磁现象知识点

合集下载

九年级物理全一册“第二十章 电与磁”必背知识点

九年级物理全一册“第二十章 电与磁”必背知识点

九年级物理全一册“第二十章电与磁”必背知识点一、磁现象与磁场1.磁性:物体具有吸引铁、钴、镍等物质的性质叫做磁性。

具有磁性的物体叫做磁体。

2.磁极:磁体上磁性最强的部分叫磁极,分为南极 (S极)和北极 (N极)。

任何磁体都有两个磁极,且同名磁极相斥,异名磁极相吸。

3.磁场:磁体周围存在一种看不见、摸不着,但客观存在的物质叫做磁场。

磁场的基本性质是对放入其中的磁体产生磁力的作用。

磁场有方向,规定小磁针静止时北极所指的方向为该点的磁场方向。

4.磁感线:为了形象地描述磁场的方向和分布情况,我们在磁场中画一些有方向的曲线,这些曲线叫做磁感线。

磁感线的方向就是小磁针在该点的受力方向,也是该点的磁场方向。

磁感线在磁体外部从N极出发回到S极,在磁体内部从S极到N极。

磁感线的疏密程度表示磁场的强弱。

二、电生磁与磁生电1.电生磁:奥斯特实验表明,通电导线周围存在磁场,且磁场方向与电流的方向有关。

通电螺线管外部的磁场与条形磁体的磁场相似,其两端的磁场方向跟电流方向有关,关系由安培定则判断。

2.磁生电:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。

感应电流的方向与导体运动方向和磁场方向都有关。

发电机就是根据电磁感应现象制成的,它将机械能转化为电能。

三、电磁铁与电磁继电器1.电磁铁:内部带有铁芯的通电螺线管叫做电磁铁。

电磁铁的磁性有无可以由电流的通断来控制,磁性强弱可以由电流大小和线圈匝数的多少来控制,磁极方向可以由电流方向来控制。

2.电磁继电器:电磁继电器是一种利用电磁铁来控制工作电路通断的开关。

它由电磁铁、衔铁、弹簧、触点等部分组成,可以实现用低电压、弱电流电路的通断来间接控制高电压、强电流电路的通断,还可以实现远距离操纵和自动化控制。

四、电动机与扬声器1.电动机:电动机是将电能转化为机械能的装置。

它的工作原理是通电线圈在磁场中受到力的作用而发生转动。

磁的基本概念和现象

磁的基本概念和现象

磁的基本概念和现象一、磁的概念1.磁性:物质具有吸引铁、镍、钴等磁性材料的性质。

2.磁体:具有磁性的物体,如条形磁铁、蹄形磁铁、磁针等。

3.磁极:磁体上磁性最强的部分,分为北极(N极)和南极(S极)。

4.磁性方向:磁极之间的相互作用方向,由南极指向北极。

5.磁铁的极性:磁铁的两端分别具有南极和北极,磁铁的极性由其内部微观结构决定。

6.磁极间的相互作用:同名磁极相互排斥,异名磁极相互吸引。

7.磁力线:用来描述磁场分布的线条,磁力线从北极指向南极,形成闭合曲线。

8.磁场:磁力线分布的空间区域,磁场强度和方向在不同位置有所不同。

9.磁通量:磁场穿过某个面积的总量,用Φ表示,单位为韦伯(Wb)。

10.磁感应强度:磁场对磁性物质产生的磁力作用,用B表示,单位为特斯拉(T)。

11.磁化:磁性物质在外磁场作用下,内部磁矩排列趋向于一致的过程。

12.磁化强度:磁性物质磁化的程度,用M表示。

13.磁滞现象:磁性物质在反复磁化过程中,磁化强度与磁场强度之间的关系不完全一致的现象。

14.磁阻:磁场对磁性物质运动产生的阻碍作用。

三、磁场的测量与表示1.磁场强度:用符号H表示,单位为安培/米(A/m)。

2.磁感应强度:用符号B表示,单位为特斯拉(T)。

3.磁通量密度:用符号B表示,单位为特斯拉(T)。

4.磁力线密度:表示单位面积上磁力线的数量,用来描述磁场的强弱。

四、磁场的应用1.磁悬浮:利用磁场间的相互作用,使物体悬浮在磁场中,实现无接触运行。

2.磁记录:利用磁性材料记录信息,如磁盘、磁带、磁卡等。

3.磁共振成像:利用磁场和射频脉冲对人体进行无损检测的技术。

4.磁性材料:应用于电机、发电机、变压器、磁悬浮列车等领域。

五、磁场的相关定律1.奥斯特定律:电流所产生的磁场与电流强度成正比,与距离的平方成反比。

2.法拉第电磁感应定律:闭合电路中的感应电动势与磁通量的变化率成正比。

3.安培环路定律:闭合回路中的磁场与电流元之和成正比,与回路长度成反比。

认识磁现象知识点总结

认识磁现象知识点总结

认识磁现象知识点总结一、磁现象的基本概念1、磁性的定义磁性是指物质表现出的吸引或排斥其他物质的性质,称为磁性。

磁性是指物质受到外界磁场作用时所表现出来的一种性质,也就是物质对于磁场的感应能力。

2、磁性的分类一般来说,磁性物质可以分为铁磁性、抗磁性、顺磁性和铁氧体。

铁磁性:铁、钴、镍等金属元素和它们的合金都具有铁磁性,当外部磁场作用于这类材料时,它们会被吸引,并且在外磁场消失后仍会成为永久磁体。

