初中概率初步知识点归纳

合集下载

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章 概率初步”必背知识点

2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。

必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。

2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。

取值范围:概率的取值范围是0≤p≤1。

特别地,P(必然事件)=1,P(不可能事件)=0。

二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。

2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。

树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。

三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。

即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。

四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。

2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。

如果概率相等,则游戏公平;否则,游戏不公平。

五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。

示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。

解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。

因此,抽到红桃的概率为P=13/54。

2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。

九年级数学概率初步知识点

九年级数学概率初步知识点

九年级数学概率初步知识点
9年级数学的初步概率知识点包括:
1. 事件与概率:事件是指某种可能发生的结果,概率是指某个事件发生的可能性大小。

2. 随机事件与确定事件:随机事件是指其结果在每次试验中可能不同的事件,确定事
件是指其结果在每次试验中都相同的事件。

3. 样本空间与样本点:样本空间是指所有可能结果的集合,样本点是样本空间中的每
个具体结果。

4. 基本事件与复合事件:基本事件是指样本空间中的单个样本点,复合事件是指由基
本事件组成的事件。

5. 等可能性原理:在一次试验中,如果每个基本事件发生的可能性相等,则称这些事
件是等可能事件。

6. 事件的概率:事件A的概率表示为P(A),定义为事件A发生的次数与试验总次数之比。

7. 加法定理:对于两个互斥事件A和B(即A和B不能同时发生),则P(A或B) =
P(A) + P(B)。

8. 互斥事件与对立事件:互斥事件是指两个事件不能同时发生,对立事件是指在一次
试验中只能发生其中一个事件的概率。

9. 条件概率:指在已知事件B发生的条件下,事件A发生的概率,表示为P(A|B),计算公式为P(A|B) = P(A∩B)/P(B)。

10. 事件的独立性:当事件A的发生与事件B的发生是相互独立的,即事件A的概率不受事件B的发生与否影响时,称事件A与事件B独立。

11. 乘法定理:对于两个独立事件A和B,P(A∩B) = P(A) × P(B)。

12. 事件的补事件:指在一次试验中,事件A不发生的事件。

这些是九年级数学中概率的初步知识点,通过掌握这些知识,可以更好地理解和解决与概率相关的问题。

概率初中知识点总结

概率初中知识点总结

概率初中知识点总结概率是数学中的一个重要分支,它用于研究随机事件发生的可能性。

在初中阶段,概率是数学课程的一个重要内容,它是培养学生逻辑思维和推理能力的重要工具。

下面将对初中知识点进行总结,以帮助读者更好地理解概率的概念和应用。

一、基本概念概率是指某个事件发生的可能性,通常用一个介于0和1之间的数来表示。

0表示不可能事件,1表示必然事件。

概率的取值范围在0和1之间,概率越大,事件发生的可能性就越大。

二、概率的计算1. 事件的概率计算公式:事件的概率等于有利结果的个数除以总的可能结果的个数。

2. 等可能事件的概率计算公式:等可能事件的概率等于事件的个数除以总的可能结果的个数。

三、概率的性质1. 互斥事件的概率:互斥事件是指两个事件不能同时发生的情况。

互斥事件的概率等于两个事件概率之和。

2. 对立事件的概率:对立事件是指两个事件中只能发生一个的情况。

对立事件的概率等于1减去另一个事件的概率。

四、概率的应用1. 抽样与事件发生概率:在抽样问题中,通过对样本空间和事件的分析,可以计算出事件发生的概率。

2. 生日悖论:生日悖论是指在一群人中,至少有两个人生日相同的概率远远大于我们的直觉。

这个问题可以通过概率的方法进行解答。

