用matlab求解线性规划问题
用MATLAB优化工具箱解线性规划
用MATLAB优化工具箱解线性规划线性规划是运筹学中的一个研究对象,它通常是以线性方程组的形式来描述数学模型,极大(或极小)化线性函数,同时满足一定的线性限制条件。
而MATLAB是一种十分流行的数学计算软件,其优化工具箱提供了一些功能强大的优化算法,可以用来解决一些复杂的优化问题,包括线性规划问题。
一、线性规划问题的定义线性规划问题的一般形式可以描述为:$min/max$ $c^Tx$$subject$ $to$:$Ax \le b$$x \ge 0$其中,$c^Tx$是一个线性函数,称为线性目标函数,$A$是一个$m\times n$的系数矩阵,$b$是一个$m\times1$的列向量,$x$是一个$n\times1$的列向量,是待求解的变量,我们称之为决策变量。
$x_j$表示变量$x$的第$j$个分量,$m$和$n$分别是限制条件数目和变量数目。
$Ax \le b$是一个线性等式系统,约束了$x$的取值范围,$x \ge0$要求$x$的分量非负,这被称为非负约束条件。
二、使用MATLAB函数求解线性规划问题MATLAB中的优化工具箱提供了一些函数,可以用来求解线性规划问题,其中最常用的函数是“linprog”。
linprog函数是求解线性规划问题的标准函数,在使用之前需要做一些准备工作:(1)确定目标函数和约束条件:目标函数和约束条件应该以线性方程组的形式表达。
(2)将方程组转换为标准形式:标准形式是指将约束条件转换为$Ax \le b$的形式,且决策变量的非负约束被包含在这个矩阵中。
(3)定义参数:包括目标函数和约束条件中的系数矩阵和向量。
(4)运行函数:使用linprog函数求解。
下面是linprog函数的语法格式:[x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb,ub,x 0,options)linprog函数的参数解释如下:(1)f:目标函数的系数向量。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数值计算软件,广泛应用于各个领域的数学建模和优化问题求解。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并结合实例详细阐述求解过程。
一、线性规划问题的求解1.1 定义线性规划问题:线性规划是一种优化问题,目标函数和约束条件均为线性函数。
通常包括最大化或最小化目标函数,并满足一系列约束条件。
1.2 确定决策变量和约束条件:根据问题的实际情况,确定需要优化的决策变量和约束条件。
决策变量表示问题中需要求解的未知量,约束条件限制了决策变量的取值范围。
1.3 使用Matlab求解线性规划问题:利用Matlab提供的优化工具箱,使用线性规划函数linprog()进行求解。
通过设置目标函数系数、约束条件和边界条件,调用linprog()函数得到最优解。
二、整数规划问题的求解2.1 定义整数规划问题:整数规划是在线性规划的基础上,决策变量限制为整数值。
整数规划问题在实际应用中更具有实际意义,例如资源分配、路径选择等。
2.2 确定整数规划问题的特点:整数规划问题通常具有离散性和复杂性,需要根据实际情况确定整数规划问题的特点,如整数变量的范围、约束条件等。
2.3 使用Matlab求解整数规划问题:Matlab提供了整数规划函数intlinprog(),通过设置目标函数系数、约束条件和整数变量的范围,调用intlinprog()函数进行求解。
三、线性规划问题实例分析3.1 实例背景介绍:以某公司的生产计划为例,介绍线性规划问题的具体应用场景。
3.2 定义决策变量和约束条件:确定决策变量,如产品的生产数量,以及约束条件,如生产能力、市场需求等。
3.3 使用Matlab求解线性规划问题:根据实例中的目标函数系数、约束条件和边界条件,调用linprog()函数进行求解,并分析最优解的意义和解释。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题线性规划是一种数学优化问题,通过线性函数的最大化或者最小化来实现目标函数的优化。
整数规划是线性规划的一种特殊情况,其中变量被限制为整数值。
在Matlab中,我们可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
下面将详细介绍如何使用Matlab来求解这些问题。
1. 线性规划问题的求解首先,我们需要定义线性规划问题的目标函数、约束条件和变量范围。
然后,我们可以使用linprog函数来求解线性规划问题。
例如,考虑以下线性规划问题:目标函数:最大化 2x1 + 3x2约束条件:x1 + x2 <= 10x1 - x2 >= 2x1, x2 >= 0在Matlab中,可以按照以下步骤求解该线性规划问题:1. 定义目标函数的系数向量c和约束矩阵A,以及约束条件的右侧向量b。
