淀粉酶活力的测定方法

合集下载

淀粉酶活性的测定

淀粉酶活性的测定

淀粉酶活性的测定一、原理淀粉酶(amylase)包括几种催化特点不同的成员,其中α-淀粉酶随机地作用于淀粉的非还原端,生成麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉浆的粘度下降,因此又称为液化酶;β-淀粉酶每次从淀粉的非还端切下一分子麦芽糖,又被称为糖化酶;葡萄糖淀粉酶则从淀粉的非还原端每次切下一个葡萄糖。

淀粉酶产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸。

淀粉酶活力的大小与产生的还原糖的量成正比。

可以用麦芽糖制作标准曲线,用比色法测定淀粉生成的还原糖的量,以单位重量样品在一定时间内生成的还原糖的量表示酶活力。

几乎所有植物中都存在有淀粉酶,特别是萌发后的禾谷类种子淀粉酶活性最强,主要是α-和β-淀粉酶。

Α-淀粉酶不耐酸,在pH3.6以下迅速钝化;而β-淀粉酶不耐热,在70℃15min则被钝化。

根据它们的这种特性,在测定时钝化其中之一,就可测出另一个的活力。

本实验采用加热钝化β-淀粉酶测出α-淀粉酶的活力,再与非钝化条件下测定的总活力(α+β)比较,求出β-淀粉酶的活力。

二、材料、仪器设备及试剂(一)材料:萌发的小麦种子(芽长约1cm)。

(二)仪器设备:1. 分光光度计;2. 离心机;3. 恒温水浴(37℃,70℃,100℃);4.具塞刻度试管;5. 刻度吸管;6. 容量瓶。

(三)试剂(均为分析纯):1. 标准麦芽糖溶液(1mg/ml):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100ml;2. 3,5-二硝基水杨酸试剂:精确称取1g3,5-二硝基水杨酸,溶于20ml2mol/L NaOH溶液中,加入50ml蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100ml。

盖紧瓶塞,勿使CO2进入。

若溶液混浊可过滤后使用;3.01mol/L pH5.6的柠檬酸缓冲液:A液(0.1mol/L 柠檬酸):称取C6H8O7.H2O 21.01g,用蒸馏水溶解并定容至1L;B液(0.1mol/L 柠檬酸钠):称取Na3C6H5O7.2H2O 29.41g,用蒸馏水溶解并定容至1L。

淀粉酶活力的测定方法

淀粉酶活力的测定方法

淀粉酶活力的测定方法淀粉酶是一种能够降解淀粉的酶类。

测定淀粉酶活力的方法主要有光密度法、滴定法、浊度法、电极法等。

下面将详细介绍这几种方法。

一、光密度法光密度法是利用淀粉酶在一定温度和pH值条件下降解淀粉产生的葡萄糖,与p-二硫化苯胺生成的被称为多脱氧萘酚蓝的有色物质在特定波长下的吸光度变化来测定淀粉酶活力。

