整流桥电路图原理图解析图解
笔记-整流桥工作原理
整流桥工作原理如下图1-1 所示.下面主要讲整流桥的工作原理,以及具体的有效功率,有效电流等等.图1-1首先,我们先详细介绍二极管的工作特性,在介绍全桥整流滤波电路时,我是让大家记住二极管的一个非常重要的工作特性--单向导通特性。
这里,我教大家一个便于理解二级管单向导通性的方法。
如图1—2 所示,这是个普通二级管,想必大家都已经不陌生了吧。
图1-2从图中我们可以看出来,箭头指向的方向为负,电流只能从左向右流,即从正往负流,是不能够由右向做流的。
这就是二级管的单向导通性——只能从正往负流,不能从负往正流.打个如下比喻:渔夫去捕鱼的时候,他都有一个篓子,我们称为渔篓子,这个篓子是用来捕鱼的。
如图1-3 所示.图1-3渔民通常都是把这个渔篓子放在逆水的地方,当鱼从锥形的口子进入鱼篓子,这个口里放置很多的横条,鱼进入篓子里的时候,挤开横条进入里面,然而进入里面后,鱼就再也出不去了。
二极管也相当于鱼篓子这么个功能,从正往负是导通的,从负到正就截止了。
整流桥的作用是把交流电变成直流电。
一个全桥的整流桥,无论是在电源的正半周期,还是在电源的负半周期,它都能够为负载供电。
如图1—2 所示。
图1-4在电源正半周期,电流流经方向为L —D2-R—D3-N;在电源负半周期,电流流经方向为N-D4—R—D1—L.在这么个流向的过程中,负载上面的波形是个什么样的波形?我们知道交流电AC 是一个正弦波,如图1-5 所示.图1—5那么此时二极管导通的波形是怎么样的呢?首先,二级管两端的电压必须大于0.7V 它才导通的,小于0。
7V 是处于截止的状态。
这里我们把D2、D4 这两个二级管放一块分析,在正半周期,当交流电电压小于0。
7V 时,没有二极管导通,当电压大于0.7V 的时候,D2 是导通的,D4 是截止的;在负半周期,同理,只有电压大于0。
7V 的时候,D4 是导通的,D2 是截止的,。
所以,我们绘出二级管的电压波形,如图1-6 所示、1-7 所示.图1—6图1—7 所示的是二级管D2、D4 导通时的波形。
asemi三相桥式整流桥桥电路图
编辑:TT
三相整流桥工作原理
三相整流桥工作原理在开讲之前,我们先来说整流桥。
在整流桥作为一种功率元器件,被使用率极高,应用范围也非常的广泛。
广泛应用于各种电源设备、电焊机、感应器等相关产品上。
其内部主要是由四个二极管组成的桥路来实现把输入的交流电压转化为输出的直流电压。
整流桥工作原理就是将交流电转换为直流电,不改变电流电压。
三相整流桥属于“高压”桥堆,一般用在全波整流电路中,它又分为全桥与半桥。
全桥
是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。
全桥的正向电流有20A、35A、50A等多种规格,耐压值(最高反向电压)有600V、800V、1000V 等
多种规格。
在整流桥的每个工作周期内,同一时间只有两个二极管进行工作,通过二极管的单向导通功能,把交流电转换成单向的直流脉动电压。
其内部的结构如图2所示,该全波整流桥采用塑料封装结构(大多数的小功率整流桥都是采用该封装形式)。
桥内的四个主要发热元器件——二极管被分成两组分别放置在直流输出的引脚铜板上。
在直流输出引脚铜板间有两块连接铜板,他们分别与输入引脚(交流输入导线)相连,形成我们在外观上看见的有四个对外连接引脚的全波整流桥。
由于该系列整流桥都是采用塑料封装结构,在上述的二极管、引脚铜板、连接铜板以及连接导线的周围充满了作为绝缘、导热的骨架填充物质——环氧树脂。
然而,环氧树脂的导热系数是比较低的(一般为0.35℃W/m,最高为2.5℃W/m),因此整流桥的结--壳热阻一般都比较大(通常为1.0~10℃/W)。
桥式整流电路图及工作原理
桥式整流电路图及工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻R L组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→RL→D3回到TR次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→RL→D4回到Tr次级上端,在负载RL上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
全桥整流
上面这个整流电路由整流桥和LC滤波电路组成。
整流桥如下图,其中~表示交流,+-表示直流。
当交流电为正半波时,电流由红色的线所示流向负载,当交流电为负半波时,电流由蓝色的线所示流向负载。
经过整流桥后还是馒头波,需要进一步滤波,一般的滤波加个电容就可以了,视频中滤波后能这么平直只是因为这是在空载的时候,实际加负载后,波形会如下图所示。
LC滤波电路的组成:LC滤波器一般是由滤波电抗器、电容器和电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要;LC滤波电路的原理:在电子线路中,电感线圈对交流有限流作用,由电感的感抗公式XL=2πfL 可知,电感L越大,频率f越高,感抗就越大。
因此电感线圈有通低频,阻高频的作用,这就是电感的滤波原理下面是LC滤波电路实例电感在电路最常见的作用就是与电容一起,组成LC滤波电路。
我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流,通低频,阻高频”的功能。
如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号大部分将被电感阻止吸收变成磁感和热能,剩下的大部分被电容旁路到地,这就可以抑制干扰信号的作用,在输出端就获得比较纯净的直流电流。
