|a|.
读作“a的绝对值”. 例如3和-3的绝对值都等于3,记作|3|=3 |-3|=3
互为相反数的两个数的绝对值相等
例1 求下列各数的绝对值:
4
-21, 9 ,0 ,-7.8 , 21, 64, -7.9, 9.41, 10023
知识点4 有理数比较大小
正数大于0,负数小于0,正数大于负数 两个负数比大小,绝对值大的反而小
例2 比较下列每组数的大小:
(1)
﹣1
和
﹣5;
(2)
﹣
5 6
和
﹣2.7.
(1) 因为 | ﹣1| = 1, | ﹣5 | = 5 , 1<5,所以 ﹣1> ﹣ 5 .
北师大版七年级数学上册《有理数》有理数及其运算PPT课件
解 :(1)扣20分记作-20分; (2)沿顺时针方向转12圈记作-12圈;
(3)-0.03克表示乒乓球的质量低于标
准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动7m应
记作什么?若在原地不动又记作什么?
第十六页,共三十一页。
做一做
随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
2、小学里学过的数除0外都是正数;正数前面添上 “-”号的数是负数;0既不是正数,也不是负数,它
表示正、负数的界限。
3、有理数的分类方法不是唯一的,可以按整数和分数 分成两大类,也可以按正有理数、零、负有理数分成三 大类。
4、我学得怎样?
第二十八页,共三十一页。
作业:
1、下列各数中,哪些是正整数?哪些是负整数?哪些是 正分数?哪些是负分数?哪些是正数?哪些是负数?
用正数和负数可以表示具有相反意义的量
第十五页,共三十一页。
例1
知 (1)在知识竞赛中,如果+10分表示加10分,那么 扣 识 20分怎样表示? 运 (2)某人转动转盘,如果用+5表示沿逆时针方向转 了 用 5圈,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标
准质量0.02克记作+0.02,那么-0.03克表示什么?
沈阳 小雨 19 7 天津 小雨 12 8 西宁 小雪 5 -4 银川 小雪 0 -3 兰州 小雪 3 -3 西安 小雨 16 7
第十二页,共三十一页。
财富全球500强中的主要零售企业
排名 2 46 66
111 120 153 184
公司 沃尔玛 麦德龙 家乐福 特斯科 洋华堂
(3)-0.03克表示乒乓球的质量低于标
准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动7m应
记作什么?若在原地不动又记作什么?
第十六页,共三十一页。
做一做
随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
2、小学里学过的数除0外都是正数;正数前面添上 “-”号的数是负数;0既不是正数,也不是负数,它
表示正、负数的界限。
3、有理数的分类方法不是唯一的,可以按整数和分数 分成两大类,也可以按正有理数、零、负有理数分成三 大类。
4、我学得怎样?
第二十八页,共三十一页。
作业:
1、下列各数中,哪些是正整数?哪些是负整数?哪些是 正分数?哪些是负分数?哪些是正数?哪些是负数?
用正数和负数可以表示具有相反意义的量
第十五页,共三十一页。
例1
知 (1)在知识竞赛中,如果+10分表示加10分,那么 扣 识 20分怎样表示? 运 (2)某人转动转盘,如果用+5表示沿逆时针方向转 了 用 5圈,那么沿顺时针方向转了12圈怎样表示?
(3)在某次乒乓球质量检测中,一只乒乓球超出标
准质量0.02克记作+0.02,那么-0.03克表示什么?
沈阳 小雨 19 7 天津 小雨 12 8 西宁 小雪 5 -4 银川 小雪 0 -3 兰州 小雪 3 -3 西安 小雨 16 7
第十二页,共三十一页。
财富全球500强中的主要零售企业
排名 2 46 66
111 120 153 184
公司 沃尔玛 麦德龙 家乐福 特斯科 洋华堂
(2024秋新版本)北师大版七年级数学上册 《 有理数的加减运算》PPT课件
5
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
4
5
4
2
3
思考:有没有简便的方法?
探究新知
(1)解:原式=(31+69)+[(-28)+28](加法交换律和结合律)
=100+0 (一个数同0相加,仍得这个数)
=100;
(2) 解:原式=[(-64)+(-23)]+(17+68)
(加法交换律和结合律)
=(-87)+85 (异号相加法则)
=-2.
加法的结合律: (a+b)+c=a+(b+c).