测定步骤:1. 准备试剂:液体缓冲液、淀粉溶液、pH 7.0缓冲液、2%~4%淀粉溶液、0.1% p-二硫化苯胺、1%酶液。

2. 在试管中加入2 mL pH 7.0缓冲液、2 mL 2%~4%淀粉溶液和1 mL 酶液,置于37恒温槽中培养10分钟。

3. 取出试管后,立即加入5 mL p-二硫化苯胺试剂和1 mL液体缓冲液,混匀后,放置15分钟使产生的多脱氧萘酚蓝发色充分。

4. 测定吸光度:使用特定波长的光源(通常为540 nm)对反应液进行吸光度测定。

5. 用纯水代替酶液重复上述步骤,结果作为对照组。

6. 计算淀粉酶活力:对照组的吸光度减去实验组的吸光度,乘以吸光度系数K (由标准淀粉酶活力校准得出),即可得出淀粉酶的活力。

二、滴定法滴定法是通过滴定试剂滴定淀粉酶产生的葡萄糖来测定淀粉酶活力的方法。

测定步骤:1. 准备试剂:碘滴定剂(0.02 mol/L碘酸钾,0.2 mol/L硫酸),0.1 mol/L氢氧化钠溶液,0.1%淀粉溶液。

2. 取一定量的淀粉酶加入试管中。

3. 预热培养:将试管放置于37水浴中预热,约5分钟。

4. 添加滴定剂:将试管中的淀粉加入10 mL淀粉溶液中,迅速搅拌。

5. 滴定:在反应时加入少量滴定剂,然后滴定到反应性红色消失的那一点为止。

6. 计算淀粉酶活力:滴定所使用的硫酸溶液的体积与滴定所使用的碘滴定剂的体积之间的比值即为滴定效价,根据滴定效价计算淀粉酶的活力。

三、浊度法浊度法是通过测定淀粉酶降解淀粉导致溶液浑浊度变化来测定淀粉酶活力的方法。

测定步骤:1. 准备试剂:0.1 mol/L淀粉溶液,0.1 mol/L缓冲液,1%淀粉酶溶液。

淀粉酶活力的测定

淀粉酶活力的测定

00淀粉酶活力的测定一、目的学习和掌握测定淀粉酶(包括α-淀粉酶和β-淀粉酶)活力的原理和方法。

二、原理淀粉是植物最主要的贮藏多糖,也是人和动物的重要食物和发酵工业的基本原料。

淀粉经淀粉酶作用后生成葡萄糖、麦芽糖等小分子物质而被机体利用。

淀粉酶主要包括α-淀粉酶和β-淀粉酶两种。

α-淀粉酶可随机地作用于淀粉中的α-1,4-糖苷键,生成葡萄糖、麦芽糖、麦芽三糖、糊精等还原糖,同时使淀粉的粘度降低,因此又称为液化酶。

β-淀粉酶可从淀粉的非还原性末端进行水解,每次水解下一分子麦芽糖,又被称为糖化酶。

淀粉酶催化产生的这些还原糖能使3,5-二硝基水杨酸还原,生成棕红色的3-氨基-5-硝基水杨酸,其反应如下:淀粉酶活力的大小与产生的还原糖的量成正比。

用标准浓度的麦芽糖溶液制作标准曲线,用比色法测定淀粉酶作用于淀粉后生成的还原糖的量,以单位重量样品在一定时间内生成的麦芽糖的量表示酶活力。

淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。

两种淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化。

β-淀粉酶不耐热,在70℃15min钝化。

根据它们的这种特性,在测定活力时钝化其中之一,就可测出另一种淀粉酶的活力。

本实验采用加热的方法钝化β-淀粉酶,测出α-淀粉酶的活力。

在非钝化条件下测定淀粉酶总活力(α-淀粉酶活力+β-淀粉酶活力),再减去α-淀粉酶的活力,就可求出β-淀粉酶的活力。

三、实验材料、主要仪器和试剂1.实验材料萌发的小麦种子(芽长约1cm)2.仪器(1)离心机(2)离心管(3)研钵(4)电炉(5)容量瓶:50mL×1, 100mL ×1 (6)恒温水浴(7)20mL具塞刻度试管×13 (8)试管架(9)刻度吸管:2mL×3, 1mL×2, 10mL×1 (10)分光光度计3.试剂(均为分析纯)(1)标准麦芽糖溶液(1mg/mL):精确称取100mg麦芽糖,用蒸馏水溶解并定容至100mL。

淀粉酶活性的测定

淀粉酶活性的测定

淀粉酶活性的测定
1、实验试剂:
(1)1%淀粉磷酸缓冲液称取1.0g的可溶性淀粉,加热溶于磷酸缓冲液,冷却后定容至100ml
(2)磷酸缓冲液(ph6.9)称取0.712g Na2HPO4.2H2O 和0.07nacl溶于150ml 的蒸馏水,用浓正磷酸将ph调制6.9,并用蒸馏水定容至200ml.
(3)2mol/l的NaOH溶液称取8g的NaOH溶于蒸馏水,100ml容量瓶定容. (4)显色剂称取1.0g的3,5二硝基水杨酸滴入少许蒸馏水,20ml的NaOH (2mol/l),溶解后取30.0g的酒石酸钾钠溶于该溶液,然后用蒸馏水定容至100ml (5)麦芽糖溶液称取180mg一水麦芽糖溶于蒸馏水,定容至100ml.
2、实验仪器:.
容量瓶:100ml(5)200(1)
烧杯:100ml(6)500ml (1)
移液管:10ml(2)1ml(3)
试管:若干
3、实验步骤:
(1)不同酶量
(2)平行实验(酶量30ul)。

淀粉酶检测方法

淀粉酶检测方法

淀粉酶检测方法淀粉酶是一种在生物体内分解淀粉的酶类,在工业生产中也有广泛的应用。

淀粉酶检测方法的研究和开发对于生物学和工业生产都具有重要的意义。

本文将介绍10种常用的淀粉酶检测方法,并展开详细描述。

1. 检测淀粉酶酶活力的方法淀粉酶酶活力的检测是在一定的条件下测定淀粉酶对淀粉分子链断裂的程度。

其方法多种多样,如I2-KI法、Nelson-Somogyi法、DNS法、酚硫酸法等。

其中DNS法的操作简单、精密度高、结果准确,被广泛运用于淀粉酶酶活力的测定中。

DNS法的具体流程:取淀粉酶反应液1ml,加入60μl 1% 普鲁士蓝,阴离子化的淀粉酶会将淀粉水解成低聚糖,反应后加入7.5ml DNS液,于100℃水浴烘箱加热10min,将反应液冷却至室温后用1mol/L NaOH调至中性,以1cm光程在720nm波长处测定吸光度。

2. 紫外线比色法紫外线比色法是一种测定淀粉酶酶活力的快速、准确、灵敏的方法。

该法利用酶水解淀粉时所产生的差异色团在化学性质和吸收光谱方面的变化来测定淀粉酶酶活力。

紫外线比色法的具体流程:取一定量的淀粉酶及淀粉,在相应的pH值下孵育一定的时间后,停止反应,加入氢氧化钠,合并各样品,稀释,分别于270nm、309nm处记录吸光值,然后计算各组淀粉酶的缩合作用所产生的光吸收值,即可求出淀粉酶的酶活力。

3. pH滴定法pH滴定法是以酶水解完淀粉后所生成的氢离子释放量作为反应结束的依据。

该方法的特点是操作简单,易于掌握,准确度高。

pH滴定法的具体流程:取一定量的淀粉酶及淀粉,设置相应的pH值,在一定的温度下孵育一定时间,取出样品,加入酚酞pH指示剂,并滴加NaOH溶液,直到溶液从淡红色转为深红色,记录NaOH滴加量,计算其中的氢离子产生量即可求出淀粉酶的酶活力。

4. 薄层酶法薄层酶法是将淀粉酶和淀粉均匀混合后涂在薄层板上,然后观察酶诱导的淀粉分解反应的变化,以判断淀粉酶的活力。

薄层酶法的具体流程:将淀粉酶和淀粉均匀混合后涂在薄层板上,然后孵育一段时间,用紫碱蓝溶液滴在板上,若淀粉分解为葡萄糖,其降解产物将与紫碱蓝成蓝绿色,而未被淀粉酶降解的淀粉则呈紫色。

