医学影像物理学课件
医学影像物理学课件
US影像的处理主要包括图像增强、滤波、数字化存储和传输 等。通过对US影像进行处理,可以提高图像质量、降低噪声 干扰、突出显示病变等。
03
医学影像的质量与评价
医学影像的质量标准
1 2
空间分辨率
指影像中可分辨的相邻两个物体质点间的最小 距离,是衡量影像质量的重要参数。
对比度分辨率
双盲法评价
采用双盲法进行评价,即评价人员不知道影像的具体信息,只对其质量进行评估。这种方 法可减少评价的主观性和误差。
04
医学影像的安全与防护
医学影像的安全操作规程
操作前必须进行安全检查,确保设备 正常运行,无安全隐患。
操作过程中,必须严格遵守安全操作规程 ,避免因不当操作造成的意外伤害。
操作后应及时清理设备及周围环境 ,确保整洁、卫生。
选用高质量的教材和参考书籍,注重 实用性和科学性,同时加强与实际应 用的结合。
03
教学方法
采用多种教学方法,如课堂讲解、案 例分析、小组讨论等,以激发学生的 学习兴趣和思维能力。
医学影像的培训制度及内容
培训制度
制定医学影像专业人员的培训制度,包括岗前培训、在岗培训和脱产培训等 ,确保从业人员具备必要的专业素质。
03
此外,医学影像物理学还为医学诊断和治疗提供了重要的物理技术支持,如放 射治疗、光子治疗等物理治疗方法。
02
医学影像的生成与处理
X线影像的生成与处理
X线影像的生成原理
X线是一种电磁波,具有穿透性,可以穿过人体组织并被记录下来。X线影像 的生成主要是通过X线管产生的X线投射到人体上,然后通过荧光屏或数字化 探测器将X线转化为可见光图像。
辐射防护措施及安全教育
对辐射源进行严格管理,确保安全存放和使用。
最新医学影像物理学 放射性核素显像精品课件
N2(t)12 N10[1e2t]
A2(t)A 1(01e2t)
13
第十三页,编辑于星期六:十一点 二十八分。
例题 目前核医学临床最常用的核素发生器99Mo99mTc,99Mo半
衰期66.02h,99mTc半衰期6.02 h,
(1) 试计算99mTc的数目N2达到最大值N2m的时间tm, (2) N1(t)、N2(t)、A1(t)、A2(t)随时间的变化规律。
16
第十六页,编辑于星期六:十一点 二十八分。
17
第十七页,编辑于星期六:十一点 二十八分。
• 放射性核素发生器- Mo-Tc母牛
18
第十八页,编辑于星期六:十一点 二十八分。
99Mo的衰变与99mTc的生长
时间(h) 99Mo的衰变活度(GBq) 99mTc的生长活度(GBq)
0
100
0
1
吸入放射性气体或气溶胶可使呼吸道、肺泡显影。
◆“弹丸”式静脉注入显像剂,通过心肺循环通道而获得
大血管、心房、心室影像(放射性核素心血管造影)
◆显像剂随血流从动脉向相应脏器血管床灌注时即可 获得该脏器的动脉灌注影像。同时还可获得大血管、 心脏和各脏器的血池影像,检出血液丰富的病变部位。
④ ……⑤ ……⑥ ……⑦ …… ⑧ ……⑨ …… ⑩ …… 不一一 列举。
最新医学影像物理学 放射性 核素显像精品课件
第一页,编辑于星期六:十一点 二十八分。
第四节
核素的产生和显像机制
2
第二页,编辑于星期六:十一点 二十八分。
一、医用放射性核素的制备原理 1、核素产生方式 ① 核反应堆 (reactor)和原子核裂变产物 ②加速器 (accelerator) ③放射性核素发生器
放射物理学PPT课件
立体定向适形放射治疗 立体定向适形放射治疗是一种精确的放射治疗技术,
在肿瘤靶体积受到高剂量照射的同时,其肿瘤靶体 积以外的正常组织则受到较低剂量的照射。
CT扫描机激光 定位系统
第30页/共47页
适形治疗(Conformal Therapy)是一种提高治疗增益的较为有效的物理措施。适形放射治 疗为一种治疗技术,使得:高剂量区的形状在三维方向上与靶区(病变)的形状一致。 从这个意义上讲,学术界将它称为三维适形放射治疗(3DCRT)
A第射32野页形/共状47适页 形
B射野内强度调节
适形放射治疗的分类 经典适形放射治疗 (Classical Conformal Radiation Therapy) 只满足第一个必要条件 调强适形放射治疗 (Intensity--Modulated Radiation Therapy, IMRT) 同时满足两个必要条件