探究新知
知识点
有理数加法的运算律
计算并比较每组的两个算式的结果:
(1)(-8)+(-9)= -17
(-9)+(-8)= -17
(2) 4 +(-7)= -3
(-7) + 4 = -3
(3) [2+(-3)]+(-8)= -9
2+[(-3)+(-8)]= -9
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对
值较大的数的符号,并用较大的绝对值减去较小的绝对值.
一个数同0相加,仍得这个数.
探究新知
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
↓
↓
同号两数相加
取相同符号
通过绝对值化归
不合格
径18mm,该零件____________
(填“合格”或“不合格”)。
课堂检测
基 础 巩 固 题
5.小虫从某点O出发在一条直线上来回爬行,假定向右为正方
2.1 数轴 北师大版七年级数学上册课件2
把这些数表示在数轴上,表示它们各点的顺序是从__左__到__右__的.
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 结合数字大小顺序,利用数轴观察知: 在数轴上的两点,右边的点表示的数比左边的__大___. 反过来,左边的点表示的数比右边的__小__. 即:数轴上两个点表示的数,右边的总比左边的大.
10 5
0 -5
-10 -15
-20
C -10℃
A 0℃
B 20℃
概念讲解
画一条水平直线,在直线上取一点表示0(这个点叫 数轴概念 __原__点___),选取某一长度作为___单__位__长__度__,规定直
线上向右的方向为 _正__方__向____,这样的直线叫做数轴.
-4 -3 -2 -1 0 1 2 3 4
表示+3的点在原点的_右__边,与原点的距离是_3_个单位长度; 表示-4的点在原点的_左__边,与原点的距离是_4_个单位长度;
右
左
1.5
一般地,设a是一个正数,则数轴上表示数a的点在原点的_右__边,
与原点的距离是___a__个单位长度;表示数-a的点在原点的
__左__边,与原点的距离是___a__个单位长度.
2.如图,在数轴上点M表示的数可能是( D )
A.1.5 B.-1.5 C.2.4 3. 用“>”或“<”填空.
> <
>
D.-2.4
4.画出数轴,用数轴上的点表示下列各数,并用“>”将它 们连接起来:
解:如图所示:
-2
2 0
3
1.5 2
9 2
-4 -3-2.5-2 -1 0 1 2 3 4 5
0
负数
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 结合数字大小顺序,利用数轴观察知: 在数轴上的两点,右边的点表示的数比左边的__大___. 反过来,左边的点表示的数比右边的__小__. 即:数轴上两个点表示的数,右边的总比左边的大.
10 5
0 -5
-10 -15
-20
C -10℃
A 0℃
B 20℃
概念讲解
画一条水平直线,在直线上取一点表示0(这个点叫 数轴概念 __原__点___),选取某一长度作为___单__位__长__度__,规定直
线上向右的方向为 _正__方__向____,这样的直线叫做数轴.
-4 -3 -2 -1 0 1 2 3 4
表示+3的点在原点的_右__边,与原点的距离是_3_个单位长度; 表示-4的点在原点的_左__边,与原点的距离是_4_个单位长度;
右
左
1.5
一般地,设a是一个正数,则数轴上表示数a的点在原点的_右__边,
与原点的距离是___a__个单位长度;表示数-a的点在原点的
__左__边,与原点的距离是___a__个单位长度.
2.如图,在数轴上点M表示的数可能是( D )
A.1.5 B.-1.5 C.2.4 3. 用“>”或“<”填空.
> <
>
D.-2.4
4.画出数轴,用数轴上的点表示下列各数,并用“>”将它 们连接起来:
解:如图所示:
-2
2 0
3
1.5 2
9 2
-4 -3-2.5-2 -1 0 1 2 3 4 5
0
负数
2024年秋季新北师大版七年级上册数学教学课件 2.1.1 有理数
数学史导入
在国外,负数概念的建立和使用,经历了一个曲折的过程,印度在公 元7世纪出现了负数概念,并有了负数的运算,不过他们总把负数解 释为负债.欧洲的数学家迟迟不承认负数,认为零是最小的数,而比 零还小的数是不可思议的.欧洲最早承认负数的是17世纪法国数学家 笛卡儿(Rene Descartes, 1596—1650),他承认解方程中出现的负根, 不过他称之为“假根”.直到19世纪,负数在欧洲才获得普遍承认.