3. 游戏中的概率:在游戏中,概率也有很大的应用。

比如掷骰子,扑克牌游戏等,概率可以帮助我们计算出不同结果的可能性。

4. 事件的独立性:事件的独立性是指一个事件的发生不会对另一个事件的发生产生影响。

在计算复杂问题的概率时,可以根据事件的独立性将问题简化。

五、概率与统计概率与统计是紧密相关的两个学科。

统计学中的概念和方法往往需要概率知识的支持。

比如抽样调查、数据分析等都需要用到概率的方法。

同时,概率也可以通过统计学的方法进行验证和应用。

六、概率与现实生活概率在现实生活中有广泛的应用。

比如购买彩票、天气预报、金融投资等都与概率有关。

了解概率的知识可以帮助人们做出更明智的决策。

概率是数学中的重要分支,它可以帮助我们理解和计算随机事件发生的可能性。

九上 概率知识点总结

九上 概率知识点总结

九上概率知识点总结一、基本概念1.1概率的概念概率是描述随机现象发生可能性大小的数学工具,它用来描述事件发生的可能性大小,并且是一个介于0和1之间的实数。

1.2随机试验和随机事件随机试验是指每次都可能得到不同结果的试验,而随机事件是指随机试验的结果。

1.3样本空间和事件样本空间是指随机试验所有可能结果的集合,而事件是指样本空间中的某些结果的集合。

1.4事件的概率事件的概率是指该事件发生的可能性大小,通常用P(A)来表示,其中A是事件的名称。

二、基本概率公式2.1概率的基本性质概率的基本性质包括非负性、规范性和可列可加性三个方面。

2.2概率的加法公式对于两个事件A和B,它们的并的概率用P(A∪B)表示,而对于互斥事件A和B,P(A∪B) = P(A) + P(B)。

2.3概率的乘法公式对于两个事件A和B,它们的交的概率用P(A∩B)表示,而对于相互独立的事件A和B,P(A∩B) = P(A) * P(B)。

2.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式用于描述条件概率的计算,它们分别为P(A) = ΣP(A|B) * P(B)和P(B|A) = P(A|B) * P(B) / P(A)。

2.5概率的计算方法概率的计算方法包括频率法、古典概率法和几何概率法三种。

三、条件概率3.1条件概率的概念条件概率是指在给定某一条件下某事件发生的可能性大小,通常用P(A|B)表示,其中A 是事件的名称,B是条件事件的名称。

3.2独立事件和相关事件如果事件A的发生不受事件B的影响,那么事件A和事件B就是相互独立的,否则就是相关的。

3.3贝叶斯概率贝叶斯概率是通过计算事件的条件概率来形成对事件发生可能性的估计,其计算方法为P(B|A) = P(A|B) * P(B) / P(A)。

四、随机变量和概率分布4.1随机变量的概念随机变量是指随机试验结果的数值化表达,它可以是离散型随机变量或连续型随机变量。

4.2概率质量函数和概率密度函数对于离散型随机变量,它们的概率分布用概率质量函数来描述,而对于连续型随机变量,它们的概率分布用概率密度函数来描述。

初中数学:概率初步知识点

初中数学:概率初步知识点

初中数学:概率初步知识点一.事件学校组织六年级八个班进行“元旦联欢会”活动,每个班都准备了一个节目,活动的时候用抽签的方式确定各个班级的出场顺序.那么哪个年级可能第一个出场?此时,每个班级都有第一个出场的可能,但无法确定具体哪个班级第一个出场.像上述的问题,我们把它称为事件.类似的事件有许多,如抛掷一枚硬币,落地后是正面朝上还是背面朝上?掷骰子停止后,哪一点朝上?等等..二.确定事件和随机事件在一定条件下必定出现的现象叫做必然事件.在一定条件下必定不出现的现象叫做不可能事件.必然事件和不可能事件统称为确定事件.那些在一定条件下可能出现也可能不出现的现象叫做随机事件,也称为不确定事件.三.事件的概率一般地,如果一个实验共有n 个等可能的结果,事件A 包含其中的k 个结果,那么事件A 的概率:()==A k P A n事件包含的可能结果数所有的可能结果总数.1.确定事件与随机事件⎧⎧⎪⎨⎨⎩⎪⎩必然事件不可能事件随机事件确定事件事件必然事件:在一定条件下必定出现的现象,叫做必然事件.不可能事件:在一定条件下必定不出现的现象叫做不可能事件.确定事件:必然事件和不可能事件统称确定事件.随机事件:在一定条件下可能出现也可能不出现的现象叫随机事件.2.事件发生的可能性100%())10P A ⎧⎪⎫⎪⎪<<⎪⎨⎬⎪⎪⎭⎪⎪⎩必然()很有可能有可能随机事件可能性大小(不太可能不可能(0)3.事件的概率=A 1A =1=0A A A k n ⎧⎪⎨⎪<<⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩定义:用来表示某事件发生的;为必然事件:P(A)事件的概率为不可能事件:P(A)为随机事件:P(A)用频率估计概率:把与的叫该事件发生的频率;定义:试验结果有限,各种结果可能出现的,任何两个等可能试验:结果不可能;事件包含的等可能性大小的数0频数试验总次数比值机会均等同时出现可能结果可能事件的概率数所有:P(A)=利用树形可能结果数图求概率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩:可以避免重复和遗漏,直观又条理分明.。