c = [2; 3];A = [1, 1; -1, 1];b = [10; -2];2. 定义变量的上下界向量lb和ub。
lb = [0; 0];ub = [];3. 使用linprog函数求解线性规划问题。
[x, fval] = linprog(-c, A, b, [], [], lb, ub);运行以上代码后,可以得到最优解x和目标函数的最优值fval。
2. 整数规划问题的求解对于整数规划问题,我们可以使用intlinprog函数来求解。
与线性规划问题类似,我们需要定义整数规划问题的目标函数、约束条件和变量范围。
然后,使用intlinprog函数求解整数规划问题。
例如,考虑以下整数规划问题:目标函数:最小化 3x1 + 4x2约束条件:2x1 + 5x2 >= 10x1, x2为非负整数在Matlab中,可以按照以下步骤求解该整数规划问题:1. 定义目标函数的系数向量f和约束矩阵A,以及约束条件的右侧向量b。
f = [3; 4];A = [-2, -5];b = [-10];2. 定义变量的整数约束向量intcon。
运用Matlab进行线性规划求解
线性规划线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理线性规划问题的标准形式是:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 或⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j jj ,,2,1,0,,2,1,min 11ΛΛ写成矩阵形式为:⎪⎩⎪⎨⎧≥==O X b AX CX z min线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
matlab求解线性规划
matlab求解线性规划MATLAB是一个强大的工具,可以用于求解线性规划问题。
线性规划是一种最优化问题,目标是在满足一系列线性约束条件下,找到一个使目标函数取得最大或最小值的解。
在MATLAB中,可以使用线性规划工具箱来求解线性规划问题。
线性规划工具箱提供了一些函数,如linprog,intlinprog和quadprog,这些函数可以用于求解线性规划问题。
解线性规划问题的一般步骤如下:1. 定义目标函数。
目标函数是要优化的函数,可以是线性函数。
例如,如果我们要最小化一个函数f(x)=c1x1+c2x2+...+cnxn,则可以将目标函数表示为向量c=[c1,c2,...,cn]的内积与向量x=[x1,x2,...,xn]。
2. 定义约束条件。
约束条件是对决策变量的限制条件。
一般情况下,约束条件可以表示为Ax<=b,其中A是一个矩阵,x是决策变量向量,b是一个向量。
例如,如果我们有两个约束条件2x1+x2<=10和x1+3x2<=12,则可以将约束条件表示为矩阵A=[2,1;1,3]和向量b=[10;12]。
3. 调用线性规划函数。
在MATLAB中,可以使用linprog函数来求解线性规划问题。
linprog函数有几个输入参数,包括目标函数系数向量c,约束条件矩阵A和向量b,以及可选参数lb和ub。
参数lb和ub是可选参数,用于指定决策变量的下界和上界。
例如,要求解上述线性规划问题,可以调用linprog函数如下:x = linprog(c, A, b)函数linprog返回一个向量x,其中包含目标函数取得最小值时的决策变量的取值。
4. 分析结果。
一旦线性规划问题被求解,我们可以通过检查目标函数的值和决策变量的取值来分析结果。
例如,目标函数的值就是目标函数取得最小值时的值,其中决策变量的取值可以用x变量表示。
总结而言,MATLAB是一个功能强大的工具,可以用于求解线性规划问题。
线性规划问题Matlab求解
线性规划问题M a t l a b求解(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除用MATLAB优化工具箱解线性规划命令:x=linprog(c,A,b)命令:x=linprog(c,A,b,Aeq,beq)注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0)注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点4、命令:[x,fval]=linprog(…)返回最优解x及x处的目标函数值fval.例1解编写M文件小如下:c=[ ];A=[ ; 0 0 0 0;0 0 0 0;0 0 0 0 ];b=[850;700;100;900];Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2 解: 编写M文件如下:c=[6 3 4];A=[0 1 0];b=[50];Aeq=[1 1 1];beq=[120];vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。