检测淀粉酶活性的方法

检测淀粉酶活性的方法

检测淀粉酶活性的方法
淀粉酶活性可以使用多种方法来检测,常用的有以下几种:
1.比色法:使用酶活性与颜色变化有关的试剂,如
比色剂,来检测淀粉酶活性。

2.电位检测法:使用电位计来直接测量酶酶解淀粉
过程中产生的电流。

3.磷酸酶试剂盒法:使用含有磷酸的试剂盒,在酶
解淀粉过程中产生的磷酸可以通过酶解磷酸酶来酶消耗,由此反映淀粉酶活性。

4.放射性检测法: 淀粉酶将淀粉分解成葡萄糖,葡
萄糖可以通过磷酸甘油酶合成磷酸甘油,这种合成过程中产生的14C碳可以通过放射性计数来检测淀粉酶活性。

这些方法都有其特点和适用范围,需要根据实验需求来选择最合适的方法。

1.比色法是最常见的检测淀粉酶活性的方法之一,
它通过酶解淀粉产生的葡萄糖或其他物质的颜色变化来检测淀粉酶活性。

常用的比色剂有银离子试剂、染料试剂等。

2.电位检测法是一种直接测量淀粉酶活性的方法,
它通过测量酶解淀粉产生的电流来检测淀粉酶活性。

3.磷酸酶试剂盒法是通过检测淀粉酶酶解淀粉产生
磷酸,再由磷酸酶进行消耗来反映淀粉酶活性。

4.放射性检测法是一种特殊的检测方法,它使用含
有放射性碳的淀粉或磷酸甘油试剂,通过检测放射性碳的计数变化来检测淀粉酶活性。

这些方法都有其优缺点,选择其中一种方法需要根据实验需求和条件来确定,如实验灵敏度、试剂成本、操作难度等因素。

淀粉酶活性测定

淀粉酶活性测定

淀粉酶活性测定淀粉酶是一种非常重要的酶类,是一种负责水解淀粉质的消化酶。

淀粉酶活性测定可以用于评价淀粉酶的水解能力和功能,有助于监测动物体内的淀粉酶活性水平,以及在食品、农业、医学等方面的应用。

在此文中,我们将详细介绍淀粉酶活性测定的方法、原理、重要性等相关知识。

1、Iodine-starch法此方法是基于淀粉直接加热与淀粉酶水解后不同的化学反应。

淀粉水解后的葡萄糖分子,会使加入碘化钾后的淀粉溶液变成淡黄色或透明状态,因而用这种方法来测定淀粉酶活性。

操作步骤:(1)将淀粉溶液分配到不同的试管中,并分别加入一定量的淀粉酶和缓冲液;(2)将试管随之放入水浴器中,在一定的温度下反应一定时间后;(3)将反应好的样品加入适量的碘化钾溶液,混合均匀;(4)观察样品颜色的变化与对照样品进行比较。

淀粉酶活性越强,颜色变化越明显。

2、DNS法(3,5-dinitrosalicylic acid)此法是由3,5-二硝基水杨酸和淀粉水解后形成的糖类反应,也是一种将淀粉水解后产生的葡萄糖利用于测定淀粉酶活性的方法。

(3)在沸水中进行加热封闭处理,使淀粉酶反应后产生的糖分子与DNS反应生成产物,颜色变化呈红色。

淀粉直接加热会发生硫酸化反应,而加入淀粉酶水解后,形成的产物降解了银离子和碘化物的复合物,导致样品中碘的浓度下降,进而改变样品的颜色。

2、DNS法淀粉酶活性水平是衡量动物消化能力的重要指标之一,同时,则涉及到食品、中药、农业等领域相关工作的研究。

用于测定淀粉酶活性,在动物营养研究和饲料生产中具有广泛的应用。

在动物营养领域中,淀粉酶活性测定可以用来评价不同饲料淀粉的消化能力和饲料营养价值,甚至可以评价不同品种和不同饲料来源的淀粉酶活性差异。

在饲料生产方面,淀粉酶活性测定有助于优化饲料制造流程和配方,从而提高生产效率和经济效益。

此外,在工业领域,淀粉酶的活性测定也具有重要的应用价值。

例如,在酿酒过程中,淀粉酶活性的测定可以使发酵操作更加稳定和高效。

淀粉酶活力的测定

淀粉酶活力的测定
2.2.2 碘贮存液(0.1mol/L)
称取1.7835g碘酸钾和22.5g碘化钾,溶于去离子水中,再缓慢加人4.5mL浓盐酸,用去离子水稀释至500mL,充分混匀,贮棕色瓶中,每月配制新鲜溶液,置冰箱中保存。
2.2.3 碘稀释液(0.lmol/L) 取碘贮备液用去离子水稀释10倍,贮棕色瓶中,现用现配。
底物缓冲液(40℃预温5min,mL) 1.0 1.0
酶滤液(mL)混匀,40℃水浴7.5min 0.2 -
碘稀释液(mL) 1.0 1.0
去离子ቤተ መጻሕፍቲ ባይዱ(mL) 6.0 6.2
2.4 淀粉酶活力计算
淀粉酶活力= 式中:AB:空白管吸光度;AU:测试管吸光度;淀粉酶活性定义:lmL酶滤液中(1g酶粉)的酶,在40℃和底物淀粉作用30min,水解10mg淀粉为1个淀粉酶活性单位。
2.3 操作步骤
称取酶粉1.0g充分碾细,加去离子水100mL,在40℃水中搅拌30min,充分溶出酶蛋白,过滤,滤液备用。按表2分别加入底物缓冲液、酶滤液、碘稀释液和去离子水,混匀,于660nm波长处(lcm光径),以去离子水调吸光度为零,读各管吸光度。
试剂用量
加入物 测定管(U)(3支平行样)空白管(B)
2.2 试剂
2.21 底物缓冲液
精确称,取9.0g;氯化钠;22。6g无水磷酸二钠和12.5g无水磷酸二氢钾,置于约500mL去离子水中力口热至沸腾溶解。称取0.4g可溶性淀粉于一小烧杯中,加入10mL去离子水,使其混悬后加人上述沸腾溶液中,冷却至室温后加入5mL37%甲醛溶液,用去离子水稀释至1000mL。此即为pH7.0、酶底物淀粉浓度为0.4g/L的缓冲液。
淀粉酶活力的测定
测定淀粉酶活力的方法有4类,一是测定底物淀粉的消耗量,有粘度法、浊度法和碘-淀粉比色法等;二为生糖法,测定产物葡萄糖的生成量;三为色原底物分解法,四是酶偶联法。其中碘-淀粉比色法测淀粉酶活力操作简便迅速、实用。