第1页/共47页
➢ 约60-70%的恶性肿瘤病人在病程中的某一阶段要使用放疗。 ➢ 放疗疗效肯定,据1998年WHO统计, 目前有45%的恶性肿瘤可以治愈(手术
治愈22%,放疗治愈18%,化疗治愈5%)。
第2页/共47页
✓ 口咽、舌根、扁桃体癌的放疗治愈: 37%~53%,
✓ 上颌窦、鼻腔筛窦癌:
• 晚期癌症病人有明显的恶病质,如消瘦、脱水、营养状 况极差,无法进行放疗者可作为绝对禁忌证。
• 食管癌已穿孔,腔内合并大量积液,肺癌合并大量癌性 胸水,肝癌合并大量腹水等均应作为禁忌证。
• 对放射线不敏感的肿瘤,如软组织肉瘤:纤维肉瘤、平 滑肌肉瘤、横纹肌肉瘤、脂肪肉瘤、滑膜肉瘤、成骨肉 瘤、神经纤维肉瘤及黑色素瘤等应视为相对的禁忌证。 一般不做放疗。
医学影像学ppt课件ppt课件
*
*
*
碘 剂 有机碘制剂: 用途:血管,胆道,胆囊,泌尿造影及CT增强 排泄:经肝或肾,从胆道或泌尿道排出 类型:离 子 型:副作用大,过敏反应多,价格低 非离子型:低渗,低粘度,低毒性,高费用 无机碘制剂:用于气管,输尿管,膀胱造影等 如碘化油、碘化钠等
*
DSA的临床应用
特别适用于心脏大血管检查 了解心内解剖结构异常 观察大血管病变:主动脉夹层、主动脉瘤 主动脉缩窄、主动脉发育异常等 显示冠状动脉、头部及颈部动脉病变
*
*
*
*
2、X线的特性 波长:0.0006~50nm X线诊断常用波长:0.008~0.031nm 与X线成像相关的特性: 穿透性 荧光效应 感光效应 电离效应 (生物效应)
影像诊断学
X线,放射诊断学 超声成像 (Ultrasonography:US) 核素显像:包括 γ闪烁成像 发射体层成像( Emission Computed Tomography,ECT ) 单光子发射体层成像(SPECT ) 正电子发射体层成像(PET ) CT (Computed Tomography) MRI (Magnetic Resonance Imaging)
与成像相关的特性 穿 透 性:能穿透可见光不能穿透的各种不同密度物体,此为X线成像的基础(吸收与衰减,穿透与管电压,厚度与密度) 荧光效应:能激发荧光物质发出可见光,此为X线透视的基础 摄影效应:能使涂有溴化银的胶片感光并形成潜影,以显定影处理产生黑、白图像。此为X线摄影的基础 电离效应:X线通过任何物质都可产生电离效应,此为X线防护和放射治疗的基础
最新医学影像物理学(第3版绪论教学讲义ppt课件
16
二、医学影像物理学在医学影像学中的作用
(4)超声影像学中的开拓者
埃尔·居里和雅克·居里发现压电效应 压电效应的发现成为超声探头的基础,为超声医学 的建立提供了理论依据
朗之万 医学超声影像的奠基人
绪论
17
二、医学影像物理学在医学影像学中的作用
(5)红外线影像中的开拓者
赫歇尔发现了红外 维恩发现了热辐射定律 刘忠齐开创了热断层成像系统 热断层成像是近十年来世界物理技术领域的重要突破
第一张人体X光片
德国物理学家伦琴
绪论
10
二、医学影像物理学在医学影像学中的作用
(2)磁共振影像中的开拓者
菲利克斯·布洛赫和爱德华·普塞尔第一个核磁共振实验
布洛赫 USA 斯坦福大学
1 9 5 2 年 诺 贝 尔 物 理 学 奖
珀塞尔 USA
坎伯利基哈佛大学
绪论
11
二、医学影像物理学在医学影像学中的作用
绪论
4
绪论
5
绪论
6
绪论
7
一、医学影像物理学的主要内容
3.医学图像质量保证和控制的物理原理
医学图像是对人体内部情况的可视化表达 获得的医学图像应该是人体真实情况的反演 必须准确地反演人体内部的各种信息(解剖、生理、心理) 通过成像设备得到的人体信息夹带了各种噪声和伪影 需要消除或有效控制
绪论
(2)磁共振影像中的开拓者 2003年诺贝尔医学或生理学奖获得者
美国科学家保罗·劳特伯 尔
英国科学家彼德·曼斯菲尔德
绪论
12
二、医学影像物理学在医学影像学中的作用
(2)磁共振影像中的开拓者 1991年诺贝尔化学奖
恩斯特R.R.Ernst 瑞士物理化学家
医学影像物理学
医学影像物理学需要与生物学、医学、工程学等多个学科进行交 叉合作,共同推动医学影像技术的发展和应用。
THANK YOU.