假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。
问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低解设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题线性规划(Linear Programming)是一种优化问题的数学建模方法,用于求解线性约束条件下的最优解。
整数规划(Integer Programming)是线性规划的一种扩展形式,要求变量取整数值。
在Matlab中,可以使用优化工具箱中的函数来求解线性规划和整数规划问题。
以下将详细介绍如何使用Matlab进行线性规划和整数规划的求解。
1. 线性规划问题的求解步骤:a. 定义目标函数:首先,需要定义线性规划问题的目标函数。
目标函数可以是最小化或者最大化某个线性表达式。
b. 定义约束条件:其次,需要定义线性规划问题的约束条件。
约束条件可以是等式或者不等式形式的线性表达式。
c. 构建模型:将目标函数和约束条件组合成一个线性规划模型。
d. 求解模型:使用Matlab中的优化工具箱函数,如linprog,对线性规划模型进行求解。
e. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
2. 整数规划问题的求解步骤:a. 定义目标函数和约束条件:与线性规划问题类似,首先需要定义整数规划问题的目标函数和约束条件。
b. 构建模型:将目标函数和约束条件组合成一个整数规划模型。
c. 求解模型:使用Matlab中的优化工具箱函数,如intlinprog,对整数规划模型进行求解。
d. 分析结果:分析求解结果,包括最优解和对应的目标函数值。
下面以一个具体的例子来说明如何使用Matlab求解线性规划和整数规划问题。
例子:假设有一家工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为200元。
生产一个单位的产品A需要2小时,生产一个单位的产品B需要4小时。
工厂的生产能力限制为每天最多生产10个单位的产品A和8个单位的产品B。
求解如何安排生产,使得利润最大化。
1. 定义目标函数和约束条件:目标函数:maximize 100A + 200B约束条件:2A + 4B <= 8A <= 10B <= 8A, B >= 02. 构建模型:目标函数可以表示为:f = [-100; -200],即最大化-f的线性表达式。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种功能强大的数学软件,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将介绍如何使用Matlab求解这两类问题,并分析其优点和适用范围。
正文内容:1. 线性规划问题1.1 线性规划问题的定义线性规划问题是指在一定的约束条件下,通过线性目标函数求解最优解的问题。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右侧向量。
1.2 Matlab中的线性规划求解函数Matlab提供了linprog函数来求解线性规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界,来求解线性规划问题的最优解。
1.3 线性规划问题的应用线性规划问题在实际应用中非常广泛,例如生产计划、资源分配、运输问题等。
通过Matlab求解线性规划问题,可以高效地得到最优解,为实际问题的决策提供科学依据。
2. 整数规划问题2.1 整数规划问题的定义整数规划问题是指在线性规划问题的基础上,决策变量的取值限制为整数。
其数学模型可以表示为:max/min f(x) = c^T * xs.t. Ax <= bx >= 0x为整数其中,c、A、b的定义与线性规划问题相同,x为整数。
2.2 Matlab中的整数规划求解函数Matlab提供了intlinprog函数来求解整数规划问题。
该函数可以通过设定目标函数系数向量c、约束条件的系数矩阵A和右侧向量b,以及决策变量的上下界和整数约束条件,来求解整数规划问题的最优解。
2.3 整数规划问题的应用整数规划问题在实际应用中常见,例如生产调度、投资决策、路径规划等。
通过Matlab求解整数规划问题,可以考虑到决策变量的整数性质,得到更为实际可行的解决方案。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题标题:Matlab求解线性规划和整数规划问题引言概述:线性规划和整数规划是数学中常见的优化问题,通过Matlab可以方便地求解这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,包括问题的建模、求解方法和实际操作步骤。