实验一α-淀粉酶活力的测定

实验一α-淀粉酶活力的测定

结果处理与计算
数据处理
根据实验数据,我们计算了酶活力、 反应速率等参数。
图表绘制
我们使用图表展示了实验结果,以便 更直观地分析数据。
结果分析
酶活力比较
通过比较不同浓度酶液的酶活力,我们可以得出酶活力与酶浓度 之间的关系。
反应速率分析
通过分析反应速率,我们可以了解酶促反应的动力学特征。
结论总结
综合以上分析,我们可以得出实验一α-淀粉酶活力测定的结论, 并为其应用提供依据。
用紫外可见分光光度计在540nm波长处测定各管 的吸光度值。
数据记录与处理
01
记录实验数据,计算α-淀粉酶活力。
02
根据实验数据绘制标准曲线和酶 活性曲线。
04
结果分析
数据记录
实验数据
在实验过程中,我们记录了不同浓度 酶液处理后的反应时间、温度、pH值 等数据。
实验误差
在实验过程中,我们尽量减小误差, 如使用精确的测量工具、多次测量取 平均值等。
05
实验总结与讨论
实验总结
01
实验原理
本实验通过测定α-淀粉酶催化淀粉水解生成可溶性糖的速率,从而确定
酶活力的大小。
02 03
实验步骤
准确称取适量淀粉和底物溶液,加入试管中,加入适量酶液,在适宜温 度下恒温水浴一定时间,然后加入碘液和氢氧化钠溶液终止反应,最后 用斐林试剂进行滴定。
实验结果
通过滴定结果计算出α-淀粉酶活力的大小。
DNS溶液
称取3,5-二硝基水杨酸6.3g,溶解于50mL蒸馏水中,加入2mol/L氢氧化钠溶液 16.8mL,再加入20%酒石酸钾钠溶液10mL和2mol/L硫酸溶液20mL,混合均匀后 加热至80℃,不断搅拌,直至溶液呈透明。冷却后用蒸馏水定容至100mL,避光保 存。

淀粉酶活力的测定课件

淀粉酶活力的测定课件

以0号管为空白参比,测定λ=540nm处的吸光值
记录A540
•8
六. 结果处理
1、分别计算0时刻、5 min时刻的A540nm平均值。 2、根据图表中的实验结果,并利用实验 “3,5-二
硝基水杨酸比色法测定糖的含量”中制作的标准 曲线,计算淀粉酶的活力。
需要详细过程。
5 min时刻吸光值
5 min时刻还原糖mg数
一、实验目的
掌握测定淀粉酶活力的原理和基本方法
•1
二、实验原理
• 酶是一种具有高度专一性的催化剂。其催化能 力的大小用酶的活力来表示。酶活力也称酶活 性,是以酶在最适温度、最适pH等条件下,催 化一定的化学反应的初速度来表示。
•2
本实验是以一定量的α-淀粉酶液,于37 ℃ 、 pH6.8的条件下,在一定的初始作用时间内将淀粉 转化为还原糖,然后通过与DNS试剂作用,比色 测定求得还原糖的生成量,从而计算出酶反应的 初速度,即酶的活力
收集1管的同学,将0.05 mL稀释到15 mL 收集2管的同学,将0.05 mL稀释到10 mL
•6
试管排列顺序
室温
装约20 mL淀粉溶液, 标记,转至37℃水浴
锅中
37 ℃
粗酶液
1
空白
淀粉
盐析
2
脱盐
3
B1
B2
B3
B1
B2
B3
F1
F2
F3
F1
F2 F3
因淀粉中含有少量还原糖, 某些溶液有色素、杂质,需
这里规定,一个淀粉酶活力单位为在37 ℃ 、 pH6.8的条件下,每分钟水解淀粉生成1 mg还原 糖所需要的酶量。
1 U=1 mg 还原糖/min·mL 酶