X线医学影像的获取与处理
X线医学影像的获取
通过X线照射人体,并用相应的接收器(如荧光屏、胶片)接收穿过人体的X 线,从而获得人体内部的二维图像。
X线医学影像的处理
为了提高图像的清晰度和诊断的准确性,需要对获取的X线医学影像进行一系 列的处理,如放大、滤波、增强等。
03
MRI医学影像原理
MRI的基本原理与技术
医学影像的质量控制与优化
医学影像物理学还涉及影像质量的控制和优化,以确保 诊断的准确性和可靠性。
医学影像物理学在放射治疗中的应用
放射治疗技术
放射治疗是利用高能射线杀死肿瘤细胞,医学影像物理学在放 射治疗中应用广泛,如CT模拟定位、剂量计算等。
放射物理剂量学
剂量学是研究辐射对生物体作用的科学,涉及辐射剂量计算、测 量和校准等。
2023
《医学影像物理学》
目录
• 医学影像物理学概述 • X线医学影像原理 • MRI医学影像原理 • CT医学影像原理 • 医学影像物理学的应用与发展趋势
01
医学影像物理学概述
医学影像物理学的定义
医学影像物理学是物理学与医学的交叉学科,旨在研究和应 用医学影像技术的物理学原理和方法。
它涉及从X射线、超声、核磁共振到光学成像等各种医学影像 技术的物理基础和应用。
05
医学影像物理学的应用与发展趋势
医学影像物理学在临床诊断中的应用
放射学与医学影像
医学影像物理学在放射学中有着广泛的应用,包括X射线 、CT、MRI、超声等影像技术的物理学原理和应用。
2024版《医学影像技术PPT课件》[1]
无创性检查
实时监测与评估
医学影像技术能够实时监测病情变化 和治疗效果,为医生制定治疗方案提 供依据。
大部分医学影像技术都是无创或微创 的,能够减少患者的痛苦和不适。
2024/1/26
5
医学影像技术分类及应用领域
X射线成像
磁共振成像(MRI)
2024/1/26
6
2024/1/26
02
CATALOGUE
X线检查技术
7
X线成像原理及特点
2024/1/26
X线成像原理
利用X射线的穿透性、荧光效应和 感光效应,使人体内部结构在荧光 屏或胶片上形成影像。
X线成像特点
具有较高的空间分辨率和对比度分 辨率,能够清晰显示骨骼、钙化灶 等硬组织结构。
定义
医学影像技术是利用各种物理学原理, 通过特定的成像设备获取人体内部组 织、器官的结构和功能信息,以图像 形式表达出来的技术。
发展历程
从早期的X射线成像到现代的CT、MRI、 超声、核医学等多种成像技术,医学影 像技术经历了不断的发展和创新。
2024/1/26
4
医学影像技术重要性
提高疾病诊断准确性
2024/1/26
27
核医学诊断优缺点分析
要点一
高灵敏度
能够检测到极低浓度的放射性核素,从而实现对疾病的早期 诊断。
要点二
无创伤性
无需开刀或穿刺等创伤性操作,减轻了患者的痛苦和不适。
2024/1/26
28
核医学诊断优缺点分析
2024/1/26
• 可定量分析:通过对放射性核素的定量测量,可以 对疾病进行准确的诊断和评估。 29
《医学影像学》课件
超声诊断仪
利用超声波在人体内传播并形 成图像。
核磁共振仪
产生磁场和射频脉冲,对人体 进行共振并形成图像。
计算机断层扫描仪
利用X线扫描人体,并通过计 算机技术重建图像。
医学影像学成像技术
X线平片
血管造影
超声心动图
核医学成像
利用X线机对人体进行平 面成像。
通过向血管内注射造影 剂,利用X线或超声波进
行血管成像。
MRI具有高分辨率、多平面成像的特点,对软组织的 显示效果较好。
MRI可用于观察神经系统、肌肉、关节等部位的病变 。
超声诊断技术
02
01
03
超声诊断技术是利用超声波的回声成像原理,显示人 体内部结构的影像。
超声检查具有无创、无痛、无辐射的特点,适用于孕 妇和儿童的检查。
超声可用于观察腹部脏器、妇产科、心血管系统等部 位的病变。
变和解剖结构。
深度学习在医学影像诊断中的应用
02
利用深度学习算法自动识别和分析医学影像,提高诊断准确率
。
光学分子成像技术
03
利用荧光标记和光成像技术,在体内实时观察疾病发展和药物
作用。
医学影像学未来发展趋势
更高清、更立体的成像技术
如超高清MRI和CT,以及光学分子成像的进一步发展。
智能化和自动化诊断
《医学影像学》PPT课件
目
CONTENCT
录
• 医学影像学概述 • 医学影像学基础知识 • 医学影像学诊断技术 • 医学影像学临床应用 • 医学影像学新技术与展望
01
医学影像学概述
医学影像学的定义与分类
医学影像学定义
医学影像学是一门通过非侵入性方法获取人体内部结构和功能信 息的学科。它利用各种成像技术,如X射线、超声、磁共振成像等 ,为临床诊断和治疗提供重要依据。