一、线性规划问题的建模和求解1.1 确定优化目标:线性规划问题的目标是最大化或者最小化一个线性函数,通常表示为目标函数。
1.2 约束条件建模:线性规划问题还需要满足一系列线性约束条件,这些约束条件可以通过不等式或者等式表示。
1.3 使用Matlab求解:在Matlab中,可以使用linprog函数来求解线性规划问题,将目标函数和约束条件输入函数即可得到最优解。
二、整数规划问题的建模和求解2.1 确定整数规划问题:整数规划是线性规划的一个扩展,其中变量需要取整数值。
2.2 整数规划建模:整数规划问题可以通过将变量限制为整数来建模,通常使用0-1整数变量表示。
2.3 使用Matlab求解:Matlab中提供了intlinprog函数来求解整数规划问题,输入目标函数、约束条件和整数变量的取值范围即可得到最优解。
三、线性规划和整数规划问题的实际操作步骤3.1 准备数据:首先需要准备问题的数据,包括目标函数系数、约束条件系数和整数变量范围。
3.2 建立模型:将数据输入Matlab中的相应函数,建立线性规划或者整数规划模型。
3.3 求解问题:调用Matlab函数求解问题,得到最优解和最优值。
四、Matlab求解线性规划和整数规划问题的优势4.1 高效性:Matlab提供了高效的优化算法,能够快速求解复杂的线性规划和整数规划问题。
4.2 灵便性:Matlab支持多种约束条件和整数变量类型,可以灵便应对不同类型的优化问题。
4.3 可视化:Matlab还可以将优化结果可视化展示,匡助用户更直观地理解问题和解决方案。
五、总结通过本文的介绍,我们了解了如何使用Matlab求解线性规划和整数规划问题,包括建模方法、求解步骤和优势。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算工具,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab求解线性规划和整数规划问题,并提供相应的代码示例和结果分析。
一、线性规划问题的求解线性规划问题是一类常见的数学优化问题,其目标是在一组线性约束条件下,找到使目标函数最优化的变量值。
在Matlab中,可以使用线性规划函数“linprog”来求解线性规划问题。
下面以一个简单的线性规划问题为例进行说明。
假设有如下线性规划问题:目标函数:maximize 2x1 + 3x2约束条件:x1 + x2 ≤ 5x1 - x2 ≤ 2x1, x2 ≥ 0首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
在Matlab 中,可以使用矩阵来表示这些系数。
可以按照以下方式定义:c = [-2; -3]; % 目标函数的系数矩阵A = [1 1; 1 -1]; % 约束条件的系数矩阵b = [5; 2]; % 约束条件的右侧常数然后,我们可以使用“linprog”函数来求解线性规划问题。
代码如下:x = linprog(c, A, b); % 求解线性规划问题最后,我们可以输出求解结果,并进行结果分析。
代码如下:disp('最优解为:')disp(x)disp('目标函数的最优值为:')disp(-c'*x)运行以上代码,即可得到线性规划问题的最优解和目标函数的最优值。
在这个例子中,最优解为x1=2,x2=3,目标函数的最优值为-13。
二、整数规划问题的求解整数规划问题是线性规划问题的一种扩展,其变量需要取整数值。
在Matlab 中,可以使用整数规划函数“intlinprog”来求解整数规划问题。
下面以一个简单的整数规划问题为例进行说明。
假设有如下整数规划问题:目标函数:minimize 2x1 + 3x2约束条件:x1 + x2 ≥ 5x1 - x2 ≤ 2x1, x2 ≥ 0x1, x2为整数首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题Matlab是一种强大的数值计算软件,可以用于求解线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab来解决这两类问题。
1. 线性规划问题的求解步骤:(1) 定义决策变量:根据实际问题,定义需要求解的决策变量,并给出变量的取值范围。
(2) 建立目标函数:根据问题的要求,建立线性规划的目标函数,并确定是最大化还是最小化。
(3) 设置约束条件:根据问题的约束条件,建立线性规划的约束条件,并将其转化为线性等式或者不等式。
(4) 求解线性规划问题:使用Matlab中的线性规划求解函数linprog来求解线性规划问题。
该函数的基本用法为:[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub)其中,f为目标函数的系数向量,A和b分别为不等式约束条件的系数矩阵和右侧向量,Aeq和beq分别为等式约束条件的系数矩阵和右侧向量,lb和ub分别为决策变量的下界和上界。