抗磁性:铜、铅、铝等金属元素以及水、氮气等气体都具有抗磁性,当外部磁场作用于这类材料时,它们会产生一个与外磁场相反的磁感应强度,因此会被排斥。

顺磁性:铝、硅、水和大部分的有机物质都具有顺磁性,当外磁场作用于这类材料时,会在外磁场的作用下产生与外磁场方向相同的磁感应强度,也会被吸引。

铁氧体:铁氧体是一类特殊的磁性氧化物材料,其磁性较强,可用于制造磁芯、电源变压器、磁头等。

二、磁性材料的分类1、永磁材料永磁材料是指在自然条件下不会丧失其磁性的材料,主要包括铁、钴、镍、钕铁硼、钡铁氧体等。

永磁材料的磁性主要来源于它们的晶格结构和电子自旋的排列。

2、软磁材料软磁材料是指在磁场作用下易磁化和退磁的材料,主要包括硅钢、镍铁合金等。

软磁材料通常用于制造变压器、电感、电动机等。

3、硬磁材料硬磁材料是指在一定条件下会保持永久磁化的材料,主要包括铁、钴、镍和它们的合金。

硬磁材料主要用于制造永磁体、电机、传感器等。

三、磁性的形成原因1、电子自旋物质的磁性主要来源于内部的电子自旋,电子自旋是电子固有的属性,它类似于地球的自转。

当物质中的电子自旋排列有序时,即形成了宏观磁性。

2、自旋磁矩电子自旋还带有磁矩,这个磁矩的存在使得物质具有了磁性。

当材料中的电子自旋磁矩方向一致时,即形成了宏观的磁性。

3、磁畴结构磁性材料通常通过磁畴结构来实现在无外磁场下的自发自发磁化。

在无外磁场作用下,磁性材料通常会分为许多小的磁畴,每个磁畴的磁性取向是随机的。

磁现象磁场知识点归纳

磁现象磁场知识点归纳

磁现象磁场知识点归纳
磁现象和磁场的基本知识点可以归纳为以下几个方面:
1. 磁性与磁体:
- 磁性:物体能够吸引铁、钴、镍等物质的性质称为磁性。

- 磁体:具有磁性的物体称为磁体,可以分为天然磁体和人造磁体两种。

能够长期保持磁性的叫永久磁体。

2. 磁场的描述:
- 磁场的基本性质:磁场对处于其中的磁体、电流和运动电荷有力的作用。

- 磁感应强度:描述磁场强弱和方向的物理量,定义为B=F/IL (通电导线垂直于磁场时的受力与电流和导线长度的乘积之比)。

3. 磁感线:
- 方向:磁感线上的切线方向为该点的磁场方向。

- 分布:在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极。

- 特性:磁感线是闭合的曲线,任意两条磁感线不相交,且是立体空间分布的。

4. 安培分子环流假说:任何物质的分子中都存在环形电流——
分子电流,使每个分子成为一个微小的磁体。

5. 匀强磁场:如果磁场的某一区域里,磁感应强度的大小和方向处处相同,这个区域的磁场叫做匀强磁场。

6. 磁化:使原来没有磁性的物体获得磁性的过程叫做磁化。

7. 电流的磁效应:通电导体周围产生磁场,这种现象叫做电流的磁效应。

8. 奥思特实验:导线通电后,其下方与导线平行的小磁针会发生偏转,这是电与磁之间联系的第一个实验证据。

综上所述,这些知识点构成了磁现象和磁场的基本理论框架,是理解电磁学以及相关物理学领域的基础。

磁现象ppt课件

磁现象ppt课件
磁化 使没有磁性的物体获得磁性的过程叫做磁化。
课堂练习
1.关于磁感线,下列说法正确的是( B ) A.磁感线是磁场中实际存在的曲线; B.磁体周围的磁感线都是从磁体北极出发, 回到磁体南极; C.小磁针南极在某处受磁场力的方向,跟 该处磁感线方向相同; D.磁感线只分布在磁场外,不分布在磁体内.
2.关于磁场,下列说法正确的是( D ) A.地磁场的N极在地理北极附近,S极在地理南极附近, 与地球两级并不完全重合 B.磁极间相互作用不都是通过磁场发生的 C.磁感线是磁场中真实存在的一些曲线 D.磁感线从磁体的N出发,回到磁体的S极
新知学习 知识点三:磁化的秘密
实验探究 磁化 如图所示,在一支试管中,倒入铁屑,留出一定空隙,用手堵住管口, 请按下面顺序操作,你有什么发现?
把试管拿到悬吊 将试管靠近磁体,观 再把试管拿到悬吊 摇晃试管,再移近
着的订书钉旁
察铁屑排列有何变化 的订书钉旁
订书钉,观察现象
1.磁化:使没有磁性的物体获得磁性的过程叫做磁化。 2.磁性材料:能被磁化的物质大多是含铁、钴、镍的合金或氧化物,
磁体内部:磁感线从S极指向N极。
7、磁场强弱:曲线的密疏程度表示磁场强弱。
磁感线密的地方磁场越强;
越稀疏的地方磁场越弱。
注意:磁感线是连续的曲线,且不相交
不同磁场的磁感线
磁针受力转动是磁场作用的结果,那么指南针在世界各地都能够指南北 又是谁的磁场在施加作用呢?
1.地球周围存在的磁场叫做地磁场。 2.研究表明地磁场的形状与条形磁体的磁场很相似。 3.地磁场特点 地磁N极在地理的南极附近;地磁S极在地理的北极附近。
怎样表示磁场的强弱?
如图所示,在纸板下面放一条线磁铁,取一些铁屑,均匀地撒在硬纸板上, 轻敲纸板,你观察到什么?