实际上在工作时,LC滤波的输出都有一个等效电阻,如下图所示分析:对输入和输出做拉普拉斯变换则输入为VIN(s) ,输出为VOUT(s) ,以下电阻用R表示,电容用C表示,电感用L表示,s为拉式变换的一个符号。
电阻的拉式变换仍为R,电容的拉式变换为,电感的拉式变换为sL,则由电容与电阻并联后与电感串联可知,此即为普通的二阶低通滤波器表达式。
当输入信号的角频率(角频率=频率*2)等于时,信号的输出将会被衰减到输入的0.707倍,大于此频率衰减的更多,称为截止频率。
整流后的馒头波是由直流分量和交流分量组成,直流分量即为电压波形的平均值,交流分量即是波形减去直流分量。
交流分量由100HZ,200HZ,300HZ等频率的波形组成,即100HZ 的整数倍频率(因为整流后波形的频率为100HZ)。
进口整流桥半波整流电路图及原理分析介绍
二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交
流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所
示。
二极管半波整流电路
对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
电容输出的二极管半波整流电路仿真演示
通过上述分析可以得到半波整流电路的基本特点如下:
(1)半波整流输出的是一个直流脉动电压。
(2)半波整流电路的交流利用率为50%。
(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。
整流桥电路图原理图解析图解
整流桥电路图原理图解析
如图所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
三相整流桥电路图
三相整流桥的作用也是将交流电流装换成直流电流,那么与单相整流桥的区别是采用6颗芯片的结构,可以完成对三相交流电的整流工作。
三相整流桥电路图根据芯片的不用有几种画法,如晶闸管与普通二
极管芯片的符号区别,但基本电路结构均是一样的。
如下图所示:采用这种二极管符号的电路图,表明该芯片是采用的普通整流二极管芯片。
其中VD1、VD2与VD3等三颗芯片共阴极连接,VD4、VD5与VD6等三颗芯片共阳极连接,VD1/VD4、VD2/VD5与VD3/VD6之间阴阳对接并用导向引出作为交流输入端。
共阴级组对接负载电器的输入端,共阳极组对接负载电器的输出端形成回路。
同单相整流桥电路图一样需要注意的是6颗二极管芯片极性不能错误放置,否则电路一样不能正常工作。
5.1.7 桥堆构成的整流电路工作原理分析与理解_胡老师教你识读电子电路图_[共2页]
教你识读电子电路图
170
胡老师
图5-24 正极性桥式整流电路接线特征示意图 图5-25 分析整流二极管导通时电流 回路方法示意图 5.1.7 桥堆构成的整流电路工作原理分析与理解
桥堆(指全桥堆)是整流电路中常见的器件,它实际上就是将四只整流二极管封装在一起,其外形及电路图如图5-26所示。
桥堆有四根引脚,从它的内电路中可以看出,四只二极管构成桥式电路。
1.桥堆外形特征
桥堆的外形有许多种。
桥堆的体积大小不一,一般情况下整流电流大的桥堆其体积大。
桥堆有四根引脚,半桥堆有三根引脚。
桥堆共有四根引脚,这四根引脚中,标有“~”符号的两根引脚之间可以互换使用,其他引脚之间不能互换使用。
桥堆的各引脚旁均有标记,但这些标记不一定是标在桥堆的顶部,也可以标在侧面的引脚旁。
在其他电子元器件中,像桥堆这样的引脚标记方法是没有的,所以在电路中能很容易识别桥堆。
桥堆主要用于电源电路中。
2.桥堆电路符号识图信息
图5-27所示是桥堆、半桥堆的电路符号,半桥堆是由两只二极管组成的器件。
图5-27(a )所示是桥堆的电路符号。
图5-27(b )所示是桥堆电路符号的简化形式。
图5-27(c )和图5-27(d )所示是两种半桥堆的电路符号,它们内部的二极管连接方式不。
整流桥和桥式整流工作原理
整流桥和桥式整流工作原理整流桥有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。
整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。
四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。
应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。
▲ 图一整流桥(桥式整流)工作原理▲ 图二各类整流桥(有些整流桥上有一个孔,是加装散热器用的)这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同作用就是整流,把交流电变为直流电。
实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。
特点是方便小巧。
不占地方。
规格型号一般直接用参数表示:50伏1安,100伏5安等等。
如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。
选择整流桥要考虑整流电路和工作电压。
整流桥堆整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。
全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。
全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。
常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。