(5) 分析结果:根据求解结果,分析最优解的取值以及对应的目标函数值,判断是否满足问题的要求。
2. 整数规划问题的求解步骤:(1) 定义决策变量:根据实际问题,定义需要求解的整数决策变量,并给出变量的取值范围。
(2) 建立目标函数:根据问题的要求,建立整数规划的目标函数,并确定是最大化还是最小化。
(3) 设置约束条件:根据问题的约束条件,建立整数规划的约束条件,并将其转化为线性等式或者不等式。
(4) 求解整数规划问题:使用Matlab中的整数规划求解函数intlinprog来求解整数规划问题。
该函数的基本用法为:[x, fval, exitflag, output] = intlinprog(f, intcon, A, b, Aeq, beq, lb, ub)其中,f为目标函数的系数向量,intcon为整数决策变量的索引向量,A和b分别为不等式约束条件的系数矩阵和右侧向量,Aeq和beq分别为等式约束条件的系数矩阵和右侧向量,lb和ub分别为决策变量的下界和上界。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中的两个重要分支,广泛应用于运筹学、经济学、工程学等领域。
Matlab作为一种功能强大的数值计算软件,提供了丰富的工具箱和函数,可以方便地求解线性规划和整数规划问题。
一、线性规划问题的求解线性规划问题是在一组线性约束条件下,求解线性目标函数的最优值的问题。
通常可以表示为如下形式的标准线性规划问题:Maximize (or Minimize) Z = c'xSubject to: Ax ≤ bx ≥ 0其中,c是长度为n的目标函数系数向量,x是长度为n的决策变量向量,A是m×n的系数矩阵,b是长度为m的约束条件向量。
在Matlab中,可以使用线性规划工具箱(Linear Programming Toolbox)中的函数linprog来求解线性规划问题。
linprog函数的基本语法如下:[x, fval, exitflag, output, lambda] = linprog(c, A, b, Aeq, beq, lb, ub, x0, options)其中,c是目标函数系数向量,A和b是不等式约束条件的系数矩阵和约束条件向量,Aeq和beq是等式约束条件的系数矩阵和约束条件向量,lb和ub是决策变量的下界和上界,x0是初始解向量,options是求解选项。
linprog函数的输出结果包括最优解x、最优目标函数值fval、退出标志exitflag、输出信息output和拉格朗日乘子lambda。
二、整数规划问题的求解整数规划问题是在线性规划问题的基础上,要求决策变量取整数值的问题。
通常可以表示为如下形式的标准整数规划问题:Maximize (or Minimize) Z = c'xSubjec t to: Ax ≤ bx ≥ 0x为整数在Matlab中,可以使用整数规划工具箱(Integer Programming Toolbox)中的函数intlinprog来求解整数规划问题。
MATLAB求解线性规划问题
min
f 3x1 x 2 x3
2x1 x3 1
s.t.
x1 2x 2 x3 11 4x1 x 2 2x3 3
xi 0, i 1,2,3
然后建立M文件如下:
c=[-3;1;1];A=[1 -2 1;4 -1 -2];b=[11;-3]; aeq=[2 0 -1];beq=-1;vlb=[0;0;0]; [x,fval]=linprog(c,A,b,aeq,beq,vlb)
最后的结果为: - 6.2043e-016
【例 5】 求解约束非线性规划:
min (x1 1)2 (x2 2)2 (x3 3)2 (x4 4)2 x1 x2 x3 x4 5
s.t. 3x1 3x2 2x3 x4 10 xi 0
初值为[1;1;1;1]
解:首先建立一个m文件 fun705.m
【例 4】 求解约束非线性规划:
max ex1 x22 (3 ex1 x22 )
s.t. ex1 x22 3
(初值为[1;1])
首先将问题转化为matlab要求的格式;即求出 fun,A,b,Aeq,Beq,X0,Lb,Ub
解:首先建立一个m文件fun7041.m function y=fun7041(x) y=-exp(x(1))*x(2)^2*(3-exp(x(1))-x(2)^2); 存储为fun7041.m
1、了解约束非线性规划问题的求解原理与方法; 2、会用Matlab软件求解约束非线性规划问题。
二、实验原理和方法
对于约束非线性规划,随着目标函数和约束条件的不同, 解法也不同,一般来说,有两类方法: (1)、将约束问题化为无约束问题的求解方法; (2)、用线性规划来逼近非线性规划;
三、实验内容与步骤
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算软件,可用于求解各种数学问题,包括线性规划和整数规划问题。
在本文中,我将详细介绍如何使用Matlab求解线性规划和整数规划问题。