1.请同学们阅读教材23-25页并思考: 活动1:生活中你见过带有“-”的数吗? 如图是2023年7月我国居民 消费价格分类别同比涨幅 情况。根据图中数据归纳 正数、负数与0的意义。
像1.0,0.1,2.4,…都是正数,正数前面的“+”可以 省略不写。像-0.5,-0.2,-4.7,…都是负数。 0既不是正数,也不是负数
不要求数量一定相等。
知识点2:正数与负数(重点) 正数:像+3,+15,+6.9%,…都是正数。正数前面的“+”可以 省略不写。 负数:像-2,-8,-1.8%,…都是负数。负数前面的“-”不能 省略。 注:①0既不是正数也不是负数。②并不是所有带有“-”号的数都 是负数。③用正数或负数表示具有相反意义的量时,一般规定表示 前进、增加、上升、向右等的量为正数。
1 认识有理数
第1课时 有理数
1.通过生活中的实例理解负数、有理数的意义,体会负数导入 的必要性和有理数应用的广泛性。
2.通过判断一个数是正数还是负数,应用正、负数表示生活中 具有相反意义的量,体会数学知识与现实世界的联系。
3.在负数概念的形成过程中,培养学生观察、归纳与概括的能 力,提高学生的语言表达能力,培养学生的数感。
每袋大米的标准质量应为10 kg,但实际每袋大米可能有50 g的误 差,即最多超出标准质量50 g,最少少于标准质量50 g
北师大版七年级数学上册《有理数》有理数及其运算PPT教学课件
重要总结:
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
(1)正数中的“+”可以忽略不写,如+8可以写成8. 负数中的“-”不可忽略
(2)可以用正数和负数表示具有相反意义的量
在一次答题中,评分标准是:答对加1分,
答错减1分,不回答0分;有两个队,的基本分
均为0分.两队答题情况如下表:
现在我们可以用带有“﹢”号和“﹣”号的数
表示各队每道题的得分情况.试完成下表:
+14
-8
+7
+12
1.求该外卖小哥这一周平均每天送餐多少单?
2.外卖小哥每天的工资由底薪 30 元加上送单补贴构成,送单补贴的方案如下:每天送
餐量不超过40单的部分,每单补贴4元;超过40单但不超过50单的部分,每单补贴6元;
超过50单的部分,每单补贴8元求该外卖小哥这一周工资收入多少元?
课堂小练
第二章 有理数及其运算
1 有理数
七年级上册
新课导入
观 察
1.全国主要城市天气预报
城市
天气
高温
低温
城市
天气
高温
低温
长沙
小雨
15
6
长春
多云
18
10
沈阳
小雨
19
7
天津
小雨
12
8
呼和浩特
雨夹雪
8
﹣3
乌鲁木齐
晴
4
﹣3
西宁
小雪
5
﹣4
银川
小雪
0
﹣3
同学们可知道天气预报播音员是怎样读这些城市的气温的?
2.地形局部示意图
3.若该种食品每袋的合格标准为4505克,求该食品的抽样检测的合格率.
每袋与标准质量的差值(单位:克)
2.1 认识有理数(第3课时 数轴)(课件)-七年级数学上册(北师大版2024)
)
A. a < b < c < d
B. b < a < d < c
C. a < b < d < c
D. d < c < b < a
4. [2024株洲期末]如图,在单位长度为1的数轴上,若点 A 、点 B 到原点的距离
相等,则点 C 表示的数是( C
A. -1
B. 0
)
C. 1
D. 2
5. [情境题·生活应用·2024·沧州模拟]规定向东为正,向西为负,将遥控小汽车两
类似地,表示数 a 的点到表示数2的点的距离可表示为 | a -2|
.
(3)应用:①表示数 a 的点到表示数3的点的距离是7,可记为| a -3|=7,
那么 a =
-4或10
.
②当 a 取何值时,| a +4|+| a -3|的值最小,最小值是多少?请说
明理由.
【解】当-4≤ a ≤3时,| a +4|+| a -3|的值最小,最小值为7.
方向
像这样,规定了原点、单位长度、正方向的直线称为数轴。
概念归纳
画数轴注意事项:
1. 直线是水平的;
2. 原点、单位长度和正方向三要素缺一不可;
(1)原点 —— 在直线上任意一点表示数“0”;
(2)正方向用箭头表示,一般取从左到右为正方向;
(3)取单位长度应结合实际需要,但要做到刻度均匀,单
位长度统一。
(3)标数:在实心小圆点上标出数字.
课本例题
例4
(1)下图数轴上A,B,C,D各点分别表示什么数?
...
A
D
C
-2
-1
0
.
B
1
2
3
解:点A表示-2,点B表示2,点C表示0,点D表示-1.