测定淀粉酶活性的两种方法的比较研究

测定淀粉酶活性的两种方法的比较研究

测定淀粉酶活性的两种方法的比较研究一、简述淀粉酶是一种能够催化淀粉分解为糖类物质的生物催化剂,其在食品工业、生物塑料生产以及医药等领域具有广泛的应用价值。

为了更好地了解和评估淀粉酶的活性,本研究将比较分析两种常用的测定淀粉酶活性的方法:碘量法和比浊法。

该方法系通过加入碘与淀粉样液来测量淀粉的水解程度,但是它无法避免一些还原性物质的干扰。

比浊法是基于酶反应产生胶体体系的形成,据此原理可测定淀粉酶活力。

本实验旨在比较这两种方法在测定淀粉酶活性时的优缺点,并分析其可能的原因,以期找到一种更为理想和高效的测定手段。

1. 淀粉酶的简介及重要性淀粉酶是一种能够催化淀粉分解为糖类物质的生物催化剂,它在食品工业、发酵工业以及生物塑料工业等领域具有广泛的应用。

淀粉酶的活性是衡量其性能的重要指标,催化效率越好。

研究淀粉酶活性的方法对于这些行业的发展具有重要意义。

淀粉酶在食品工业中扮演着关键角色。

在制作面条、饼干等食品时,需要确保食品中的淀粉得到充分分解,从而提高食品的口感和品质。

淀粉酶能够有效分解淀粉,使其转化为糖类物质,为食品提供甜味和黏性,因此它是食品工业中不可或缺的酶制剂。

淀粉酶在发酵工业中也有重要应用。

发酵工程中常用的糖化酶就是一种淀粉酶,它能够将淀粉转化为葡萄糖,为微生物提供能量和生长所需的碳源。

通过使用不同类型的淀粉酶,可以对不同种类的微生物进行定向发酵,生产出各种有用的产品,如抗生素、酶制剂等。

淀粉酶在生物塑料工业中也有潜在的应用前景。

生物可降解塑料是一种环保型的生物塑料,其降解过程需要淀粉酶的参与。

通过利用淀粉酶降解塑料中的淀粉成分,可以降低塑料对环境的污染,为实现可持续发展提供新的途径。

淀粉酶在各个领域都具有重要的应用价值。

研究淀粉酶活性的方法,对于推动相关领域的技术进步和产业发展具有重要意义。

2. 淀粉酶活性测定的方法和目的在淀粉酶活性的研究中,有多种方法可用于测定酶活力。

本部分将详细介绍两种常见的淀粉酶活性测定方法:碘量法和比色法,并阐述它们的目的。

淀粉酶活力的测定

淀粉酶活力的测定

芽孢杆菌产淀粉酶活力测定
一、实验目的
1、掌握分离淀粉酶的方法;
2、掌握测定酶活力的方法;
3、培养自行设计、实施实验的能力
二、实验原理
淀粉酶能水解淀粉中 -1,4葡萄糖苷键,水解淀粉为分子量不一的糊精,淀粉迅速被液化。

使淀粉与碘呈蓝紫色特征反应逐渐消,以该颜色的消失速度计算酶的活力的高低。

三试剂和仪器
碘液 2%可溶性淀粉溶液0.1mol/L三氯乙酸离心机分光光度计
四实验步骤
1 、发酵培养
从斜面培养基上挑选生长状况良好的菌株在无菌操作下转移到发酵培养基上进行发酵。

发酵的条件为37摄氏度,200r/min摇床培养过夜,24h.。

2、酶的提取
将发酵液8000r/min离心10min,取上清液测酶活,每个样品重复3次,最后结果取平均值。

3 酶活的测定
取5mL0.5%的可溶性淀粉溶液,在40℃水浴中预热10分钟,然
后加适当稀释的酶液0.5mL,反应5分钟后,用5mL0.1mol/L三氯乙酸终止反应。

取0.5mL反应液与5mL碘液显色,在620nm处测光吸收值。

以0.5mL水代替0.5mL反应液为空白,以同等浓度的双糖溶液(加同样体积的缓冲液)的管为对照。

4 酶活力的计算
酶活力根据下式计算:
酶活力(u/mL)=(R-r)*50*D
R
式中R、r分别表示对照和反应液的光吸收值,D为酶的稀释倍数。

调整D使(R-r)/R在0.2—0.7之间。

确定在40℃5min内水解1mg淀粉的酶量为一个活力单位。

实验十七尿液淀粉酶活力测定(winslow)氏法

实验十七尿液淀粉酶活力测定(winslow)氏法


5.从第 10 管起依次迅速准确加入 0.1%淀粉液 2m1。迅速摇匀。置37℃,保温30分钟 。 6. 保温 30 分钟后,取出各管。向各管中加稀 碘液1-2滴摇匀。观察各管的颜色。各试管中 出现黄到蓝的色序。黄色表明无淀粉存在, 浅红色到紫色表明有淀粉的水解中间产物。 蓝色表明有淀粉或其初期水解产物存在。
尿液淀粉酶活力测定 (Winslow)氏法
实验目的:
掌握酶活力测定的一般思路与方法;
ห้องสมุดไป่ตู้理:

临床上通常用 Winslow 氏法测定尿或血清 中淀粉酶活性。该法对淀粉酶活性单位的 规定是:在 37℃, 30分钟,恰好能将0.1% 淀粉溶液 1m1 水解(指加入碘液后不再呈 兰色)的酶量定为一个活力单位。
【参考值】 (尿)8~64单位;(血清)4~32单位。 【注意事项】 1.试管干净。吸管专管专用。 2.尿液留取中段尿,结果准确。 3.判断试管颜色时要与第十管比较。
【临床意义】 胰腺炎、腮腺炎、胆道疾病时尿淀粉酶活性 增高。
血清及尿淀粉酶来自胰腺和唾液腺的分泌。在正常 情况下,大部分淀粉酶随消化液进入消化道,少量可进 入血液循环。引起血清淀粉酶活性增高有三个方面的原 因: ① 胰腺组织的炎症损伤使酶释放增加; ② 分泌过多; ③ 胰腺等组织排泄受阻。 由于淀粉酶分子量较小,易通过肾小球从尿排出, 所以,血清淀粉酶活性增高也反应在尿中。由此可知, 血和尿淀粉酶检查主要用于诊断胰腺炎。
试剂与器材:


1.0.9%NaC1; 2.0.1%淀粉; 3.0.3%碘溶液; 4.移液管; 5.试管; 6.恒温水溶锅。
操作:




1.留取尿液(中段尿) 2. 取 10 支 试 管 , 按 次 序 记 上 号 码 , 各 加 0.9% NaCl 1 m1。 3. 用 1m1 移液管加尿液 1m1 于第一管,使其与 0.9%NaC1混合。用移液管吸取,然后任其流出。 反复三次,使全管混匀。 4. 从第一管吸出 1m1 到第二管中,混匀。吸出 1m1 到第三管 …… 依次类推。到第九管混匀后 , 吸出 1m1 弃之。这样即可获得分别含有尿液 1/2 、 1/4 、 1/8……1/512m1 的不同浓度的尿稀释液, 第10管不加尿液作为对照管。

淀粉酶活力测定方法

淀粉酶活力测定方法

1 溶液的配制:轻工业部标准DNS试剂的配制称取3,5-二硝基水杨酸(10土0.1) g,置于约600 mL水中,逐渐加入氢氧化钠10 g,在50 ℃水浴中(磁力)搅拌溶解,再依次加入酒石酸甲钠200 g、苯酚(重蒸)2 g和无水亚硫酸钠5 g,待全部溶解并澄清后,冷却至室温,用水定容至1000 mL,过滤。