线性规划是一种优化问题,目标是通过线性约束条件来最大化或者最小化一个线性目标函数。
整数规划是线性规划的一种扩展,要求变量的取值必须为整数。
在Matlab中,我们可以使用内置的优化工具箱来解决这些问题。
首先,我们需要定义线性规划或者整数规划问题的目标函数和约束条件。
假设我们要最大化一个线性目标函数,可以使用以下代码定义目标函数:```matlabf = [1; 2; 3]; % 目标函数的系数向量```这里,f是一个列向量,表示目标函数的系数。
在这个例子中,我们有三个变量,所以f是一个3x1的向量。
接下来,我们需要定义约束条件。
约束条件可以是等式约束或者不等式约束。
假设我们有以下等式约束条件:```matlabAeq = [1, 1, 1]; % 等式约束条件的系数矩阵beq = 10; % 等式约束条件的右侧常数向量```这里,Aeq是一个1x3的矩阵,表示等式约束条件的系数。
beq是一个标量,表示等式约束条件的右侧常数。
我们还可以定义不等式约束条件。
假设我们有以下不等式约束条件:```matlabA = [1, 0, 0; 0, 1, 0]; % 不等式约束条件的系数矩阵b = [5; 3]; % 不等式约束条件的右侧常数向量```这里,A是一个2x3的矩阵,表示不等式约束条件的系数。
b是一个2x1的向量,表示不等式约束条件的右侧常数。
现在,我们可以使用Matlab的优化工具箱中的函数来求解线性规划问题。
使用linprog函数可以求解线性规划问题,使用intlinprog函数可以求解整数规划问题。
```matlabx = linprog(f, A, b, Aeq, beq); % 求解线性规划问题``````matlabx = intlinprog(f, [1, 2, 3], A, b, Aeq, beq); % 求解整数规划问题```这里,x是一个列向量,表示最优解。
用MATLAB求解线性规划问题
用MATLAB 求解线性规划问题这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x 1,x 2,…,x n }一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
Aeq 和Beq 表示了线性规划中等式约束条件中的系数矩阵和右端向量。
LB 和UB 是约束变量的下界和上界向量,X0是给定的变量的初始值,options 为控制规划过程的参数系列。
返回值中fval 是优化结束后得到的目标函数值。
exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;exitflag>0表示优化过程中变量收敛于解X ,exitflag<0表示不收敛。
output 有3个分量,iterations 表示优化过程的迭代次数,cgiterations 表示PCG 迭代次数,algorithm 表示优化所采用的运算规则。
lambda 有4个分量,ineqlin 是线性不等式约束条件,eqlin 是线性等式约束条件,upper 是变量的上界约束条件,lower 是变量的下界约束条件。
它们的返回值分别表示相应的约束条件在约束条件在优化过程中是否有效。
例1:某工厂生产A ,B 两种产品,所用原料均为甲、乙、丙三种:生产一件产品所需原料和所获利设生产A 产品1x 件,生产B 产品2x 件,z 为所获利润,我们将问题归结为如下的线性规划问题:12min {(700010000)}x x -+s.t. 121212863804830046220x x x x x x +≤⎧⎪+≤⎨⎪+≤⎩接着写出Matlab 程序如下:clearf=-[7000,10000];A=[8,6;4,8;4,6];b=[380,300,220];[X,fval]=linprog(f,A,b)运行结果为:>> Optimization terminated successfully.X =40.000010.0000fval = -3.8000e+005例2:求解下面的线性规划问题:123min {546}x x x ---s.t. 12320x x x -+≤12332442x x x ++≤123230x x +≤10x ≤,20x ≤,30x ≤解决上述问题的Matlab 程序为:clearf=-[5,4,6];A=[1,-2,1;3,2,4;3,2,0];b=[20,42,30];LB=[0;0;0];[X,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],LB)程序运行的结果为:Optimization terminated successfully.X = 0.000015.00003.0000fval = -78.0000exitflag = 1output = iterations: 6cgiterations: 0algorithm: 'lipsol' lambda = ineqlin: [3x1 double]eqlin: [0x1 double]upper: [3x1 double]lower: [3x1 double]。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题引言概述:Matlab是一种强大的数学计算软件,广泛应用于科学、工程和金融等领域。