北师大版数学七年级上册第二章2.1有理数课件(共29张PPT)
负有理数
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
做一做
随堂练习
关键:以800个零件为正、负数的标准(分界限)
2、下表是某日上海发行的部分债券行情表,试说 第三天超产零件是-50个
3、某厂计划每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,
(1)分数(
);
46663.6
295.1
171440
(2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示?
66 家乐福 39855.7 2、请举出3对具有相反意义的量,并分别用
负数是
。
805.6
297290
负分数:如 -1/5、-3.
111 特斯科 30351.9 第三天超产零件是-50个
(3)-0.03克表示乒乓球的质量低于标 准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
做一做 随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
某班进行知识竞赛,评分标准是:答对一题加10分,
(2)沿顺时针方向转12圈记作-12圈;
25,-9/10,-301,4/27,31.
米5、,调记查作八9月9份家国中。的债收入(和支1出)情_涨况_,_并0_且._0_1_元___;99国债(2)_跌__0_._0_5_元__;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1:
把下列数分别填在对应的括号内: 2 7 13,-0.5,2.7,123,0, -─,-4,─ 。 4 5 2 7 -0.5,2.7,-─,─);(2)负整数( ); -4 (1)分数( 5 4
7 (3)正分数( 2.7,─ );(4)有理数(全都是 )。 4
例题2:
下列给出的各数,哪些是正数?哪些是负数?哪些是 整数?哪些是分数?哪些是有理数?
第五题
得 0 分
最后得分
第一题
第一队 第二队 第三队
10分 20分 0分 10分 -10分
第 四 对 是 10 分 吗?
第四队
加10分表示+10分
第一题 第一队
扣10分表示-10分
第二题 第三题
得0分表示0分
第五题 最后得分
第四题
+10分 -10分
-10分 +10分 +10分 +10分
+10分
0分
+10分 -10分
+10分 +10分 -10分 0分 -10分
+10分
+20分 0分 -10分
第二队
第三队 第四队
+10分 -10分 -10分
+10分 -10分
生活中你见过 带有“-”号的数 吗?
全国主要城市天气预报
城市 哈尔滨 沈阳 天气 小雨 小雨 高温 15 19 低温 6 7 城市 长春 天津 天气 多云 小雨 高温 18 12 低温 10 8
走了180m,后又向东走了200m,则此时他在离路口东面20m ___。
用心理解!
为了表示具有相反意义的量,我们把 一种意义的量规定为正,用过去学过的数 (零除外),如123,15,3.14等来表示, 这样的数叫做正数。正数前面可加正号 “+”来表示(“+”常省略不写);把另 一种与之意义相反的量规定为负,用过去 学过的数(零除外)前面放上负号“-” 来表示, 2 这样的数叫做负数。 如 233 60, , 0.5等, , 3 特别注意:“-”不可以省略!
负数或零 这个数可能是______________.
记住啰:零和正数统称为非负数!
数的分类
正整数、零和负整数统称整数; 正分数和负分数统称分数。 整数和分数统称有理数。 正整数 自然数 整数 零 负整数 注意: 有理数 正分数 分数 小数≠分数 负分数
数的 分类
正有理数
有理数
正整数
零
负有理数
正分数 负整数 负分数
说明:①分类的标准不同,结果也不同;②分类 的 结果应无遗漏、无 重复;③零是整数,但零既不是正数, 也不是负数.
西宁
兰州
小雪
小雪
5
3
-4
-3
银川
西安
小雪
小雨
0
16
-3
7
财富全球500强中的主要零售企业
排名 2 46 66 111 120 153 184 公司 沃尔玛 麦德龙 家乐福 特斯科 洋华堂 大荣 佳士客 年收入 166809.0 46663.6 39855.7 30351.9 28670.9 25230.1 22451.3 利润 5377.0 295.1 805.6 1088.4 423.6 -195.2 -25.2 雇员人数 1140000 171440 297290 134896 97040 47953 34375 单位:百万美元
(2)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈, 那么沿顺时针方向转了12圈表示___。 (3)小明在某个路口,以规定方向以向东为正,向西为负,如果
-20
-12
+100 他向东走了100m,则可表示为__ ;如果向西走了150m,则
-150 向西走了50m 可表示为 ___;如果他走了-50m,则表示______ , 向东走了200m 如果走了+200m,则表示__ ______;如果小明先向西
课堂小结
1、正数与负数都来自于实际生活;用正、负数可 以表示实际问题中具有相反意义的量,例如„ 2、小学里学过的数除0外都是正数;正数前面添 上“-”号的数是负数;0既不是正数,也不是负 数,它表示正、负数的界限。 3、有理数的分类方法不是唯一的,可以按整数和 分数分成两大类,也可以按正有理数、零、负有 理数分成三大类。 4、我学得怎样?