贮存于棕色试剂瓶中,于暗处放置7 d后使用。

(1)DNS的配制:DNS(3,5-二硝基水杨酸):称取10g DNS溶于600mL水中,全部溶解后,逐渐加入20g NaOH,搅拌溶解。

缓慢加入200g 酒石酸钾钠,加热溶解(55℃)后加入2g 苯酚和0.5g 无水亚硫酸钠,加热搅拌至全部溶解,冷却,用水稀释至1000ml,储存于棕色试剂瓶中,一周后使用。

(2)可溶性淀粉底物溶液(1%):称取1 g可溶性淀粉,溶于80ml煮沸的Tris-HCl(pH6.5)缓冲液中,再煮沸10mins,冷却后定容至100ml。

葡萄糖标准液(1mg/ml): 取烘箱烘干的葡萄糖0.1g加入到100ml容量瓶中,定容至100ml。

2酶活测定(1)葡萄糖标准曲线的绘制取7支试管编号,分别取0,0.2,0.4,0.6,0.8,1.0,1.2 ml的葡萄糖标准液(1 mg/ml),用ddH20补加至2ml,再加入2ml DNS,将各管摇匀,在沸水浴中准确加热5min,取出,冷却至室温,定容至20ml,用第一支试管调零,测定在540 nm处的吸光值。

以葡萄糖含量为横坐标,吸光值为纵坐标,绘制标准曲线。

(2)DNS法取2个试管,分别为对照管和样品管。

将两试管中各加入Tris缓冲液800 μl 和底物溶液100 μl,37℃水浴保温5min,然后在对照管中加入灭活的纯化酶液(沸水浴煮沸10min)100 μl,样品管中加入纯化酶液100 μl,立即混匀计时,在37℃水浴中准确反应30min后加入等体积的DNS(1ml)终止反应,沸水浴显色5min,冷却后,定容至10ml,在540nm分光光度计测定吸光值,每个样品重复三次,取平均值。

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告淀粉酶活力测定实验报告实验三、淀粉酶活性的测定实验报告实验四、淀粉酶活性的测定一、实验目的:1、了解α - 淀粉酶和β - 淀粉酶的不同性质及其淀粉酶活性测定的意义;2、学会比色法测定淀粉酶活性的原理及操作要点。

二、实验原理:淀粉酶存在于几乎所有植物中,特别是萌发后的禾谷类种子,淀粉酶活力最强,其中主要是α-淀粉酶和β-淀粉酶。

根据α-淀粉酶和β-淀粉酶特性不同,α-淀粉酶不耐酸,在pH3.6以下迅速钝化;β-淀粉酶不耐热,70? 15min 则被钝化。

测定时,使其中一种酶失活,即可测出另一种酶的活性。

淀粉在淀粉酶的催化作用下可生成麦芽糖,利用麦芽糖的还原性与3,5-二硝基水杨酸反应生成棕色的3-氨基-5-硝基水杨酸,测定其吸光度,从而确定酶液中淀粉酶活力(单位重量样品在一定时间内生成麦芽糖的量)。

三、实验用具:1、实验设备研钵,具塞刻度试管,离心管,分光光度计,酸度计,电热恒温水浴锅,离心机,电磁炉。

2、实验材料与试剂(1)0.1mol/l pH5.6的柠檬酸缓冲液:A液:称取柠檬酸20.01g,定容至1000ml;B液:称取柠檬酸钠29.41g,定容至1000ml;取A液55ml与B液145ml混匀。

(2)1%可溶性淀粉溶液:1g淀粉溶于100ml 0.1mol/l pH5.6的柠檬酸缓冲液;(3)1%3,5-二硝基水杨酸试剂:称取3,5-二硝基水杨酸1g、NaOH 1.6g、酒石酸钾钠30g,定容至100ml水中,紧盖瓶塞,勿使CO2进入;(4)麦芽糖标准溶液:取麦芽糖0.1g溶于100ml水中;(5)pH 6.8的磷酸缓冲液: 取磷酸二氢钾6.8g,加水500ml使溶解,用0.1mol/L氢氧化钠溶液调节pH值至6.8,加水稀释至1000ml即得。

(6)0.4mol/L的NaOH溶液;(7)1%NaCl溶液。

(8)实验材料:萌发的谷物种子(芽长约1cm)四、操作步骤1、酶液提取:取6.0g浸泡好的原料,去皮后加入10.0mL 1%的NaCl 溶液,磨碎后以2000r/min 离心10min,转出上清液备用。