物理磁现象知识点总结

物理磁现象知识点总结

物理磁现象知识点总结磁现象是研究物质在磁场中的行为规律和特点的一门学科,它是固态物理学中的一个重要研究方向。

在磁现象中,人们主要研究磁材料的磁性、磁场对物质的影响和相互作用等内容。

磁现象不仅在物理学中有着重要的地位,同时也在工程技术、材料科学、信息技术等领域有着广泛的应用。

磁现象的基本概念磁现象是研究物质在磁场中的行为规律和特点的一门学科,它是固态物理学的一个重要分支。

磁现象的研究对象是磁材料,主要是研究磁材料的磁性、磁场对物质的影响、磁场作用下的物质相互作用等内容。

磁现象的基本概念主要包括以下几个方面:1.原子磁矩在无外磁场的情况下,原子内部存在着自旋磁矩和轨道磁矩,这两种磁矩所产生的磁场分别称为自旋磁场和轨道磁场。

2.磁性物质的分类根据磁性的强弱,磁物质可以分为铁磁性物质、铁氧体磁性物质、顺磁性物质和抗磁性物质。

3.磁化过程当一个物质被置于外磁场中时,原子的磁矩会发生重新排列,从而使整个物质产生磁化现象。

磁化过程包括顺磁性、铁磁性和抗磁性。

4.磁场对物质的作用当物质置于外磁场中时,它会受到磁场的作用,表现出一系列特定的磁性响应,包括磁化、铁磁共振、磁变形、磁滞等现象。

磁性的基本概念磁性是指物质表现出的对外部磁场的相互作用的特性。

磁性是物质内部微观结构和原子磁矩的表现。

在磁现象中,磁性物质根据其相互作用的强弱和性质的不同,可以分为铁磁性、顺磁性、抗磁性和铁氧体磁性。

1.铁磁性物质铁磁性物质是一种直径变化明显的物质,其分子、原子或离子中的磁矩在外磁场作用下会有明显的改变。

在外磁场作用下,铁磁性物质会发生磁化,形成明亮的磁极。

2.顺磁性物质顺磁性物质是指在外磁场作用下,其分子、原子或离子中的磁矩会呈线性增加的物质。

顺磁性物质在外磁场作用下,表现出明显的磁场增强效应。

3.抗磁性物质抗磁性物质是指在外磁场作用下,其分子、原子或离子中的磁矩会呈线性减小的物质。

抗磁性物质在外磁场作用下,表现出明显的磁场减弱效应。

磁现象知识点总结

磁现象知识点总结

磁现象知识点总结磁现象是我们生活中常见的自然现象之一,它与磁场的产生和作用有着密切的关系。

在我们的日常生活中,我们经常会接触到各种磁性物质,比如磁铁、电磁铁等。

而了解磁现象的知识,不仅可以帮助我们更好地理解周围的环境,还能够应用到各个领域,比如物理、工程、医学等。

因此,本文将对磁现象进行一个全面的总结,包括磁场的产生、磁性材料的特性和应用以及磁现象在现代科技中的应用等方面的知识点。

1. 磁场的产生磁现象的产生与磁场密切相关。

磁场是一种特殊的物理场,它可以使磁性物质受到相互吸引或排斥的作用。

磁场可以由运动电荷产生,比如电流、电子等。

当电流通过导线时,会产生一个磁场,这就是所谓的电磁场。

电磁铁也是利用电流产生的磁场来实现吸附和释放物体的目的。

除此之外,地球本身也有一个巨大的磁场,这就是我们常说的地磁场。

地磁场对于地球上的生物和环境有着重要的影响,比如鸟类和鱼类可以利用地磁场来导航。

2. 磁性材料的特性和应用磁性材料是一类对磁场有着特殊响应的材料,它们可以被磁化,并且可以产生磁场。

常见的磁性材料包括铁、镍、钴等。

这些材料可以被永久磁化,也可以在外加磁场的作用下表现出磁性。

磁性材料在我们的日常生活中有着广泛的应用,比如制作磁铁、电磁铁、磁带、硬盘等。

此外,磁性材料还可以用于传感器、医疗设备、磁性材料分离等领域。

3. 磁现象在现代科技中的应用磁现象在现代科技中有着重要的应用价值。

比如在电力工程领域,电磁铁被广泛应用于电梯、电动车、发电机等设备中。

在通讯技术领域,磁带、硬盘、磁存储器等设备都要依赖磁性材料来实现信息的存储和传输。

在医疗领域,核磁共振成像(MRI)技术就是利用磁现象来实现对身体内部结构和器官的成像。

此外,磁现象还可以应用于航天技术、能源开发、环境保护等领域。

总之,磁现象是一个非常重要的物理现象,它不仅具有深刻的理论意义,还有着广泛的应用价值。

通过了解磁现象的知识,我们可以更好地理解自然界的规律,也可以将其运用到各个领域,为人类的发展进步做出更多的贡献。

磁现象知识点

磁现象知识点

一、磁现象1、磁体(磁铁)可以吸引铁钴镍等金属物质。

(不仅仅是铁)2、磁性最强的地方叫磁极。

一块磁体有且只有两个磁极。

北极-N ,南极-S3、一块磁铁摔断后,原N 极的断口处形成S 级,原S 极的断口处形成N 级。

4、同名磁极相互排斥,异名磁极相互吸引。

(相互吸引的不一定是异名磁极,有可能一个是磁铁,一个是铁)5、如何区分磁极到底是N 极还是S 极? (利用同名磁极相互排斥)6、如何判断哪个是条形磁铁,哪个是铁条?(利用条形磁铁中间磁性最弱,两端磁性最强)7、磁场是真实(客观)存在的物质,磁感线是人为画出的。