医学影像物理学课件:07yj-X-ray CT02
1 N
N i 1
pi ( xr ) |xr r cos( )
1 N
N
pi[r cos( )]
i 1
1
N i 1
pi[r cos(
)]
f (r, ) 1
0 p [r cos( )]d
将
pn (xr ) [r cos( n )]
代入
f (r, ) 1
0 p [r cos( )]d
Simple Model
Mathematic Expression of Back
Projection
投影值:
p (R, ) (x, y) (x cos y sin R)dxdy
某一角度的反投影
b (x, y) p (R, ) (x cos y sin R)dR
反投影获得的图像
b
h(r, ) 1
1
1 1
r sin( 0 ) r
h(x, y) 1
x2 y2
f (x, y) (x, y)**h(x, y)
相应于反投影重建算法的系统,其点扩展函数不是Dirac 函数,不是完美系统。
解析法
• Fourier Transform • Filtered Back Projection
a2R2
Back Projection Imaging System
取投影
反投影
图像重建
Dirac函数
反投影成像系统
冲激函数h(x,y)
扫描方式:旋转+平移 射线先平行移动,从物体的一侧到另一侧;
然后旋转一个角度,再作平行移动,之后又旋转一个角 度,直到完成半周。
Character: Blur column (star) shadow
医学影像检查技术学课件ppt课件
定义与发展历程定义发展历程从X射线的发现到计算机断层扫描(CT)、磁共振成像(MRI)、超声成像(US)、核医学成像(NM)等多种技术的不断涌现和发展。
医学影像检查技术分类医学影像检查技术重要性提高疾病诊断准确性无创性检查辅助治疗和手术规划促进医学研究和教学X 线成像原理X 线设备设备性能参数030201X 线成像原理及设备包括透视和摄片,用于骨骼、胸部、腹部等部位的初步检查。
普通X 线检查计算机X 线摄影(CR )数字X 线摄影(DR )造影检查采用影像板代替胶片接收X 线,经处理后形成数字图像,具有更高的灵敏度和分辨率。
直接将X 线转化为数字信号,成像速度更快,图像质量更高。
通过引入造影剂,增加病变与正常组织间的对比度,如钡餐造影、静脉肾盂造影等。
常见X 线检查方法及应用X线检查优缺点及注意事项优点缺点注意事项严格掌握适应症和禁忌症。
控制辐射剂量,保护患者和工作人员安全。
01 02CT成像原理及设备CT成像原理CT设备构成CT设备类型常见CT检查方法及应用常规CT检查方法,用于发现病变和评估病情。
通过静脉注射造影剂,提高病变与正常组织的对比度,用于更准确地诊断疾病。
分别用于评估动脉和静脉血管病变,可显示血管狭窄、闭塞、动脉瘤等病变。
用于评估局部组织血流灌注情况,可应用于脑梗死、肿瘤等疾病的诊断。
平扫CT增强CT CTA/CTV CT灌注成像缺点有辐射性,需控制检查次数和剂量;对碘造影剂过敏者禁用增强CT 检查;价格相对较高。
优点分辨率高,可显示细微结构;检查速度快,适合急诊患者;可进行三维重建,多角度观察病变。
注意事项检查前需去除金属物品,避免伪影干扰;增强CT 检查前需禁食4小时以上;检查后需观察30分钟,确保无造影剂过敏反应。
CT 检查优缺点及注意事项MRI成像原理及设备MRI 设备组成MRI成像原理包括主磁体、梯度系统、射频系统、计算机系统及其他辅助设备等。
MRI设备分类常见MRI检查方法及应用常见MRI检查方法MRI应用MRI检查优缺点及注意事项优点01缺点02注意事项03超声成像原理及设备超声成像原理超声设备A型超声B型超声M型超声多普勒超声常见超声检查方法及应用超声检查优缺点及注意事项优点缺点注意事项核医学成像原理及设备核医学成像原理利用放射性核素标记的示踪技术,通过探测放射性核素在生物体内的分布和代谢情况,从而获得生物体内部结构和功能信息。
医学影像物理学实验课件
按照实验要求,操作相应 的影像技术设备,采集人 体组织或器官的影像数据 。
3. 数据处理和 分析
对采集到的影像数据进行 处理和分析,提取有用的 信息,如组织形态、血流 情况等。
4. 结合临床信 息进行…
将处理和分析后的影像数 据与临床病史、体检结果 等信息相结合,进行疾病 诊断和评估。
5. 整理实验结 果和报告
超声是利用声波在人体组织中的反射和 传播,将回波信号转化为图像。
MRI是利用磁场和射频脉冲,使人体内 的氢原子发生共振,根据共振信号重建 图像。