整流桥命名规则一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V如:KBL410 即4A,1000VRS507 即5A,700V整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。
整流桥
整流桥有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。
整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。
四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。
应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。
图一整流桥(桥式整流)工作原理图二各类整流桥(有些整流桥上有一个孔,是加装散热器用的)半波整流;全波整流;桥式整流一、半波整流电路图1图1是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻Rfz组成。
变压器把市电电压变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
下面从图2的波形图上看看二极管是怎样整流的。
图2变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图2(a)所示。
在0~π时间内,e2 为正半周即变压器上端为正下端为负。
此时整流二极管承受正向电压而导通,e2 通过它加在负载电阻Rfz上,在π~2π 时间内,e2 为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,Rfz上无电压。
在2π~3π 时间内,重复0~π 时间的过程,而在3π~4π时间内,又重复π~2π 时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图2(b)所示,达到了整流的目的,但是,负载电压Usc 。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、留下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
桥式整流电路图及工作原理介绍07422
桥式整流电路图及工作原理介绍图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
电容输出的二极管半波整流电路仿真演示通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
课题桥式全波整流电路(共10张PPT)
图25-1
电子技能实训教程
• 电路的基本原理是;
• 1. 在次级交流电压的u2正半周(上正下负)且电 压大于C上原有电压时,整流二极管D1、D3导通, D2、D4截止,整流输出电流一方面对C充电,另 一方面对指示电路和负载供电,当u2正半周输 出电压小于C上电压时,1D、3D截止,D2、D4
电子技能实训教程
• 三、器材准备 R x 10Ω挡测量正反向电阻摆动范围 按(表二2)5电-2•路中安内输装容、测搭试出建将焊测电接试与结压测果试填9实入V训表中功, 率5W---10W变压器一个,1N4007 二极管四个,100uF/16V电解电容一只,1KΩ电 在u2为负半周(下正上负)且电压大于C上原有电压时,二极管D2、D4导通,D1、D3截止整流输出电流也一方面对C充电,另一方面对
能实验板一块,导线适量。 在次级交流电压的u2正半周(上正下负)且电压大于C上原有电压时,整流二极管D1、D3导通,D2、D4截止,整流输出电流一方面对C
充电,另一方面对指示电路和负载供电,当u2正半周输出电压小于C上电压时,1D、3D截止,D2、D4也截止,。 R x 1Ω挡测量次级电阻值 变压器测量 整流二极管测量R x 1Ω挡测正反向电阻 R x 10KΩ挡测正向 整流输出电压是多少伏; (二)电路安装、搭建焊接与测试实训 二极管D1—D4的作用是对次级交流电压进行整流,转换成直流电压,电容C的作用是滤除直流电源中的交流纹波,使直流电压更平滑,电 阻R和发光二极管LED起指示作用,表示有直流电压。
课题桥式全波整流电路
电子技能实训教程
• 二、知识准备
• 桥式全波整流电路原理图如图 25-1所示,图中变压器Tr的作用 是把输入的220V市电u1变换所需电 压u2(如9V);二极管D1—D4
桥式整流电路图及工作原理介绍07505
桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
整流桥制作方法
整流桥制作方法
一、制作原理
整流桥是一种有效的用于调整电压源的电子电路,它将可变电压的输入,经过一系列定制的整流桥管,转换成定值的直流电压。
桥式整流电路由四个桥管、四个电容、一个电感和若干其它电阻组成,其基本电路示意如下图所示。
二、流程
1. 准备材料:
首先准备好桥式整流所需的材料,包括桥管、电感和电容,然后在PCB上面做定制的电路版本;
2. 连接:
将四个桥管连接在PCB上,与电感和电容组合在一起,完成桥式整流的原理示意图;
3. 测试:
最后,测试整流桥的输出电压和电流,确保其完美工作。
- 1 -。
桥式整流电路图及工作原理介绍07428
桥式整流电路图和工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
桥式整流电路原理图解
桥式整流电路原理图解
图1