磁感线属于物理研究方法中的模型法。

8、磁体外部:磁感线从N 指向S ;磁体内部:磁感线从S 指向N.9、静止在磁场中的小磁针,其N 极方向与磁感线方向一致。

10、地球本身存在磁场,地磁的N 极在地理的南极附近,地磁的S 极在地理的北极附近。

存在地磁偏角,并不重合(沈括) 11、指南针的N 极指向北方向(地理北极),指南针的S 极指向南方向(地理南极)。

在地磁的南极点,指南针指向“地”,在地磁的北极点,指南针指向“天”,12、鸽子、骆驼等动物可以通过地磁场辨别方位。

13、一些金属可以被磁化,例如摩擦,注意摩擦方向、永磁体NS 极与新磁体NS 极之间的关系。

二、安培定则(右手螺旋定则)1、右手握住通电螺线管,四指指向电流环绕方向,拇指指向N 极(螺线管相当于条形磁铁)闭合开关,A 处磁场(磁感线)方向向左,小磁针会逆时针旋转90° 三、电磁铁(带铁芯的通电螺线管)1、电磁铁的好处:磁场的有无可以通过电流的有无来控制;磁场的方向可以通过电流的方向来控制(磁极可对调);磁场的强弱可以通电电流的强弱来控制。

2、影响电磁铁磁性强弱的因素:铁芯;匝数;电流大小。

四、电磁继电器(本质是一个开关)1、可以实现低电压控制高电压、弱电流控制强电流、远程操控、自动报警等功能。

2、电磁继电器分为控制电路和工作电路,由五部分构成:电磁铁、弹簧、衔铁、动触点、静触点。

中考磁现象知识点总结

中考磁现象知识点总结

中考磁现象知识点总结一、磁现象的基本原理1. 磁性物质的特点磁性物质是指在外加磁场下会表现出明显磁性的物质。

通常来说,铁、镍和钴都是具有磁性的物质,而铜、铝和塑料等非磁性物质是不具有磁性的。

磁性物质在外加磁场下会被吸引或排斥,这是由于其内部的微观磁偶极子在外加磁场下发生排列,从而表现出磁性。

2. 磁场的产生磁场是指物体周围具有的一种特殊空间。

产生磁场的主要方式是由于磁性物质内部的微观磁偶极子排列所引起的。

除了磁性物质外,电流也会产生磁场。

根据安培定则,电流所产生的磁场方向与电流方向成右手螺旋规则。

3. 磁现象的原理磁性物质在外加磁场下会发生磁化,形成磁偶极子的排列。

当两个磁性物质相互作用时,其磁偶极子的排列会导致物体间的吸引或排斥现象。

根据库仑定律,两个相同磁性的物质会互相排斥,而两个不同磁性的物质会互相吸引。

二、磁现象的应用1. 磁铁磁铁是最常见的磁性物质,可以用于吸附铁质物体。

磁铁广泛应用于工业生产和日常生活中。

2. 电磁铁电磁铁是由线圈绕制而成的,通电时产生磁场,通电时吸铁,断电时释放。

广泛应用于各种电磁设备中。

3. 变压器变压器是利用电磁感应原理工作的电气设备。

在变压器中,两个线圈通过磁场感应产生电压变化,实现电压变换。

4. 磁共振成像磁共振成像是一种医学诊断技术,通过利用磁场作用于人体水分子产生信号,再通过信号处理实现对人体内部结构的成像。

5. 磁卡磁卡是一种普遍应用于银行卡、门禁卡等的存储设备,通过磁条记录卡片上的信息。

6. 磁记录磁记录是一种存储技术,通过利用磁性材料将数据信息记录在磁盘、磁带等存储介质上,实现数据的长期保存和读取。

三、磁现象知识点的学习方法1. 熟练掌握知识点学生在学习磁现象知识点时,首先要熟练掌握磁性物质、磁场产生和磁现象原理等基本概念,掌握这些知识点是学习和理解磁现象的基础。

2. 多做实验通过实验观察和验证磁性物质在不同条件下的磁化和相互作用情况,能够加深对磁现象的理解。

磁现象知识点总结大全

磁现象知识点总结大全

磁现象知识点总结大全1. 磁现象的概念和历史磁现象是指磁铁吸引铁、镍、钴等金属物质的现象。

远在古希腊时期,人们就已经发现了磁现象,但现代物理学的研究才揭示了磁现象的本质。

在历史上,磁现象一直被看作是神秘的现象,直到17世纪的威廉·吉尔伯才提出了磁现象的科学解释。

后来,通过诸如电磁学和量子力学的研究,人们对磁现象有了更深刻的理解。

2. 磁场和磁感线磁场是指周围空间中存在的一种特殊力场,它是由带电粒子的运动所产生的。

在磁现象中,磁铁周围形成了一个磁场,这个磁场可以用磁感线来描述。

磁感线是磁场中的力线,它表示了磁场的方向和强度。

沿着磁感线方向的箭头指向磁场的走向,而磁感线的密集程度表示了磁场的强度。

当两个磁铁相互靠近时,它们周围的磁感线会发生变化,从而产生磁相互作用力。

3. 磁铁的性质磁铁是产生磁现象的主要物质。

通过磁现象的研究发现,磁铁有以下几个主要的性质:(1) 磁铁有两极性:将一个磁铁悬吊起来,在地球磁场的作用下,磁铁的一端会指向地理北极,我们将这一端称为磁铁的北极,而与之相对的一端被称为南极。