X线机是利用X射线穿透人体组织,不同 组织对X射线的吸收程度不同,从而获得 人体内部结构的影像。
CT是利用X射线旋转扫描人体,通过计 算机重建断层图像,显示人体内部结构 的细节。
实验步骤与操作
01
02
03
04
05
1. 准备实验器 材
医学影像设备、模拟人体 模型、测量工具等。
2. 观察和理解 设备的…
观察设备的外观和内部结 构,理解其工作原理和操 作流程。
3. 操作设备
根据设备的操作说明,进 行操作练习,包括设备的 开机、关机、调整参数、 获取图像等。
4. 记录实验数 据
记录所获得的图像和实验 数据,进行分析和处理。
实验三:医学影像诊断实验
实验目的
掌握医学影像诊断的基本原理和方法。 熟悉医学影像诊断的实验技术和操作流程。
了解医学影像诊断在临床实践中的应用和意义。
实验原理
医学影像诊断是指通过各种影像技术获取人体内部结构和功能的信息, 结合临床病史、体检结果等其他信息,对疾病进行诊断、评估和治疗的 过程。
实验中涉及的影像技术包括X线、超声、核磁共振(MRI)和计算机断 层扫描(CT)等。
《医学物理学》课件--X射线
X射线的产生
1 2
电子与靶物质相互作用
X射线可以通过电子与靶物质相互作用产生,电 子在靶物质中减速并损失能量,从而辐射出X射 线。
特征谱线
X射线具有特征谱线,根据其波长可以对其进行 分类和标识。
3
产生装置
X射线产生装置通常包括电子枪、靶物质和加速 器,电子枪产生电子束打到靶物质上,产生X射 线。
02
介入治疗
在X射线透视的引导下,通过导管等医疗器械进入人体内部, 对疾病进行治疗。
06
实验操作与演示
X射线实验操作步骤与演示
步骤1
步骤2
步骤3
步骤4
准备实验器材,包括X射线管、 电源、控制开关、探测器等。
将X射线管连接到电源,并调整 电压至适当值。
将探测器放置在X射线管的一侧 ,并将控制开关打开。
X射线的基本物理概念
原子结构与X射线产生
原子结构
X射线是由原子内层电子跃迁时释放的能量,具有极短波长和较高能量的电 磁波
X射线ቤተ መጻሕፍቲ ባይዱ生
X射线产生方式包括天然放射性衰变和人工辐射,人工辐射包括X射线管和粒 子加速器
X射线的波动性
光的波动性
X射线具有波动性,其传播方向和振动方向与传播方向垂直
衍射
X射线具有波的特性,可以发生衍射现象,通过晶体产生干涉和衍射现象
X射线在医学诊断中广泛应用于CT、 X射线摄影、乳腺摄影等,利用人体 不同组织对X射线的吸收程度不同, 获取人体内部结构和病变信息。
要点三
其他应用
X射线衍射还可应用于材料科学、化 学、环境科学等领域,如分析材料微 观结构、研究化学反应历程等。
05
X射线在医学中的应用
X射线在医学影像中的应用
《医学物理学》课件
2023《医学物理学》课件CATALOGUE目录•《医学物理学》概述•《医学物理学》的基本概念•《医学物理学》在医学中的应用•《医学物理学》的前沿技术与发展趋势•《医学物理学》的学习方法和难点01《医学物理学》概述《医学物理学》定义与特点医学物理学是物理学和医学的交叉学科主要研究物理学的理论、技术和方法在医学中的应用具有系统性、精确性、预测性和可控性的特点《医学物理学》的发展历程古代至19世纪末:医学与物理学的独立发展20世纪初至二战:医学物理学全面发展期19世纪末至20世纪初:医学物理学初创期二战后至今:医学物理学跨越式发展期《医学物理学》的应用领域医学仪器与设备的质量控制和安全性评估药物研发与制备临床医学与康复工程诊断与治疗设备医学图像和信号处理02《医学物理学》的基本概念总结词基础、重要详细描述医学物理学中的力学主要研究人体运动和器官的力学性质,包括静力学、动力学、弹性力学、流体力学等。
力学在医学中的应用非常广泛,如人体脊柱的生物力学、骨折的治疗、牙齿的修复等。
医学物理学中的力学总结词基础、实用详细描述医学物理学中的电磁学主要研究电磁现象在医学领域中的应用,包括电磁辐射、电磁感应、电磁波的生物效应等。
电磁学在医学中的应用非常广泛,如医学影像、心电图、磁性药物等。
医学物理学中的电磁学总结词基础、重要详细描述医学物理学中的光学主要研究光的性质、传播和相互作用,包括光的折射、全反射、干涉、衍射等。
光学在医学中的应用非常广泛,如内窥镜、激光治疗、光谱分析等。
医学物理学中的光学总结词深入、特殊详细描述医学物理学中的核物理学主要研究原子核和放射性衰变等核现象,包括放射性衰变、射线检测、放射性同位素等。
核物理学在医学中的应用包括放射性治疗、放射性诊断、核磁共振等。
医学物理学中的核物理学总结词基础、实用详细描述医学物理学中的热力学主要研究热现象和热力学定律在医学领域中的应用,包括温度、热量、熵、热力学定律等。