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告

淀粉酶活力测定实验报告淀粉酶活力测定实验报告引言:淀粉是一种常见的多糖类物质,广泛存在于植物的种子、块茎和根部等部位。

淀粉酶是一类能够催化淀粉水解为糖类的酶,广泛存在于植物、动物和微生物中。

淀粉酶活力的测定对于研究淀粉酶的性质、功能以及酶的催化机制具有重要意义。

本实验旨在通过测定淀粉酶活力的方法,探究淀粉酶的催化作用及其影响因素。

实验材料与方法:材料:1. 淀粉溶液2. 淀粉酶溶液3. 碘液4. 盐酸5. 碘化钾溶液6. 蒸馏水方法:1. 预先制备好一定浓度的淀粉溶液和淀粉酶溶液。

2. 取一定量的淀粉溶液,加入适量的淀粉酶溶液,混匀后放置一段时间。

3. 取适量的混合液,加入盐酸,停止淀粉酶的活性。

4. 加入碘液,使混合液呈现蓝黑色。

5. 用碘化钾溶液滴定至混合液呈现淡黄色,记录滴定所需的碘化钾溶液体积。

6. 重复上述步骤,分别改变淀粉酶的浓度、温度和pH值等条件,进行多组实验。

结果与讨论:通过实验测定,我们得到了不同条件下淀粉酶活力的数据,并进行了分析和讨论。

1. 淀粉酶浓度对活力的影响:在一定温度和pH值下,我们分别取不同浓度的淀粉酶溶液进行实验。

结果显示,淀粉酶活力随着酶浓度的增加而增加,但当酶浓度达到一定程度后,活力的增加趋势趋于平缓。

这说明在一定范围内,淀粉酶活力与酶浓度呈正相关关系。

2. 温度对活力的影响:我们分别在不同温度下进行实验,结果显示,淀粉酶活力随着温度的升高而增加,但当温度超过一定范围后,活力开始下降。

这是因为温度的升高可以增加酶分子的运动速度和碰撞频率,促进酶与底物的结合,从而提高活力。

然而,过高的温度会导致酶分子的构象变化和热失活,从而降低活力。

3. pH值对活力的影响:我们在不同pH值下进行实验,结果显示,淀粉酶活力在一定范围内随着pH值的变化而增加。

这是因为pH值的变化可以改变酶分子的电荷状态和离子化程度,从而影响酶与底物的结合能力和催化效率。

然而,当pH值偏离酶的最适pH值时,酶分子的构象发生改变,导致活力的降低。

α-和β-淀粉酶活性的测定

α-和β-淀粉酶活性的测定

α-和β-淀粉酶活性的测定α-淀粉酶能将淀粉分子的α-1.4糖苷键任意切断成长短不一的短链糊精及少量麦芽糖和葡萄糖,使淀粉对碘呈蓝紫色的特异反应消失,以该颜色消失的速度计算酶的活力。

β-淀粉酶是从淀粉的非还原性末段分解2个葡萄糖单位的α-1.4糖苷键生成麦芽糖。

因此可用DNS法测定溶液中还原糖的含量。

1.仪器设备分光光度计、恒温水浴等。

2.操作方法1)粗酶液制备取新鲜植物材料10g,洗净、剪碎,按1:2(w/v)比例加20ml0.1mol/L NaAc缓冲液(含6mmol/L CaCl2,pH5.0)及少量石英砂研磨,一层尼龙布过滤。

滤液在20000r/min离心20min,取上清液用10mmol/L NaAc缓冲液透析。

过夜后用20000r/min离心10min,取上清液定容,备用。

2)绘制β-极限糊精标准曲线称取100mgβ-极限糊精,加少量水调成糊状,倾入10ml沸蒸馏水,不断的搅拌、加热,煮至透明。

流水冷却后定容至10ml,即每毫升含10mgβ-极限糊精。

取25~200μlβ-极限糊精(0.25~2.0mg)加水定容至0.5ml,再加5.0ml0.01%I2-KI溶液于560nm处测定其光密度(OD)值。

以光密度为纵坐标,β-极限糊精含量为横坐标绘制β-极限糊精标准曲线。

3.α-淀粉酶活力测定(植物生理学通讯,1986,4:63)取0.1~0.5ml粗酶液(相当于含0.1~0.2g鲜重),加0.5mlβ-极限糊精,加10mmol/L NaAc缓冲液定容至1.0ml,摇匀后在30℃保温。

隔不同时间取0.1ml反应液加5.0ml0.01%的I2-KI试剂,0.4ml H2O,摇匀后在560nm处测其光密度。

按OD值查标准曲线。

计算单位为:mgβ-极限糊精降解/g(鲜重)·h。

4.β-淀粉酶活力的测定(麦芽糖浆生产工艺,上海市轻工业局科技情报研究所出版1989,171)。

1)酶反应在具塞试管中加5ml2%可溶性淀粉,1ml0.1mol/L NaAc(pH5.0)缓冲液,3.9ml H2O,在37℃预热5min,加0.1ml酶液,保温30min后煮沸10min。

淀粉酶活力的测定实验报告

淀粉酶活力的测定实验报告

淀粉酶活力的测定实验报告淀粉酶活力的测定实验报告引言:淀粉酶是一种重要的酶类,广泛存在于生物体内。

它能够催化淀粉的水解反应,将淀粉分解为可溶性糖类。

淀粉酶活力的测定对于了解酶的功能和特性具有重要意义。

本实验旨在通过测定淀粉酶活力的方法,探究酶的催化作用以及影响酶活力的因素。

实验材料与方法:材料:- 淀粉溶液- 淀粉酶溶液- 盐酸溶液- 碘液- 试管- 恒温水浴方法:1. 准备一系列浓度不同的淀粉溶液,如0.1%、0.2%、0.3%等。

2. 将试管标记为不同的浓度,并分别加入相应浓度的淀粉溶液。

3. 在每个试管中加入相同体积的淀粉酶溶液,并迅速混合。

4. 将试管放入恒温水浴中,保持恒定的温度。

5. 在一定时间间隔内,取出一定体积的反应液,加入碘液停止反应。

6. 通过比色法测定淀粉的浓度,进而计算淀粉酶的活力。

结果与讨论:实验结果显示,淀粉酶活力随着淀粉溶液浓度的增加而增加。

这是因为淀粉酶需要与淀粉分子结合才能发挥催化作用,高浓度的淀粉溶液提供了更多的底物供给,从而增加了酶的活性。

另外,我们还观察到淀粉酶活力随着反应时间的延长而增加,但在一定时间后趋于稳定。

这是因为酶的活性在反应初期较高,但随着反应进行,底物浓度逐渐减少,酶的活性也会逐渐降低。

此外,实验结果还显示淀粉酶活力受到温度的影响。

在较低温度下,酶的活性较低,而在适宜的温度范围内,酶的活性最高。

然而,当温度过高时,酶会发生变性,活性会显著下降。

结论:通过本实验,我们成功测定了淀粉酶的活力,并探究了影响酶活力的因素。

实验结果表明,淀粉酶活力受到淀粉溶液浓度、反应时间和温度的影响。

深入了解酶的催化作用和特性,有助于我们更好地理解生物体内的代谢过程,并为工业生产中的酶应用提供理论依据。

然而,本实验还存在一些局限性。

首先,我们仅仅测定了淀粉酶活力的影响因素,对于其他酶的活力测定仍需进一步研究。

其次,实验结果受到实验条件和操作的影响,仍需要进一步优化实验方法和控制实验条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淀粉酶活力的测定方法
淀粉酶主要包括α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和R-酶,它们广泛存在于动物、植物和微生物界。