(2) 磁铁具有吸引和排斥的作用:当两个磁铁的同极相对时,它们会互相排斥;而在南北极相对时,它们会互相吸引。

(3) 磁铁的磁性是可以改变的:通过加热或敲击等方法,可以破坏磁铁的磁性。

4. 磁现象的原理磁现象的产生原因主要有两方面的因素:磁铁自身的磁性和周围磁场的作用。

磁铁自身的磁性是由其内部的微观结构决定的,而周围磁场的作用主要是由周围物质中的带电粒子运动产生的。

基于这些因素,可以通过电磁学和量子力学的理论来解释磁现象的产生。

5. 磁现象的应用磁现象在生活中有许多应用,主要包括电磁设备、磁记录和生物医学等方面。

(1) 电磁设备:利用磁现象的产生和作用原理,可以制造和应用许多电磁设备,如电动机、发电机、变压器等。

这些设备在工业生产和生活中起着重要作用。

(2) 磁记录:利用磁现象可以进行磁记录,如磁盘、磁带等,广泛应用于信息存储和传输领域。

磁现象磁场知识点总结

磁现象磁场知识点总结

磁现象磁场知识点总结磁现象是自然界中一种十分普遍的物理现象,其在生活和科学中都有着广泛的应用。

为了更好地理解磁现象和磁场,我们需要了解一些基本的知识点。

本文将通过对磁现象和磁场的定义、特性、产生机制及应用进行深入探讨,帮助读者更好地理解这一物理现象。

一、磁现象及磁场的概念1. 磁现象的定义磁现象是指磁物质相互之间发生的相互作用现象。

最早的磁现象即指的是两个磁铁之间的相互作用。

当两个磁铁相互接近时,它们会相互吸引或排斥,这种现象被称为磁现象。

2. 磁场的定义磁场是指由磁物质所产生的一种特殊的物理场。

磁物质产生的磁场可以作用于其他物体,使其发生受力或者受磁化的作用。

二、磁现象的特性1. 磁铁的两极性磁铁具有两种不同的极性,即南极和北极。

两个北极或两个南极之间会相互排斥,而南极和北极之间会相互吸引。

这一特性被称为磁铁的两极性。

2. 磁场的方向磁场具有方向性,即磁场沿着磁力线的方向行进。

磁力线是磁感应强度的线条,其方向从北极指向南极。

3. 磁力的强度磁物质产生的磁力可以作用于其他物体,使其发生运动或者受力。

磁力的强度与磁物质的性质、形状和大小有关。

三、磁场的产生机制1. 宏观磁场产生机制宏观磁场是由电流所产生的,当电流通过导线时,会产生磁场。

这一现象被称为安培环流定律。

根据该定律,电流所产生的磁场的方向与电流的方向和位置有关。

2. 微观磁场产生机制微观磁场是由微观粒子(如电子、质子等)携带的基本电荷所产生的。

当这些微观粒子运动时,会产生磁场。

这一现象被称为洛伦兹力。

四、磁场的应用1. 电磁感应磁场可以引起电场的变化,从而产生电动势。

这一现象被称为电磁感应。

基于电磁感应的原理,可以制造发电机和变压器等设备。

2. 磁力的应用磁场产生的磁力可以用于各种实际应用中。

例如,磁铁可以用于吸附物体,磁铁可以用于制作电磁铁等。

3. 医学应用磁场在医学中有许多应用。

例如,MRI是一种利用磁场原理来进行医学成像的技术,其能够对人体进行高分辨率成像。

20.1《磁现象+磁场》知识点+练习-2024-2025学年人教版物理九年级全一册

20.1《磁现象+磁场》知识点+练习-2024-2025学年人教版物理九年级全一册

20.1《磁现象磁场》一、磁现象1、磁性:若物体能够吸引铁、钴、镍等物质,我们就说该物体具有磁性。

铁、钴、镍等物质称为磁性材料。

具有磁性的物体有两个特点:一是能吸引磁性材料,非磁性材料不能被吸引。

如磁体不能吸引铜、铝、纸、木材等;二是吸引磁性材料时,可不直接接触。

如隔着薄木板,磁体也能吸住铁块。

2、磁体:具有磁性的物体称为磁体。

3、磁极:磁体上磁性最强的部位叫做磁极,任何一个磁体,无论其形状如何,都只有两个磁极,其中一个是南极(S极),另一个是北极(N极)。

磁极是磁体上磁性最强的部位。

注:如果磁体别分割成两段或几段后,每一段磁体上仍然有N极和S极。

4、磁极间的相互作用(1)同名磁极相互排斥,异名磁极相互吸引。

(2)判断物体是否具有磁性的方法①根据磁体的吸铁性判断:将被测物体靠近铁屑,若能够吸引铁屑,说明该物体具有磁性,否则便没有磁性。

②根据磁体的指向性判断:将被测物体用细线吊起,若静止时总是指南北方向,说明该物体具有磁性,否则便没有磁性。

③根据磁极间的相互作用规律判断:将被测物体的一端分别靠近静止小磁针的两极,若发现有一段发生排斥现象,说明该物体具有磁性;若与小磁针的两极均表现为相互吸引,则说明该物体没有磁性。

④根据磁极的磁性最强判断:若有A、B两个外形完全相同的钢棒,已知一个有磁性,另一个没有磁性,区分它们的方法是:将A的一端从B的左端向右端滑动,若在滑动过程中发现吸引力的大小不变,则说明A有磁性;若发现A、B间的作用力有大小变化,则说明B有磁性。