医学影像物理学课件
随着医学影像技术的不断发展,医学影像物理学在医学领域 中发挥着越来越重要的作用。通过对医学影像的深入分析和 解读,能够为医生提供更为准确和可靠的诊断信息,提高诊 疗质量和效率。
医学影像物理学的发展历程
01
早期阶段
医学影像物理学起源于X射线的发现和应用。19世纪末,德国物理学家
伦琴发现了X射线,随后X射线被广泛应用于医学领域,成为最早的医
技术创新和应用拓展
随着科技的不断发展,医学影像物理学将不断涌现出新的技术和方法。例如,人工智能、 深度学习等技术在医学影像分析中的应用将越来越广泛。同时,医学影像技术的应用范围 也将不断拓展,从诊断到治疗,从内科到外科,都将得到更广泛的应用。
多模态医学影像技术
多模态医学影像技术是未来发展的重要方向之一。通过融合多种医学影像技术,可以更全 面地了解患者的病情,提高诊断和治疗的准确性和可靠性。例如,将X射线、MRI和超声 等技术相结合,可以实现更精准的定位和诊断。
图像质量评价
采用客观和主观评价方法,对医学影 像的分辨率、对比度、均匀性等进行 评估。ห้องสมุดไป่ตู้
医学影像的辐射防护与安全
辐射防护原则
遵循ALARA原则,即“尽可能低的合理程度”,减少患者和医务人员的辐射暴露。
安全措施
包括屏蔽防护、时间防护、距离防护等,以及限制对敏感器官的照射。
04
医学影像物理学中的挑战与未 来发展
学影像技术。
02
发展阶段
随着科技的不断进步,医学影像技术也不断发展。20世纪中期,超声、
核磁共振等技术相继问世,为医学影像物理学的发展带来了新的机遇和
挑战。
03
现代阶段
进入21世纪,医学影像物理学进入了一个全新的发展阶段。数字化成像
医学影像学ppt课件
contents
目录
• 医学影像学概述 • 医学影像学的基本原理 • 医学影像学的检查技术 • 医学影像学的诊断与治疗 • 医学影像学的未来发展趋势 • 医学影像学案例分析
01
医学影像学概述
医学影像学的定义
医学影像学是利用各种医学影像技术 如X线、超声、核磁共振等来观察、 分析和解释人体内部结构和器官的形 态及功能的一门学科。
脑梗死的MRI影像表现
总结词
脑梗死的MRI影像表现主要包括缺血性脑 梗死和出血性脑梗死两种类型,各有不 同的影像表现特点。
VS
详细描述
缺血性脑梗死是脑梗死的主要类型之一, MRI影像表现为局部脑组织缺血性改变, 病灶边界不清,信号强度降低。随着病情 发展,缺血区可出现脑水肿和占位效应。 出血性脑梗死是指在缺血性脑梗死的基础 上发生出血,MRI影像表现为缺血性改变 合并局部出血,病灶边界不清,信号不均 。
06
医学影像学案例分析
肺癌的CT影像表现
要点一
总结词
肺癌的CT影像表现主要包括肿瘤边界不清、周围炎症反应 、胸膜凹陷征等。
要点二
详细描述
肺癌的CT影像表现具有多种特征性表现。首先,肿瘤边界 通常不清,与周围组织分界模糊,这反映了肿瘤的浸润性 和恶性程度。其次,周围炎症反应也是肺癌常见的CT表现 之一,表现为肺门淋巴结肿大和肺部炎症浸润。此外,胸 膜凹陷征也是肺癌的典型表现之一,表现为肿瘤与胸膜之 间的三角形或喇叭口状阴影,提示肿瘤可能侵犯胸膜。
CT检查技术可用于全身各个部位的检 查,如头部、胸部、腹部、骨骼等,可 以显示病变的形态、大小、密度等信息
。
CT检查的优点在于对软组织的显示能 力较强,能够发现较小的病变,但价格
医学影像学-- PN结 ppt课件
U U
U
1). 正向特性 当U>0,即处于正 向特性区域。正向区 又分为两段: 当0<U<Uth时, 正向电流为零,Uth称 为死区电压或开启电 压。 当U>Uth时,开始 出现正向电流,并按 指数规律增长。
硅二极管的死区电压Uth=0.5 V左右, 锗二极管的死区电压Uth=0.1 V左右。
PPT课件 19
U UT
qU KT
U U B : 击穿特性
UB
PPT课件
15
4、PN结的击穿 当反向电压超过一定值时,PN结会出现击穿,此时 反向电流剧增,反向电流开始剧增的电压称为 反向击穿电压. 1)齐纳击穿: 内电场的强作用下,束缚电子被直接从 共价键中拉出来,形成电子空穴对,而产生大量的载 流子,加强了漂移运动,出现击穿.本质是场致激发.<5 2)雪崩击穿: 内电场的强作用下,在结内作漂移运动的少
数载流子,受到电场的加速作用可获得很大的能量.它与结 内原子碰撞时,使原子的价电子摆脱束缚状态而形成电子 空穴对.新生的电子、空穴对再去碰撞其它原子,产生更 多的电子、空穴对。使载流子数剧增。反向电流迅速增大, 出现击穿。本质是碰撞电离。>8v 注意:出现击穿,PN结并不一定坏了,只有超过允 16 PPT课件 许值时,才烧毁。