在数学优化中,线性规划和整数规划问题是常见的优化问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并详细阐述求解过程和注意事项。
正文内容:1. 线性规划问题求解1.1 线性规划问题的定义线性规划问题是在一组线性约束条件下,最大化或者最小化线性目标函数的问题。
在Matlab中,可以使用线性规划函数linprog进行求解。
1.2 线性规划问题的建模在求解线性规划问题之前,需要将问题转化为标准的线性规划形式。
这包括定义决策变量、约束条件和目标函数。
在Matlab中,可以使用矩阵和向量表示线性约束条件和目标函数。
1.3 线性规划问题的求解步骤求解线性规划问题的普通步骤包括定义问题、建模、调用linprog函数进行求解、获取结果并进行分析。
在Matlab中,可以使用linprog函数指定问题的目标函数、约束条件和变量范围,然后通过调用该函数获得最优解。
2. 整数规划问题求解2.1 整数规划问题的定义整数规划问题是在线性规划问题的基础上,对决策变量增加整数限制的问题。
在Matlab中,可以使用整数线性规划函数intlinprog进行求解。
2.2 整数规划问题的建模与线性规划问题类似,整数规划问题也需要定义决策变量、约束条件和目标函数。
不同之处在于,决策变量需要增加整数限制。
在Matlab中,可以使用矩阵和向量表示整数约束条件和目标函数。
2.3 整数规划问题的求解步骤整数规划问题的求解步骤与线性规划问题类似,只是需要调用intlinprog函数进行求解。
在Matlab中,可以通过指定问题的目标函数、约束条件、变量范围和整数约束条件来调用该函数,然后获取最优解。
总结:在本文中,我们介绍了如何使用Matlab求解线性规划和整数规划问题。
对于线性规划问题,需要定义问题、建模、调用linprog函数进行求解,并获取结果进行分析。
如何在Matlab中进行线性规划问题求解
如何在Matlab中进行线性规划问题求解线性规划(Linear Programming,LP)是数学规划的一个重要分支,其能够高效地解决许多实际问题。
在工业、运输、金融等领域中,线性规划的应用十分广泛。
而Matlab作为一种功能强大的数学软件,也提供了许多工具和函数用于线性规划问题的求解。
本文将介绍在Matlab中进行线性规划问题求解的基本步骤和常用函数。
一、线性规划概述线性规划是一种寻找线性目标函数在线性约束条件下的最优解的方法。
通常情况下,线性规划问题可以表示为:max/min z = c^T * xsubject to A * x <= bx >=0其中,c和x是n维向量,A是m×n的矩阵,b是m维向量。
目标是求解向量x的取值,使得目标函数c^T * x在满足约束条件A * x <= b和x >=0的前提下,取得最大(或最小)值z。
二、Matlab中线性规划求解函数Matlab中提供了多个函数用于线性规划问题的求解,其中最常用的是“linprog”函数。
linprog函数的基本语法如下所示:[x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub, options)其中,参数f是目标函数的系数向量,A和b是不等式约束的矩阵和右侧向量,Aeq和beq是等式约束的矩阵和右侧向量,lb和ub分别是变量的下界和上界向量,options是优化选项。
三、解决实际问题的例子假设有一家电子公司,为了提高利润,决定如何分配生产资源。
公司生产三种产品A、B、C,每种产品所需的生产时间分别为5小时、10小时和15小时。
已知公司每周的生产时间为80小时,每单位产品的利润分别为5、8和10。
现在问题是如何分配生产时间,使得总利润最大化。
首先,我们需要确定目标函数和约束条件。
根据题意,我们可以将目标函数设置为z = 5*x(1) + 8*x(2) + 10*x(3),其中x(1)、x(2)和x(3)分别表示产品A、B、C的生产数量。
用MATLAB求解线性规划
模型 1 固定风险水平,优化收益
目标函数: 约束条件:
n 1
Q=MAX (ri pi )xi
i 1
qi xi ≤a
M
(1 p )x M , ii
xi≥ 0
i=0,1,…n
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的 情况下寻找相应的投资组合。
模型 2 固定盈利水平,极小化风险
从 a=0 开始,以步长△a=0.001对下列组合投资模型求解, 并绘图表示 a 与目 标函数最优值 Q 的对应关系:
max s.t.