不同来源的淀粉酶,性质有所不同。

植物中最重要的淀粉酶是α -淀粉酶和β-淀粉酶。

α -淀粉酶随机作用于直链淀粉和支链淀粉的直链部分α -1,4糖苷键,单独使用时最终生成寡聚葡萄糖、α-极限糊精和少量葡萄糖。

Ca 2+能使α-淀粉酶活化和稳定,它比较耐热但不耐酸,pH 3.6 以下可使其钝化。

β-淀粉酶从非还原端作用于α-1,4糖苷键,遇到支链淀粉的α -1,6键时停止。

单独作用时产物为麦芽糖和β-极限糊精。

β-淀粉酶是一种巯基酶,不需要Ca 2+ 及Cl —等辅助因子,最适pH偏酸,与α -淀粉酶相反,它不耐热但觉耐酸,60 ℃保温15min 可使其钝化。

通常提取液中α -淀粉酶和β-淀粉酶同时存在。

可以先测定(α + β)淀粉酶总活力,然后在60 ℃加热15 min ,钝化β-淀粉酶,测出α -淀粉酶活力,用总活力减去α - 淀粉酶活力,就可求出β- 淀粉酶活力。

淀粉酶活力大小可用其作用于淀粉生成的还原糖与3,5- 二硝基水杨酸的显色反应来测定。

还原糖作用于黄色的3,5- 二硝基水杨酸生成棕红色的3- 氨基-5- 硝基水杨酸,生成物颜色的深浅与还原糖的量成正比。

以每克样品在一定时间内生成的还原糖(麦芽糖)量表示酶活大小。

1 酶活测定方法
(1)标准曲线的制作(见下表)
①取7支20 ml具塞刻度试管,预先洁净灭菌干燥,编号,按表加入试剂。

②摇匀,至沸水浴中煮沸5 min。

取出后流水冷却,加蒸馏水定容至20 ml,以1号管作为空白调零点,在520 nm的波长下比色测定吸光度值。

并建立通过吸光度值求麦芽糖含量的回归方程。

表1 标准麦芽糖溶液成分表及OD测定值
试剂 1 2 3 4 5 6 7 麦芽糖标准液(mL)0 0.2 0.6 1.0 1.4 1.8 2.0 H2O(mL) 2.0 1.8 1.4 1.0 0.6 0.2 0 3,5-二硝基水杨酸(mL) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 麦芽糖含量(mg)0 0.2 0.6 1.0 1.4 1.8 2.0 OD520
(2)粗酶液淀粉酶活力测定
①待测粗酶液的制备:
发酵24 h后发酵液4000 r/ min离心10 min,去除菌体,在上清液中加入65%饱和度的硫酸铵,待硫酸铵充分溶解后于4℃盐析2h,然后5000r/min离心20min,得到初步
纯化的淀粉酶。

②按以下顺序操作:
取预先洁净灭菌干燥试管,编号。

取粗酶液1 ml 于各只试管中,于60℃水浴中预热5min 柠檬酸淀粉缓冲液同时在60℃水中预热5min ,→取柠檬酸淀粉缓冲液1ml 加入试管中,于60℃水浴中保温30min →加入1.5 ml 3,5-二硝基水杨酸,沸水中5 min,加入氢氧化钠溶液终止反应,加蒸馏水至20 ml 。

→摇匀,用分光光度计测定OD520 nm 值。

在上述条件下以单位体积样品在30 min 释放1 mg 麦芽糖所需的酶量为一个麦芽糖单位表示酶活性。

在标准曲线上查出相应的麦芽糖含量按下列公式计算酶活力 酶活力测定公式:
淀粉酶活力=麦芽糖含量(mg )·淀粉酶原液总体积(mL )/所加淀粉质量
每个样品按下表所示步骤操作,在反应过程中,从加入底物开始,向每支管中加入试剂的时间间隔要绝对一致:
表2样品酶活力测定步骤 反应顺序 样品(重复3个)
样品空白
标准空白
样品稀释液(ml ) 1 1 0
蒸馏水 0 0 1
60℃预热5min
依次加入淀粉溶液(ml )
1.5 1.5
1.5
混合60℃保温30min
依次加入DNS 试剂
(ml )
1.5
1.5
1.5
混合100℃煮沸5min 加入0.4mol/L NaOH 溶液终止反应
加入蒸馏水至总体积(ml )
20 20
20
反应后的试样在室温下静置10min ,如出现混浊需在离心机上以4,000rpm 离心10min ,上清液以标准空白调零,在分光光度计520nm 波长处测定样品空白(A 0)和样品溶液(A )的吸光值,A -A 0为实测吸光值。

用直线回归方程计算样品淀粉酶的活性。

2 活性计算
酶活力单位定义:在60℃、PH5.6条件下,每小时从2%的可溶性淀粉溶液中释放出1mg 尔麦芽糖的酶量定义为1个酶活力单位(U )
淀粉酶活性U 按下式计算: U = ×F
其中:U ——样品淀粉酶活性,U/ml ; K ——标准曲线斜率;
K ×(A -A 0) S ×(30÷60)×180
F——样品溶液反应前的总量,ml;
S——样品测试量;表1中S=1ml;
60——1小时为60min;
30——反应时间,min。

试剂
(1)2% 淀粉溶液
(2) 0.4mol/L 氢氧化钠
(3) pH5.6 柠檬酸缓冲液称取柠檬酸20.01g ,溶解后定容至1000mL ,为 A 液。

称取柠檬酸钠29.41g ,溶解后定容至1000mL ,为B 液。

取A 液13.7mL 与
B 液26.3mL 混匀,即为pH5.6 之缓冲液。

(4) 3,5- 二硝基水杨酸精确称取1g3,5- 二硝基水杨酸溶于20mL 1mol/L 氢氧化钠中,加入50mL 蒸馏水,再加入30g 酒石酸钾钠,待溶解后用蒸馏水稀释至100Ml ,盖紧瓶塞,防止CO 2进入。

相关文档
最新文档