(3)磁体和带电体的对比磁体带电体能吸引磁性材料能吸引轻小物体有南、北极之分,磁极不能单独存在有正、负电荷之分,电荷能单独存在同名磁极相互排斥,异名磁极相互吸引同种电荷相互排斥,异种电荷相互吸引5、磁化和磁性材料(1)一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

(2)磁化方式:①接触或靠近磁体②用磁体的一极沿同一方向多次摩擦(3)软磁体和硬磁体铁棒被磁化后,其磁性很容易消失,称为软磁体。

人教版九年级物理磁现象知识点

人教版九年级物理磁现象知识点

人教版九年级物理磁现象知识点
九年级物理磁现象的知识点主要有以下几个:
1. 磁性物质:铁、钴、镍等物质具有磁性,可以被磁化。

磁体分为永磁体和临时磁体。

2. 磁铁的性质:磁铁有两个极,北极和南极,相同极互相排斥,不同极互相吸引。


铁的磁场是由南极指向北极的。

3. 磁场:磁铁周围存在磁场,磁场可以用磁力线表示。

磁力线是从南极指向北极的曲线。

磁力线的密度表示磁场的强弱,磁力线的方向表示磁场的方向。

4. 磁场对物体的影响:磁场可以对物体产生力的作用。

当磁场和物体的运动方向相同,磁场对物体具有斥力;当磁场和物体的运动方向相反,磁场对物体具有吸引力。

5. 电流产生磁场:通过导体中的电流流动,会产生一个环绕导体的磁场。

电流越大,
磁场越强。

6. 电磁铁:将通电的导线绕在铁芯上,形成的装置叫做电磁铁。

电磁铁通电时会很强
磁化,断电后又失去磁性。

7. 线圈磁铁:将绕有导线的线圈通电,可以产生强磁场。

线圈磁铁有许多应用,例如
电磁吸盘、电磁继电器等。

8. 电流感生磁场:变化的电流可以产生变化的磁场。

这个原理被用于制作变压器、发
电机等。

9. 直流电动机:直流电动机运用了电流感生磁场的原理,通过不断改变磁场方向来使电动机转动。

直流电动机是很常见的电机之一。

以上是九年级物理磁现象的一些知识点,希望能帮到你。

高中物理磁现象和磁场知识点总结

高中物理磁现象和磁场知识点总结

高中物理磁现象和磁场知识点总结磁现象和磁场一直是物理学中的重要内容,也是高中物理课程中的一部分。

了解和掌握磁现象和磁场的知识对于理解电磁现象和电磁场具有重要意义。

本文将对高中物理中的磁现象和磁场知识点进行总结。

1. 磁现象的基本特征磁现象主要包括磁性物体吸引或排斥的现象。

磁性物体可以分为两类:铁磁体和永磁体。

铁磁体是指受到外界磁场作用后,具有自己的磁性,可以被较强的外磁场吸引住;永磁体是指在没有外部磁场作用下,具有自己的磁性,可以吸引铁磁体。

2. 磁力和磁场磁力是指磁体之间相互作用的力。

磁场是指空间中具有磁性物体周围某一点的磁性特征,是用来描述磁力作用的场。

3. 磁场的表示方法磁场可以通过磁力线(磁感线)来表示。

磁力线是瞬时磁力的方向,用连续的曲线表示磁力的方向和强度。

4. 磁感强度磁感强度是描述磁场强弱的物理量,用字母B表示。

磁感强度的单位是特斯拉(T)。

5. 磁力的计算当两个磁性物体相互作用时,会产生磁力。

根据库仑定律的类比,可以得出两个磁体之间的磁力公式:F = k * (m1 * m2) / r^2,其中F表示磁力,k表示比例常数,m1和m2表示两个磁体的磁矩,r表示两个磁体之间的距离。