桥式整流电路,也可认为它是全波整流电路的一种,变压器绕组按图1方法接四只二极管。
D 1 ~ D 4 为四只相同的整流二极管,接成电桥形式,故称桥式整流电路。
利用二极管的导引作用,使在负半周时也能把次级输出引向负载。
具体接法如图所示,从图中可以看到,在正半周时由D1、D2导引电流自上而下通过RL,负半周时由D3、D4导引电流也是自上而下通过 RL ,从而实现了全波整流。
在这种结构中,若输出同样的直流电压,变压器次级绕组与全波整流相比则只须一半绕组即可,但若要输出同样大小的电流,则绕组的线径要相应加粗。
至于脉动,和前面讲的全波整流电路完全相同。
由于整流电路的输出电压都含有较大的脉动成分。
为了尽量压低脉动成分,另一方面还要尽量保留直流成分,使输出电压接近理想的直流,这种措施就是滤波。
滤波通常是利用电容或电感的能量存储作用
来实现的。
在本实验电路中采用的是电容滤波,即在负载电阻RL上并联一个滤波电容C,电路如图2,滤波后的波形如下图。
全波整流滤波波形
图2半波整流滤波波形。
整流桥电路大全讲解
整流电路大全9.3.7 正、负极性全波整流电路及故障处理如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。
电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。
电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。
图9-24 输出正、负极性直流电压的全波整流电路1.电路分析方法关于正、负极性全波整流电路分析方法说明下列2点:(1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。
(2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。
2.电路工作原理分析如表9-28所示是这一正、负极性全波整流电路的工作原理解说。
3.故障检测方法关于这一电路的故障检测方法说明下列几点:(1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。
(2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。
这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。
4.电路故障分析如表9-29所示是正、负极性全波整流电路的故障分析。
分页:1234569.3.8 正极性桥式整流电路及故障处理桥式整流电路是电源电路中应用量最大的一种整流电路。
如图9-25所示是典型的正极性桥式整流电路,VD1~VD4是一组整流二极管,T1是电源变压器。
图9-25 正极性桥式整流电路桥式整流电路具有下列几个明显的电路特征和工作特点:(1)每一组桥式整流电路中要用四只整流二极管,或用一只桥堆(一种4只整流二极管组装在一起的器件)。
通过结构、作用、电路图上方面分析三相整流桥工作原理
通过结构、作用、电路图上方面分析三相整流桥工作原理
您还在网络海洋里寻找三相整流桥知识吗?这里有其结构,作用,电路图,通过这些对三相整流桥工作原理进行解释!
三相整流桥内部结构及作用
由6支二极管构成的三相桥式整流电路,交流侧有控制主回路通断的接触器。
由6支晶闸管构成的三相桥式整流电路,晶闸管只用于控制通断不控制直流电压的大小。
三相整流桥由三对反串联的二极管并联组成,使用三相电压,三相整流桥的作用是将交流电整流成为直流电。
三相整流桥的电路画法
三相整流桥的电路图画法是:由三路电路并联,每路两颗芯片串联并由两颗芯片中间接入旁路作为三相三端输入,三组电路统一输出端等电位连接为该三相整流桥的正极,三组电路统一输入端等电位连接为该三相整流桥的负极,具体电路图如下所示。
ASEMI三相整流桥电路图
三相整流桥与单相整流桥的区别是采用6颗芯片的结构,可以完成对三相交流电的整流工作。
三相整流桥电路图根据芯片的不用有几种画法,
如晶闸管与普通二极管芯片的符号区别,但基本电路结构均是一样的。
如下图所示:采用这种二极管符号的电路图,表明该芯片是采用的普通整流二极管芯片。
其中VD1、VD2与VD3等三颗芯片共阴极连接,VD4、VD5与VD6等三颗芯片共阳极连接,VD1/VD4、
VD2/VD5与VD3/VD6之间阴阳对接并用导向引出作为交流输入端。
共阴级组对接负载电器的输入端,共阳极组对接负载电器的输出端形成回路。
同单相整流桥电路图一样需要注意的是6颗二极管芯片极性不能错误放置,否则电路一样不能正常工作。
以上就是对三相整流桥的具体结构及电路分析,以此了解三相整流桥工作原理,您理解了吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整流桥电路图原理图解析
如图所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
三相整流桥电路图
三相整流桥的作用也是将交流电流装换成直流电流,那么与单相整流桥的区别是采用6颗芯片的结构,可以完成对三相交流电的整流工作。
三相整流桥电路图根据芯片的不用有几种画法,如晶闸管与普通二
极管芯片的符号区别,但基本电路结构均是一样的。
如下图所示:采用这种二极管符号的电路图,表明该芯片是采用的普通整流二极管芯片。
其中VD1、VD2与VD3等三颗芯片共阴极连接,VD4、VD5与VD6等三颗芯片共阳极连接,VD1/VD4、VD2/VD5与VD3/VD6之间阴阳对接并用导向引出作为交流输入端。
共阴级组对接负载电器的输入端,共阳极组对接负载电器的输出端形成回路。
同单相整流桥电路图一样需要注意的是6颗二极管芯片极性不能错误放置,否则电路一样不能正常工作。