UBR
U
从击穿的机理上看,硅二极管若|UBR|≥7V时,主要是 雪崩击穿;若UBR≤4V则主要是齐纳击穿,当在4V~7V 之间两种击穿都有,有可能获得零温度系数点。
7
PN结形成小结
1)PN 型半导体特点 2)两种载流子及两种运动形式 3)空间电荷区形成 4)内电场 5)PN 结形成
PPT课件
8
PN结单向导电性引言: PN结具有单向导电性,若外加电压使电流从P 区流到N区,PN结呈低阻性,所以电流大;反 之是高阻性,电流小。 如果外加电压使: PN结P区的电位高于N区的电位称为加正向 电压,简称正偏; PN结P区的电位低于N区的电位称为加反向 电压,简称反偏。
医学影像学ppt课件
第一篇 总 论
第二临床学院放射学诊断教研室
xx院
影像学的概况
1895年德国物理学家伦琴发现X线, X线即用于了 对人体疾病的诊断,形成了放射诊断学(diagnostic radiology),放射诊断学是医学影像学基础,至今仍是 医学影像学的重要内容
xx院
20世纪70年代是以CT为代表的一系列计算 机辅助成象装置的发明,包括MRI、USG、DSA、 ECT、PET等,形成包括放射诊断的影像诊断学。
的。X线的特性 X线属电磁波。成像波长0.031~ 0.008nm,是不可 见光
·穿透性 X线具有强穿透力,其穿透力和电压与物体密度有关。
是X线成像的基础。 ·荧光效应 X线激发荧光物质,转变成可见的荧光,称荧光效应。 ·感光效应 X线照射涂有溴化银的胶片,感光而产生潜影,经化
学处理,将银离子转化成金属银。是X线摄影的基础 。 ·电离效应 X线通过任何物质都可产生电离效应。X线射入人体,
• 根据各种方法的适应证、禁忌 证和优缺点结合临床的需要,选 择首选方法
• 选择安全、准确、简便而经济 的方法
• 先普通再特殊
xx院
xx院
X线诊断的临床应用
从伦琴1895年12月22日第一张X线片以来,X线用于诊断有一 个世纪。在医学影像学发生巨大变化的今天,X线所具有的成像 清晰、经济、简便仍是影像诊断中使用最多和最基本的方法。在 许多方面是首选,是不能取代的。
了解异常图像的病理基础和临床意义
不同的成像技术在诊断中都有自己的优势和不足,选择一种或几种
成像手段,进行诊断
影像诊断是肯定的, 但是对疾病诊断还有一定的限度,要结合临床
资,相互印证
介入放射学有自身特点
xx院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
普通X射线影像
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
灯丝
电子束 靶
玻壳
阴极
X光
医学影像物理学课件
阳极
第一章 普通X射线影像
X射线管的特性
产生X射线的条件 电子源 受电子轰击能发出X射线的靶 加速电子的强电场 高度真空的环境
医学影像物理学课件
第一章 普通X射线影像
低能X射线与物质作用的主要形式
光电效应(photoelectric effect) 康普顿散射(Compton scattering) 电子对效应(electric pair effect)
医学影像物理学课件
第一章 普通X射线影像
X射线在介质中的衰减
光电效应
X光子
+
产生条件:入射光
子的能量大于原子
σ=(ΔI / I )/( N • x )
量转移面积
式中 I0 - 入射强度 I - 出射强度
入射光子与原子核周围电场相互作 用将全部能量转化为一对正负电子 在医学影像使用的X射线能量较小 光电效应为主而电子对效应不发生
医学影像物理学课件
第一章 普通X射线影像
X射线在介质中的衰减
作用概率η与作用截面σ 入射光子通过靶
每一靶粒子 对入射光子 的有效的能
η = -ΔI / I0
时与靶粒子相互 作用的发生概率
物体
f
d
医学影像物理学课件
半影造成 影像边缘 模糊不清
半影 胶片
第一章 普通X射线影像
X射线管的特性
半影 P 的大小
P=dS/(f–d)
式中 d 为物体和胶片的距离 S 为有效焦点的面积 f 为光源与胶片的距离
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
X射线管的容量 管球由热承受力决定的最大负荷量
医学影像物理学
选用教材:张泽宝主编《医学影像物理学》 课程类型:选修课(1学分) 学时安排:15学时(每周3学时) 授课教师:杨 栋(抗癌研究中心)
医学影像物理学课件
医学影像学
物理学
设备学
诊断学
电子学
检查学
医学影像物理学课件