6. 磁场对电荷的作用磁场不仅对磁性物体有作用,还对带电粒子(电荷)有作用。

当带电粒子在磁场中运动时,会受到一个称为洛伦兹力的力,该力的大小和方向由电荷、速度和磁场的特性决定。

7. 安培力和安培定则安培力是指导线中的电流在磁场中受到的力。

根据安培定则,安培力的大小和方向等于导线中的电流、导线长度、磁场的磁感强度以及导线与磁场夹角的综合影响。

8. 电磁铁电磁铁是一种利用电流在导线中产生的磁场而形成的人工磁体。

电磁铁广泛应用于各个领域,如电力、通信和科学实验等。

9. 磁场对运动带电粒子的影响磁场对运动带电粒子的影响可以通过洛伦兹力来描述。

洛伦兹力的方向垂直于带电粒子的速度和磁场的方向,大小由电荷的量、速度和磁场的特征共同决定。

初中磁现象磁场知识点归纳

初中磁现象磁场知识点归纳

初中磁现象磁场知识点归纳初中物理学中,磁现象和磁场是一个重要的知识点。

磁现象是指物质表现出的磁性特征,而磁场是指由磁物质所产生的力场。

下面我们来归纳一下初中磁现象和磁场的相关知识点。

一、磁现象1. 磁性物质:铁、钴、镍等金属和一些化合物具有磁性,可以被磁铁吸引。

2. 磁铁的两极:磁铁有两个极,一个是北极,一个是南极,相同极互相排斥,不同极互相吸引。

3. 磁化和消磁:将非磁性物质放在磁铁附近,可以使其具有临时磁性,这就是磁化;将磁性物质离开磁铁后,使其失去磁性,这就是消磁。

4. 磁力:磁铁的两极之间有磁力作用,可以吸引或排斥其他物体。

5. 磁力线:磁力线是用来表示磁场的线条,从磁铁的南极出来,从北极进入磁铁。

二、磁场1. 磁场的方向:磁场的方向由磁铁的南极指向北极,这是磁力线的方向。

2. 磁力线的特点:磁力线是闭合曲线,磁力线之间不能相交,磁力线越密集,磁场越强。

3. 磁场的作用:磁场可以使磁性物质受到力的作用,使其发生位移或转动。

4. 磁场的产生:磁场是由磁物质所产生的,例如磁铁、电磁铁等。

5. 磁感应强度:磁感应强度是一个物理量,用符号B表示,表示单位面积上的磁力线数目,单位是特斯拉(T)。

三、应用1. 磁铁:磁铁可以用来吸引物体,制作电磁铁等。

2. 电磁铁:电磁铁是由电流通过线圈产生的磁场而形成的,可以用来制作电磁吸盘、电磁铁悬浮列车等。

3. 电动机:电动机利用磁场的作用原理,将电能转化为机械能。

4. 发电机:发电机利用磁场的作用原理,将机械能转化为电能。

通过以上对初中磁现象和磁场的知识点的归纳,我们对磁性物质、磁铁的两极、磁化和消磁、磁力和磁力线、磁场的方向和特点、磁感应强度以及磁场的应用有了更深入的了解。

这些知识点不仅是初中物理学的基础,也对我们理解和应用磁场具有重要意义。

电磁知识点资料

电磁知识点资料

电与磁知识点第一节:磁现象1、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。

2、磁体:具有磁性的物质叫做磁体。

3、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。

(任一个磁体都有两个磁极且是不可分割的)可以自由转动的磁体,静止后恒指南北。

为了区别这两个磁极,我们就把指南的磁极叫南极,或称S极;另一个指北的磁极叫北极,或称N极。

4、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。

5、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。

6、磁化:使原来没有磁性的物体得到磁性的过程。

铁棒被磁化后,磁性容易消失,称为软磁体。

钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。

人造磁体就是永磁体。

7、磁场:概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。

磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。

磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

注意:在磁场中的一个位置的磁场方向只有一个。

8、磁感线:概念:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。

方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线。

练习:画出下列各组磁感线方向9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。

(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。

(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。

(4)在空间每一点只有一个磁场方向,所以磁感线不相交。

10、地磁场地磁场:地球周围存在着磁场叫做地磁场。

地磁北极在地理南极附近,地磁南极在地理北极附近。

磁现象知识点总结高中

磁现象知识点总结高中

磁现象知识点总结高中磁现象是自然界中常见的一种现象,它指的是物质在一定条件下表现出的磁性特征。

磁现象在人类社会中有着广泛的应用,例如磁铁、电磁感应等都是基于磁现象产生的现象。

在高中物理课程中,学生会学习关于磁现象的知识,包括磁场的产生、磁力的作用、磁感应现象等内容。

本文将对这些知识点进行总结,帮助学生更好地理解和掌握磁现象的相关知识。

一、磁场的产生磁现象的基础是磁场的存在,磁场是一种物质周围空间的特殊状态,它可以使磁性物质受到吸引或排斥的力。

磁场可以由电流和磁体产生。

当电流通过导体时,会产生磁场,这就是电流产生的磁场;而磁体产生的磁场则是由磁铁、电磁铁等产生的。

磁场可以用磁感线来表示,磁感线是单位磁力线的方向,它在磁场中的分布决定了磁场的性质。

学生在学习磁场产生时,需要掌握磁场的定义、性质、磁感线的画法和规律等基本知识。

二、磁力的作用磁场的存在会导致磁力的作用,磁力是磁场对磁性物质产生的作用力。

磁力的大小和方向与磁感应强度以及磁性物质的性质有关。

在学习磁力的作用时,学生需要了解磁场对磁性物质产生的吸引和排斥的作用,并能够用数学知识来描述和计算磁力的大小方向。

三、磁感应现象磁感应现象是指磁场对磁性物质产生的影响。

当磁性物质置于外界磁场中时,会受到力的作用而发生磁化。

磁铁、磁铁矿等都是常见的磁性物质。

在学习磁感应现象时,学生需要了解磁性物质的磁化规律以及其在外界磁场中的行为。

四、电磁感应电磁感应是磁现象与电现象的结合,它是指当磁场变化时,会感应出电场,而当电场变化时,也会感应出磁场。

这种相互感应的现象称为电磁感应。

电磁感应的基本规律是法拉第定律和楞次定律。

学生在学习电磁感应时,需要掌握法拉第定律和楞次定律,理解感应电动势和感应电流的产生规律。

以上是关于磁现象的基本知识点的总结,希望能对学生们的学习有所帮助。

学生在学习磁现象时,应该多做实验,通过实际操作来加深对磁现象的理解和掌握。

此外,学生还可以通过阅读相关文献和参考资料,加深对磁现象的认识,提高自己的学习水平。

磁现象知识点总结(含常见磁现象解析)

磁现象知识点总结(含常见磁现象解析)