(完整版)九年级概率初步

(完整版)九年级概率初步

第二十五章 概率初步1、三种事件:必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件。

不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件。

随机事件: 许多事情我们无法确定它会不会发生,这些事情称为随机事件.注意:必然事件、不可能事件都是在事先能肯定它们会发生,或事先能肯定它们不会发生的事件,因此它们也可以称为确定性事件; 随机事件都是事先我们不能肯定它们会不会发生,我们把这类事件称为不确定事件.2.概率的定义:把刻划(描述)事件发生的可能性的大小的量叫做概率.概率通常用字母“P ”表示。

注意:概率通常用分数表示,有时也用小数表示。

不可能事件发生的概率为0;即P(不可能事件)=0;必然事件发生的概率为1;即P (必然事件)=1;随机事件发生的概率;0<P(随机)〈1。

3.概率的计算:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都 相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为4。

用列举法求概率列表法求概率: 当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

树状图法求概率 :当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:列表格只能解决两步完成事件的概率,树状图则可解决两步及两步以上事件的概率;无论是哪一种方法在求多步事件概率时首先应分清每一步干什么,其次还应分清属于“取完后放回还是不放回”5.用频率估计概率①利用频率估计概率 :在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.②在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验.③随机数:在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作.把这些随机产生的数据称为随机数。

初中概率知识点总结大全

初中概率知识点总结大全

初中概率知识点总结大全一、概率基础知识1. 随机试验:指条件具备,结果不确定的实验,比如掷骰子、抛硬币等。

2. 样本空间:随机试验的所有可能结果组成的集合。

3. 事件:样本空间的子集称为事件,包含了我们关心的一些结果。

4. 必然事件和不可能事件:必然事件是指一定会出现的事件,比如抛硬币一定会出现正反面其中之一;不可能事件是指一定不会出现的事件,比如抛硬币会出现正反面之外的结果。