练一练:
填空: )汽(1车在一条南北走向的高速公路上行驶,规定 向北行驶的路程为正。汽车向北行驶75km,记做 ______km(或____km),汽车向南行驶100km, +75 75 记做________km; -100 (2)如果向银行存入50元记为50元,那么-30.50元 从银行取出30.50元 表示______________________; 25% (3)规定增加的百分比为正,增加25%记做_______, -12%表示___________。 减少12%
练习:下表是某日上海发行的部分债券行 情表,试说明各债券当天涨跌情况。
名称 99国债 (1) +0.01 99国债 (2) -0.05 99国债 (3) -1.24 01通化债券 01三峡债券
涨跌/元
+0.15
-2.01
涨0.01元 跌0.05元 99国债(1)__________;99国债(2)_________; 跌1.24元 涨0.15元 99国债(3)__________;01通化债券________; 跌2.01元 01三峡债券___________.
进一步理解:
1.形如8,2.6,150„„„这样的数叫做正数。 正数
> _ 0 (用“<”“>”“=”填空)
2.在正数前面加上“-”号的数叫做负数,
形如-8,-2.6,-150„„
负数
_ < 0(用“<”“>”“=”填空)
3.0 既不是正数,也不是负数.
记住啦!
我们学过的数中又来新成员了:
1 2, 3, 称为负整数; , 1 2 5 , , , 称为负分数; 2 3 4 相应的, , 称为正整数; 1 2 3, , 1 2 5 , , , 称为正分数。 2 3 4
资料来源:2002年《财富》全球500统计
想一想:
生活中的“+”“-”的 关系? “+”“-”表示具有相 反的量ຫໍສະໝຸດ 你能列举一些相反意义的量吗?
日常生活中,常会遇到的一些相反意义的量: (1)汽车向东行驶3千米。向西行驶1千米 (2)某超市买进水果100公斤,卖出90公斤 (3)某天的最低气温是零下6°C,最高气温是 零上7°C (4)小亮家今年上半年的收入是14200元,支 出4745元 (5)某粮店运进粮食1200千克,运出粮食800千克
获得新知
零上与零下 盈利与亏损 加分与扣分 高出与低于 具有相反意义的量
具有相反意义的量:上升与下降、增与减、收入 与支出、胜与负、进与退、多与少、盈利与亏损 向东与向西、顺与逆、过剩与不足、重与轻等
用正数和负数可以表示具有相反意义的量
练习:
(1) 在知识竞赛中,如果用+10 分表示加10分,
那么扣20分表示___。
17 3 -8.44,22,+ ,0.33,0,,-9 6 5 17 解: 22 , + 6 , 0.33是正数
; 3 -8.4 , - , -9 是负数; 5 22 , 0, -9 是整数;
3 17 -8.4 , + , 0.33 , 是分数; 6 5
以上所给各数均为有理数.
练习1、判断表中各数分别是什么数,在相应的空格内打 “√”。
正整数 整数 分数 正数 负数 有理数
2003
4 3
√
√
√
√
√
√
√
√
√
√
-4.9 0
√
√
√
√ √
-12
练习2:把下列各数分类,并填在表示 相应 集合的大括号里:
-11,4,8.6,+12,-6.4,
2 ,π,0, 7
0. 4
3 27 , 3 5
…} …} …} …} …}
整数集合 { 分数集合 { 正整数集合{ 负整数集合{ 正分数集合{
1.零是整数吗?自然数一定是整 数吗?自然数一定是正整数吗?整 数一定是自然数吗?
零是整数;自然数一定是整数;自 然数不一定是正整数,因为零也是 自然数;整数不一定是自然数,因 为负整数不是自然数。
2.如果一个数是非负数(不是负数), 正数或零 那么这数可能是________________.
3.如果一个是非正数(不是正数),那么
用小学学过的数能表示下列数吗
零上5º C
零下5º C
用 小 学 学 过 的 数 能 表 示 下 列 数 吗
0
数
怎么不够用了?
第二章 有理数及其运算
某班进行知识竞赛, 评分标准是答对一 题加10分,答错一 题扣10分,不答不 得分;每一个队的 基础分都是0分
加 10 分
第二题 第三题 第四题
扣 10 分