Q = (-0.05, -0.27, -0.19, -0.185, -0.185) (x0,x1,x2,x3,x4) T
x0 + 1.01x1 + 1.02x2 +1.045x3 +1.065x4 =1
目标函数: R= min{max{ qixi}} 约束条件:
n
(r i
p )x
i
i
≥k,
i0
(1 pi )xi M , xi≥ 0
i=0,1,…n
c.投资者在权衡资产风险和预期收益两方面时,希望选择 一个令自己满意的投资组合。
因此对风险、收益赋予权重 s(0<s≤1),s 称为投资偏好 系数.
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。
4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长
符号规定:
Si
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
实验四 用MATLAB 求解线性规划问题
一、实验目的:
了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、实验内容:
线性规划的数学模型有各种不同的形式,其一般形式可以写为:
目标函数: n n x f x f x f z +++= 2211m in
约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++
221
11
1212111 s n tn t t n n d x c x c x c d x c x c x c =+++=+++
221
11
1212111
0,,,21≥n x x x 这里
n n x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A 1111
称为不等式约束矩阵,由系数ij c 组成的矩阵
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C 1111
称为等式约束矩阵,列向量
T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。
一个向量T
n x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为
可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b)
[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)
这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
Aeq 和Beq 表示了线性规划中等式约束条件中的系数矩阵和右端向量。
LB 和UB 是约束变量的下界和上界向量,X0是给定的变量的初始值,options 为控制规划过程的参数系列。
返回值中fval 是优化结束后得到的目标函数值。
exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;exitflag>0表示优化过
2 程中变量收敛于解X ,exitflag<0表示不收敛。
output 有3个分量,iterations 表示优化过程的迭代次数,cgiterations 表示PCG 迭代次数,algorithm 表示优化所采用的运算规则。
lambda 有4个分量,ineqlin 是线性不等式约束条件,eqlin 是线性等式约束条件,upper 是变量的上界约束条件,lower 是变量的下界约束条件。
它们的返回值分别表示相应的约束条件在约束条件在优化过程中是否有效。
三、实验方法与步骤:
例1:某工厂生产A ,B 两种产品,所用原料均为甲、乙、丙三种:生产一件产品所需原料和所获利
设生产A 产品1x 件,生产B 产品2x 件,z 为所获利润,我们将问题归结为如下的线性规划问题:
12min {(700010000)}x x -+
s.t. 12121286380
48300
46220x x x x x x +≤⎧⎪+≤⎨⎪+≤⎩
接着写出Matlab 程序如下:
clear
f=-[7000,10000];
A=[8,6;4,8;4,6];
b=[380,300,220];
[X,fval]=linprog(f,A,b)
运行结果为:
Optimization terminated.
X =
40.0000
10.0000
fval =
-3.8000e+005
例2:求解下面的线性规划问题:
123min {546}x x x ---
s.t. 12320x x x -+≤
12332442x x x ++≤
123230x x +≤
10x ≤,20x ≤,30x ≤
解决上述问题的Matlab 程序为:
Clear
f=-[5,4,6];
A=[1,-2,1;3,2,4;3,2,0];
b=[20,42,30];
LB=[0;0;0];
[X,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],LB)
程序运行的结果为:
Optimization terminated.
X =
0.0000
15.0000
3.0000
fval =
-78.0000
exitflag =
1
output =
iterations: 6
algorithm: 'large-scale: interior point'
cgiterations: 0
message: 'Optimization terminated.'
lambda =
ineqlin: [3x1 double]
eqlin: [0x1 double]
upper: [3x1 double]
lower: [3x1 double]
四、实验总结
在使用linprog()命令时,系统默认它的参数至少为3个,但如果我们需要给定第5个参数,则第4个参数也必须给出,否则系统无法认定给出的是第5个参数。
遇到无法给出时,则用空矩阵“[]”替代。
3。