5. 等可能事件:指所有事件发生的可能性相等。

6. 概率:事件发生的可能性大小。

用符号 P(A) 表示事件 A 的概率。

二、概率计算1. 古典概型计算当样本空间中的元素个数有限且每个基本事件发生的可能性相等时,可使用古典概型计算概率。

例如:掷一枚骰子,求点数为偶数的概率。

样本空间 S = {1, 2, 3, 4, 5, 6},事件A是点数为偶数的结果,即 A = {2, 4, 6}。

所以 P(A) = n(A) / n(S) = 3 / 6 = 1/2。

2. 几何概型计算当事件的发生是与随机试验的空间几何结构有关时,可使用几何概型计算概率。

例如:在一个圆形的靶子上打靶,求打在靶心的概率。

由于靶心只有一个点,而靶子的面积是一个圆,所以 P(A) = 0。

3. 频率法计算当样本空间中的元素个数非常大,无法通过统计来确定每个基本事件的发生概率时,可使用频率法计算概率。

例如:抛掷硬币,实验多次后计算正面朝上的频率来估算正面朝上的概率。

4. 排列和组合排列和组合是概率计算中常用的计算方法。

排列是指从n 个不同元素中任取m(m ≤ n)个元素按照一定顺序排成一列的不同排列数。

排列数用 P(n, m) 或 n!/(n-m)! 表示。

组合是指从 n 个不同元素中任取 m(m ≤ n)个元素并成一组的不同组合数。

组合数用 C(n, m) 或 n!/m!(n-m)! 表示。

三、概率的运算1. 事件的关系事件的关系包括事件的和、差、积和余事件。

概率初中知识点总结

概率初中知识点总结

概率初中知识点总结概率初中知识点总结正文:一、随机事件和概率1. 随机事件:在一定条件下可能发生的事件称为随机事件。

2. 样本空间:所有可能事件所组成的空间称为样本空间。

3. 事件的概率:一个随机事件发生的概率等于该事件发生的次数除以样本空间中该事件发生的次数。

4. 独立事件:两个事件互不影响,且其中一个事件的发生不会影响另一个事件的发生。

5. 等可能事件:两个事件都是可能发生的,称为等可能事件。

二、随机变量和概率分布1. 随机变量:表示随机事件的序列或集合的变量称为随机变量。

2. 离散型随机变量:其取值只分布在有限或可数个离散点上的变量称为离散型随机变量。

3. 连续型随机变量:其取值连续或可无限连续的变量称为连续型随机变量。

4. 概率分布:随机变量取值的概率密度函数称为该变量的概率分布。

5. 概率分布的密度函数:表示随机变量取值的概率密度函数称为该变量的概率分布的密度函数。

三、概率的计算方法1. 期望:随机变量的平均值称为该变量的期望。

2. 方差:随机变量的标准差称为该变量的方差。

3. 协方差:两个随机变量之间相互关联的程度称为它们之间的协方差。

4. 相关系数:表示两个变量之间相互关联程度的系数称为它们之间的相关系数。

拓展:1. 随机变量的数字特征:表示随机变量取值离散程度的特征称为随机变量的数字特征。

2. 概率分布的图形表示:概率分布的密度函数可以用概率分布的图形表示,如散点图、密度图等。

3. 概率分布的应用:概率分布可以用于模拟、预测、决策等领域。

4. 随机变量的独立性:两个独立随机变量之间相互独立,即它们之间的方差之和为0。

初中《概率》知识点归纳

初中《概率》知识点归纳

初中《概率》知识点归纳概率是数学中的一个分支,研究随机事件的发生概率和可能性的科学。

初中阶段,学生会学习一些基础的概率知识,本文将对初中《概率》知识点进行归纳总结。

一、随机事件和样本空间1.随机事件:具有不确定性的事件称为随机事件,如抛掷一枚硬币的结果、掷骰子的点数等。

2.样本空间:随机试验的所有可能结果的集合称为样本空间,用S表示。

例如,抛掷一枚硬币的样本空间为{正面,反面}。

二、事件的概率1.定义:事件A的概率是指在一次随机试验中,事件A发生的可能性,用P(A)表示。

2.概率的性质:-非负性:对于任意事件A,0≤P(A)≤1-必然事件:对于一定发生的事件,概率为1-不可能事件:对于一定不发生的事件,概率为0。

-加法公式:若A、B为互斥事件,则P(A∪B)=P(A)+P(B)。

3.等可能概率:在样本空间中,每个事件的发生概率相等。

例如,抛掷一枚硬币正面朝上的概率为1/24.事件的互斥与独立:-互斥事件:两个事件不能同时发生,P(A∩B)=0。

-独立事件:两个事件的发生不会相互影响,P(A∩B)=P(A)×P(B)。

三、事件的确定性和可能性1.确定性事件:在一次随机试验中,一定会发生的事件。

2.可能性事件:在一次随机试验中,可能发生也可能不发生的事件。

四、频率与概率1.频率:在大量重复试验中,事件A发生的频次与总试验次数的比值称为事件A的频率,记作f(A)。

2.大数定律:在试验次数很大时,事件A的频率趋近于事件A的概率。

五、排列和组合1.排列:从n个不同元素中,按照一定顺序取出m(m≤n)个元素,称为从n个不同元素中选取m个元素的排列数,记作A(n,m)。

2.组合:从n个不同元素中,取出m(m≤n)个元素,不考虑其顺序,称为从n个不同元素中选取m个元素的组合数,记作C(n,m)。

3.公式:-A(n,m)=n!/(n-m)!-C(n,m)=n!/(m!(n-m)!)六、概率的计算1.等可能概率的计算:P(A)=有利的结果数/总结果数。

概率初步知识点总结

概率初步知识点总结

概率初步知识点总结概率初步知识点总结各位热爱数学的初中同学们要注意啦,初中数学知识点大餐的份量可是非常丰盛的哦。

下面是小编帮大家整理的概率初步知识点总结,希望大家喜欢。

一、可能性:1. 必然事件:有些事情我们能确定他一定会发生,这些事情称为必然事件;2.不可能事件:有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;3.确定事件:必然事件和不可能事件都是确定的;4.不确定事件:有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。

5.一般来说,不确定事件发生的可能性是有大小的。

.二、概率:1.概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。

2.必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么03.一步试验事件发生的概率的计算公式是P=k/n,n为该事件所有等可能出现的结果数,k为事件包含的结果数。

两步试验事件发生的概率的发生的概率的计算方法有两种,一种是列表法,另一种是画树状图,利用这两种方法计算两步实验时,应用树状图或列表将简单的两步试验所有可能的情况表示出来,从而计算随机事件的概率。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中简单事件的概率知识点