基本技术路线
电离辐射 非电离辐射
探测 对象
医学影像物理学课件
成像信息 数字化处理
影响容量的因素 实际焦点/管电压电流/开机时间/冷却
医学影像物理学课件
第一章 普通X射线影像
X射线辐射场的空间分布
X射线的物理性质 波长极短不可见 不受电磁场影响 具很强贯穿本领 照射物体发荧光 使原子产生电离 引发光化学反应
医学影像物理学课件
第一章 普通X射线影像
X射线辐射场的空间分布
单色X射线的强度
X射线管的特性
内层电子
+
碰撞损失
高速 电子
collisionloss
热能
辐射损失
外层 电子
radiationloss
原子核
医学影像物理学课件
X射线
第一章 普通X射线影像
X射线管的特性
轫致辐射(bremsstrahlung)
高速电子从原子核附近 强电场飞过引发的辐射
+
ΔE = hv
轫致辐射产生连续X光谱
λmin = 12.4 / U(nm)
λmin 的数值仅与管电压U 有关
不受其他任何因素的影响
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
标识辐射(characteristic X-radiation)
标识 辐射
+
高速电子击出原子 内层电子所引发
标识辐射产生固定 波长的X射线谱
医学影像物理学课件
角
θ
实际焦点越大
有效 对散热越有利
焦点 对成像质量不利
bsinθ
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
焦点的方位特性 焦点面上靠向阴极方向的焦点较大
焦点的X线量分布 焦点面上X射线强度分布是不均匀的
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
半影对影像清晰度的影响
点光源 (有效焦点) 线光源
第一章 普通X射线影像
X射线管的特性
相 对 强 度
钼靶 X 射线管
标识X射线的 波长仅取决于
的光谱
阳极靶物质
每一种元素的
标识X射线波
Å
长固定不变
0.2 0.4 0.6 0.8 医1学.0影像物λ理学课件
第一章 普通X射线影像
X射线管的特性
实际焦点和有效焦点
焦点具面积量纲
实际 焦点
b
a
a
靶 θ越大
第一章 普通X射线影像
X射线辐射场的空间分布
X射线的硬度(hardnees) —— 穿透物质的能力 [质]
硬度 管电压(kV) 最短波长(nm) 主要用途
极软 软 硬 极硬
5 ~ 20 20 ~ 100 100 ~ 250 > 250
0.25 ~ 0.062 0.062 ~ 0.012 0.012 ~ 0.005
标识 辐射
内层电子的结合能
光电子
医学影像物理学课件
第一章 普通X射线影像
X射线在介质中的衰减
康普顿散射
光栏准 直系统
入射 X光
石墨 散射体
散射X光
θ(散射角)
医学影像物理学课件
入射光子与 材料中自由 电子作用损 失部分能量 成为波长变 长的散射光
第一章 普通X射线影像
X射线在介质中的衰减
电子对效应
< 0.005
医学影像物理学课件
软组织摄影 透视和摄影 浅层组织治疗 深层组织治疗
第一章 普通X射线影像
X射线辐射场的空间分布
X射线的滤过和硬化
滤波板 I
滤去
长波
I
成分
线质变硬
λ
λ
医学影像物理学课件
第一章 普通X射线影像
X射线辐射场的空间分布
薄靶辐射场的角分布
90o 100kV
电子束
500kV 4MV
光子密度
I = N • hv
连续X射线的强度
光子能量
∞
I = ∫λmin I(λ) dλ
医学影像物理学课件
第一章 普通X射线影像
X射线辐射场的空间分布
连续X射线最强处波长
λ m ≈ 2 λ min ≈ 2.48 / U (nm)
X射线诊断中(U固定时)常用
管电流的毫安数 ~ X射线强度 [量]
医学影像物理学课件
20MV
-90o
医学影像物理学课件
特点
随管电压 升高最强 辐射趋向 电子束的 入射方向
第一章 普通X射线影像
X射线辐射场的空间分布
厚靶辐射场的角分布
O 电子束
Ia > Ib > Ic
X射线 ab c
医学影像物理学课件
特点
因靶的吸 收效应靠 阳极一侧 辐射较弱
第一章 普通X射线影像
X射线在介质中的衰减
医学影像物理学课件
第一章 普通X射线影像
X射线管的特性
相 50KV 对 强 度
40KV
钨在较低管 电压下的连 续X射线谱
30KV
0.2 0.4 0.6
Å 0.8医学影像物1理.0学课件λ
最短波长的X 光子能量最大
对应电子与原 子核一次作用 损失全部能量
第一章 普通X射线影像
X射线管的特性
连续X射线谱最短波长