磁现象知识点总结(含常见磁现象解析)磁现象知识点总结(含常见磁现象解析)一、磁现象简介磁现象是指物质在磁场作用下表现出的特征和行为。

磁现象的研究对于电磁学和材料学具有重要意义。

本文将总结一些常见的磁现象及其解析。

二、磁现象解析1. 磁吸引和磁排斥当两个磁体靠近时,它们会表现出两种不同的行为:磁吸引和磁排斥。

如果两个磁体的磁极相同(两极均为北极或两极均为南极),它们将互相排斥。

如果两个磁体的磁极相反(一个是北极,一个是南极),它们将互相吸引。

2. 磁铁的磁性磁铁是一种具有磁性的物体。

它能够吸引含铁物质并产生磁场。

磁铁的磁性来源于其内部的微观结构,主要与电子的自旋和轨道运动有关。

3. 磁化和去磁化当一个物体被置于外部磁场中时,它的内部原子或分子会重新排列,使得物体自身产生磁场的现象称为磁化。

而去磁化是指物体失去磁性的过程。

4. 磁场线磁场线可以用来描述磁场的分布情况。

磁场线从磁南极指向磁北极,并形成闭合曲线。

磁场线越密集,表示磁场越强。

5. 磁场的产生和消失磁场可以通过电流或磁体产生。

当通过导体中的电流时,会产生磁场。

磁体也能够产生磁场,这是由磁体内部的磁性原子或分子所引起的。

磁场可以通过断开电流或移除磁体来消失。

6. 磁化强度和磁场强度磁化强度是物体单位体积内的磁矩,也可以理解为物体自身的磁性程度。

磁场强度是在特定点上的磁场强度大小。

磁化强度和磁场强度之间存在一定的关系。

三、总结磁现象是物质在磁场作用下的特征和行为。

常见的磁现象包括磁吸引和磁排斥、磁铁的磁性、磁化和去磁化、磁场线、磁场的产生和消失以及磁化强度和磁场强度。

了解磁现象对于电磁学和材料学研究具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十五、磁场
1、物体具有吸引铁、钴、镍等物体的性质,该物体就具有了磁性。

具有磁性的物体叫做磁体。

2、磁体两端磁性最强的部分叫磁极,磁体中间磁性最弱。

当悬挂静止时,指向南方的叫南极(S),指向北方的叫北极(N)。

任一磁体都有两个磁极。

相互作用规律:同名磁极互相排斥,异名磁极互相吸引。

3、磁化:使没有磁性的物体获得磁性的过程。

方式有:与磁体接触;与磁体摩擦;通电。

有些物体在磁化后磁性能长期保存,叫永磁体(如钢);有些物体在磁化后磁性在短时间内就会消失,叫软磁体(如软铁)。

4、磁体周围存在一种看不见,摸不着的物质,能使磁针偏转,叫做磁场。

磁场对放入其中的磁体会产生磁力的作用。

5、磁场方向:磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。

6、在物理学中,为了研究磁场方便,我们引入了磁感线的概念。

磁感线总是从磁体的北极出来,回到南极。

7、地球也是一个磁体,周围也存在着磁场,叫地磁场。

所以小磁针静止时会由于同名磁极互相排斥,异名磁极互相吸引的原理指向南北,由此可知,地磁南极在地理北极附近,地磁北极在地理南极附近。

8、地磁南极与地理北极、地磁北极与地理南极并不完全重合,中间有一个夹角,叫做磁偏角,是由我国宋代学者沈括首先发现的。

十六、电生磁
1、奥斯特实验证明:通电导线的周围存在着磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。

这一现象是由丹麦物理学家奥斯特在1820年发现的。

2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。

通电螺线管的磁场相当于条形磁体的磁场,通电螺线管的两端相当于条形磁体的两个磁极。

3、通电螺线管的磁场方向与电流方向有关。

磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。

4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。

电磁铁磁场的强弱与电流的强弱、线圈的匝数、铁芯的有无有关。

可以制成电磁起重机、扬声器和吸尘器等。

5、判断通电螺线管的磁场方向可以使用安培(右手)定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的N极。

十七、电磁继电器
1、继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。

实质上它就是利用电磁铁来控制工作电路的一种开关。

2、电磁继电器由电磁铁、衔铁、簧片、触点组成;其工作电路由低压控制电路和高压工作电路两部分组成。

十八、电动机
1、通电导体在磁场中会受到力的作用。

它的受力方向跟电流方向、磁感线方向有关。

2、电动机由转子和定子两部分组成。

能够转动的部分叫转子;固定不动的部分叫定子。

3、当直流电动机的线圈转动到平衡位置时,线圈就不再转动,只有改变线圈中的电流方向,线圈才能继续转动下去。

这一功能是由换向器实现的。

换向器是由一对半圆形铁片构成的,它通过与电刷的接触,在平衡位置时改变电流的方向。

实际生活中电动机的电刷有很多对,而且会用电磁场来产生强磁场。

4、电动机构造简单、控制方便、体积小、效率高、功率可大可小,被广泛应用在日常生活和各种产业中。

它在电路图中用○M表示。

十九、磁生电
1、在1831年由英国物理学家法拉第首先发现了利用磁场产生电流的条件和规律。

当闭合电路的一部分在磁场中做切割磁感线运动时,电路中就会产生电流。

这个现象叫电磁感应现象,产生的电流叫感应电流。

2、没有使用换向器的发电机,产生的电流,它的方向会周期性改变方向,这种电流叫交变电流,简称交流电。

它每秒钟电流方向改变的次数叫频率,单位是赫兹,简称赫,符号为Hz。

我国的交流电频率是50Hz。

3、使用了换向器的发电机,产生的电流,它的方向不变,这种电流叫直流电。

(实质上和直流电动机的构造完全一样,只是直流发电机是磁生电,而直流电动机是电生磁)
4、直流电动机(耳机、扬声器)原理:是利用通电线圈在磁场里受力转动的原理制成的。

电动机工作时是把电能转化为机械能
直流发电机(话筒)原理: 电磁感应现象. 发电机工作时是把机械能转化为电能。

相关文档
最新文档