初中简单事件的概率知识点

初中简单事件的概率知识点概率是研究随机事件的发生可能性的一门数学分支。

初中阶段,学生开始接触到一些简单的概率问题,了解事件的发生概率以及如何计算概率。

下面是一些与初中简单事件的概率相关的知识点。

1.随机事件和样本空间:-随机事件是指在一定条件下可能发生的结果,可以表示为一些结果的集合。

-样本空间是指所有可能结果的集合,用S表示。

2.事件的发生可能性:-事件的发生可能性可以用概率来表示,概率通常使用P(E)表示,其中E是事件。

-概率的取值范围在0到1之间,概率为0表示事件不可能发生,概率为1表示事件一定会发生。

3.事件发生概率的计算:-对于随机均匀发生的事件,概率可以通过计算事件发生的结果数与样本空间中所有结果数的比值得到。

-P(E)=事件E的结果数/样本空间的结果数4.互斥事件:-互斥事件是指两个事件不能同时发生。

-如果事件A和事件B是互斥事件,那么P(A并B)=0。

5.事件的相互独立性:-事件A和事件B是相互独立的,意味着事件A的发生与事件B的发生没有任何关系。

-如果事件A和事件B是相互独立的,那么P(A交B)=P(A)*P(B)。

6.抽样和重复抽样:-抽样是指从样本空间中取出一部分结果作为样本,用来研究全体的特征。

-重复抽样是指从样本空间中重复取样,每次抽样结果都相互独立,抽出的结果又放回样本空间。

7.定义概率的方式:-经典定义概率:对于一个随机的均匀事件,事件E发生的概率等于事件E的结果数与样本空间的结果数的比值。

-频率定义概率:对于一个重复抽样的实验,事件E发生的概率等于事件E在多次重复实验中发生的频率。

-主观定义概率:对于一个主观判断的事件,概率是个人主观上对事件发生可能性的度量。

8.加法原理和乘法原理:-加法原理:对于两个互斥事件A和B,事件A或B发生的概率等于事件A发生的概率加上事件B发生的概率。

-乘法原理:对于两个独立事件A和B,事件A和B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

初中概率初步知识点归纳

初中概率初步知识点归纳

初中概率初步知识点归纳1.概率的基本概念:概率是指一些事件发生的可能性大小。

用数字来表示概率,概率的范围在0到1之间,其中0表示不可能发生,1表示必然发生。

2.试验与样本空间:试验是指一些随机事件的观察或测试过程,样本空间是指试验的所有可能结果的集合。

例如,抛一枚硬币的试验,样本空间为{正面,反面}。

3.事件与事件的概率:事件是指样本空间的一个子集,即一些试验的可能结果的集合。

事件的概率是指该事件发生的可能性大小。

事件的概率可以通过计算实验中该事件发生的次数与实验总次数的比例来确定。

4.相等概率事件:如果一个试验的样本空间中的每个结果发生的概率相等,那么每个结果就是一个相等概率事件。

例如,抛一枚均匀硬币的结果正面和反面都是相等概率事件。

5.基本事件与复合事件:基本事件是样本空间中的一个单独结果,复合事件是样本空间中的一个或多个事件的集合。

复合事件可以通过基本事件的交、并、非等运算得到。

6.事件的互斥与独立:两个事件互斥是指它们不能同时发生,即它们的交集为空集;两个事件独立是指它们的发生与不发生相互独立,即一个事件的发生不影响另一个事件的发生。

7.计数原理:计数原理是概率问题中常用的计算方法。

包括排列计数原理和组合计数原理。

排列是指从一组不同的元素中取出若干个按照一定顺序排列的方式,组合是指从一组不同的元素中取出若干个按照任意顺序排列的方式。

8.条件概率:条件概率是指在一些条件下事件发生的概率。

如果事件A和事件B相互独立,那么事件A在事件B发生的条件下发生的概率与事件A发生的概率相等。

9.事件的发生次数的概率分布:事件的发生次数的概率分布可以用频率来近似估计。

当试验次数很大时,事件发生次数的频率趋近于事件发生的概率。

10.古典概型:古典概型是指试验的样本空间有限且所有结果发生的概率相等的情况。

在古典概型中,事件发生的概率可以通过计数原理进行计算。

数学概率知识点总结初中

数学概率知识点总结初中

数学概率知识点总结初中概率是数学中的一个重要概念,它是描述随机事件发生的可能性大小的一种数学工具。

在初中阶段,概率是数学的一个重要内容,掌握概率知识对于学生理解世界、解决问题具有重要意义。

下面我们将对初中阶段常见的概率知识点进行总结。

一、随机事件与样本空间随机事件:指在一定条件下有可能发生也有可能不发生的事件。

例如掷硬币,抛骰子等都属于随机事件。

样本空间:指随机试验的所有可能结果组成的集合。

例如掷硬币的样本空间为{正面,反面},抛骰子的样本空间为{1,2,3,4,5,6}。

二、基本概率基本概率指的是在所有可能结果等可能时,某个事件发生的概率。

例如抛硬币得到正面的概率为1/2。

三、事件的互斥与对立互斥事件:指两个事件不可能同时发生的事件。

例如掷一枚硬币同时出现正反面就属于互斥事件。

对立事件:指两个事件至少有一个发生,但不能同时发生的事件。

例如掷一枚硬币有正反两面,它们就是对立事件。

四、条件概率条件概率指的是已知事件B发生的条件下,事件A发生的概率。

表示为P(A|B),读作“在B发生的条件下,A发生的概率”。

当B发生时,事件A的发生概率与此时的样本空间有关。

五、独立事件独立事件指的是事件A的发生不影响事件B的发生,反之亦然。

如果事件A与事件B是独立事件,那么P(A|B)=P(A),P(B|A)=P(B)。

六、古典概率与几何概率古典概率:是指在试验的所有结果等可能时,某个事件发生的概率。

例如掷硬币、抛骰子等都属于古典概率。

几何概率:通常指的是连续事件的概率,常常用来计算实际问题中的概率。

例如在某一区间内取随机数,满足一定条件的概率等。

七、排列与组合排列:是指从n个不同元素中取出m个进行排成一列。

例如从10个数中取出3个排列的方法有10×9×8=720种。

组合:是指从n个不同元素中取出m个组成一个集合。

例如从10个数中取出3个组合的方法有10×9×8/3×2×1=120种。

初中数学 概率初步(知识点总结及练习)

初中数学 概率初步(知识点总结及练习)

概率初步一、随机事件与概率1.随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件。

一般地,事件用英文大写字母A,B,C,…,表示。

2.确定事件(1)必然事件:在一定的条件下重复进行试验时,在每次试验中必然事件。

(2)不可能事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能事件。

3.概率(1)概率的意义:对于一个随机事件A,我们把刻画其发生可能性大小的数据,称为随机事件A 发生的概率。

(2)概率的表示:一般地,如果在一次实验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中m 种结果,那么事件A 发生的概率P(A)=nm 。

由m,n 的含义可知,n m ≤≤0,进而有10≤≤nm,因此1)(0≤≤A P 。

特别地,当A 为必然事件时,P(A)=1;当A 为不可能事件时,P(A)=0。

二、列表法求概率1.列表法:在一次实验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。

2.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

3.例题:例1:把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,并且每种结果出现的可能性相等。

所有可能结果中,2张牌牌面数字相同(记为事件A)的结果有三种,所以P(A)=3193=。

2张牌牌面数字不同(记为事件B)的结果有六种,所以P(B)=3296=。

初中数学概率初步知识点

初中数学概率初步知识点

概率初步知识点1、事件类型(1)确定事件(a)必然事件:在一定的条件下重复进行试验时,在每次试验中必然发生的事件。

如:太阳从东方升起;若a、b、c均为实数,则a(bc) = (ab)c。

(b)不可能事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能事件。

如:没有水分种子也能发芽。

(2)随机事件:在一定的条件下,可能发生也可能不发生的事件,称为随机事件。

如:掷一次硬币正面朝上。

注意:(a)事件分为确定事件与不确定事件(随机事件)。

确定事件又分为必然事件与不可能事件。

(b)事件一般用英文大写字母A、B、C、…表示。

2、事件的概率(probability)(1)事件的概率:对于一个,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)。

(2)必然事件发生的概率为1,即P(必然事件) = 1。

(3)不可能事件发生的概率为0,即P(不可能事件) = 0。

(4)如果A为随机事件,那么0 < P(A) < 1。

当事件发生的可能性越来越小时,P(A)接近0;当事件发生的可能性越来越大时,P(A)接近1。

(5)对于任意事件A,有0()1P A≤≤。

3、频率(frequency):事件实际发生次数与可能发生次数的比率。

设在相同条件下,独立重复进行n次试验,事件A出现f 次,则事件A出现的频率为fn。

如:掷均匀硬币的试验。

注意:前提是在一定的条件下重复进行试验。

注意:频率与概率的关系(1)频率总是围绕概率上下波动;(2)样本量n越大,波动幅度越小,频率越接近概率;(3)随着实验次数增至足够大,频率逐渐稳定于某一常数附近,则该常数为概率。

4、古典概型:一种概率模型。

如果一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A中包含其中的m种结果,那么事件A发生的概率为()mP An。

如:掷一枚均匀的硬币,出现正面的概率。

注意:古典概型与频率的区别。

5、几何概型:一种概率模型。

初中数学概率知识点汇总

初中数学概率知识点汇总

初中数学概率知识点汇总数学是一门广泛应用于我们生活中的学科,而概率则是其中的一个重要分支。

作为初中阶段的学生,掌握概率知识对于我们的日常生活和学习都有着重要的意义。

在本文中,我将为您汇总一些初中数学概率的知识点,希望能对您的学习有所帮助。

一、基本概念1. 概率的定义:概率是指某一事件发生的可能性大小,用一个介于0和1之间的实数表示。

2. 必然事件与不可能事件:必然事件的概率为1,不可能事件的概率为0。

3. 事件的互斥与对立:互斥事件指的是两个事件不能同时发生,对立事件指的是两个事件中必定发生一个。

4. 样本空间与事件:样本空间是指一个试验的所有可能结果的集合,而事件则是样本空间的一个子集。

二、概率的计算方法1. 等可能性原理:当样本空间中的每个事件发生的可能性相等时,可以通过事件发生的次数除以样本空间的元素个数来计算概率。

2. 频率与概率的关系:频率是指某一事件在大量重复实验中发生的次数与实验总次数的比值,当重复实验次数趋近于无穷大时,频率会趋近于概率。

三、事件之间的关系1. 事件的和事件:两个事件A和B的和事件,表示事件A或事件B发生的情况,记作A∪B。

2. 事件的积事件:两个事件A和B的积事件,表示事件A和事件B同时发生的情况,记作A∩B。

3. 事件的差事件:事件A和B的差事件,表示事件A发生但事件B不发生的情况,记作A-B。

4. 事件的对立事件:事件A的对立事件,表示事件A不发生的情况,记作A'。

四、概率计算公式1. 加法定理:对于两个事件A和B,概率公式为P(A∪B) = P(A) + P(B) -P(A∩B)。

2. 减法定理:对于两个事件A和B,概率公式为P(A-B) = P(A) - P(A∩B)。

五、古典概型古典概型是指在样本空间中,每个基本事件发生的可能性相等的情况。

在古典概型中,概率的计算可以通过事件发生的有利结果数目除以样本空间的元素个数来计算。

六、排列与组合1. 排列:排列是指从n个元素中按照一定的顺序选取r个元素的不同方式的数目,记作A(n,r)。

初中数学概率知识点

初中数学概率知识点

初中数学概率知识点
概率是数学中的一个重要分支,主要研究随机事件发生的可能性大小。

在初中数学中,学生将接触到一些基本的概率知识,这些知识对理解随机
事件的发生具有重要意义。

以下是初中数学中涉及的一些概率知识点:
1.随机事件和概率
随机事件是指在一定条件下可能发生可能不发生的事件,例如掷硬币、抛骰子等。

概率是指其中一随机事件发生的可能性大小,通常用数值表示,范围从0到1、概率为0表示不可能事件,概率为1表示必然事件。

2.事件的互斥与对立
两个事件互斥是指这两个事件不能同时发生,例如掷骰子得到1和得
到2是互斥事件。

两个事件对立是指这两个事件中至少有一个发生,例如
一个人是男性和一个人是女性是对立事件。

3.等可能事件
对于一些事件来说,每个可能的结果是等可能发生的,这种事件称为
等可能事件。

例如抛硬币、掷骰子等。

4.概率的计算方法
(1)等可能事件的概率计算方法:概率=有利结果数/总结果数
(2)互斥事件的概率计算方法:概率(A或B事件发生)=概率(A事件发生)+概率(B事件发生)
(3)对立事件的概率计算方法:概率(A或B事件发生)=1-概率(A和B
事件都不发生)
5.事件的概率性质
(1)互斥事件的概率之和不超过1:P(A或B)=P(A)+P(B)
(2)对立事件的概率之和为1:P(A)+P(对立事件A)=1
6.事件的概率与概率模型
概率模型是用来描述随机事件的概率分布的模型,通常通过概率分布函数或概率密度函数来描述。

在初中数学中,学生会接触到一些简单的概率模型,如正态分布、均匀分布等。

概率初步九年级知识点

概率初步九年级知识点

概率初步九年级知识点一、概率的基本概念概率是研究随机事件发生可能性的数学工具。

在我们日常生活中,概率无处不在。

我们可以通过概率来计算各种事件的发生概率,从而进行合理的决策。

二、事件与样本空间1. 事件:概率论中,事件是指一个随机试验的结果。

例如,掷一枚硬币,正面朝上为事件A,反面朝上为事件B。

2. 样本空间:样本空间是指随机试验的所有可能结果的集合。

对于掷一枚硬币的试验,样本空间为{正面,反面}。

三、概率的计算概率的计算可以通过频率法和几何法两种方法。

1. 频率法:通过实验的结果次数与实验总次数的比值来计算概率。

例如,掷一枚硬币,正面朝上的次数除以总次数即可得到正面出现的概率。

2. 几何法:通过样本点在样本空间中的位置来计算概率。

例如,在掷一枚骰子的试验中,三点出现的概率为1/6。

四、基本事件的概率1. 基本事件:样本空间中的单个元素称为基本事件。

例如,掷一枚硬币,正面朝上、反面朝上分别为两个基本事件。

2. 基本事件的概率:基本事件的概率等于事件发生的可能性除以样本空间的大小。

例如,掷一枚硬币,正面朝上的概率为1/2。

五、互斥事件与对立事件1. 互斥事件:两个事件不能同时发生,称为互斥事件。

例如,掷一枚硬币,正面朝上和反面朝上是互斥事件。

2. 对立事件:两个事件发生其中一个必然排除另一个,称为对立事件。

例如,掷一枚硬币,正面朝上和反面朝上是对立事件。

六、加法定理加法定理是计算事件并的概率的公式。

对于两个事件A和B,其并的概率等于A事件的概率加上B事件的概率减去A和B同时发生的概率。

即P(A∪B) = P(A) + P(B) - P(A∩B)。

七、乘法定理乘法定理是计算事件交的概率的公式。

对于两个事件A和B,其交的概率等于A事件的概率乘上B事件在A发生的条件下的概率。

即P(A∩B) = P(A) * P(B|A)。

八、条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。

用P(B|A)表示在事件A发生的条件下B发生的概率。

初中概率知识点讲解

初中概率知识点讲解

初中概率知识点讲解在我们的日常生活中,很多事情的结果是不确定的,比如明天会不会下雨、抽奖能不能中奖等等。

而概率就是用来研究这些不确定事件发生可能性大小的一门数学学科。

在初中阶段,我们开始初步接触概率的知识,下面就来给大家详细讲解一下。

一、概率的定义概率,简单来说,就是某个事件发生的可能性大小的数值度量。

如果一个事件发生的可能性越大,那么它的概率就越接近 1;如果一个事件发生的可能性越小,那么它的概率就越接近 0。

如果一个事件肯定会发生,那么它的概率就是 1;如果一个事件肯定不会发生,那么它的概率就是 0。

例如,抛一枚均匀的硬币,正面朝上和反面朝上的可能性是相等的,所以正面朝上的概率就是 1/2。

二、事件的分类在概率中,事件可以分为确定性事件和随机事件。

确定性事件又分为必然事件和不可能事件。

必然事件是指在一定条件下必然会发生的事件,比如太阳从东方升起。

不可能事件是指在一定条件下必然不会发生的事件,比如月亮从西方升起。

随机事件是指在一定条件下,可能发生也可能不发生的事件,比如明天会不会下雨。

三、概率的计算1、列举法当一次试验涉及的因素比较少,并且可能出现的结果也比较少时,可以通过列举所有可能的结果来计算概率。

例如,一个袋子里有 2 个红球和 3 个白球,从中任意摸出一个球,摸到红球的概率是多少?总共有 5 个球,摸到红球的情况有 2 种,所以摸到红球的概率就是2÷5 = 2/5。

2、频率估计概率通过大量重复试验,用事件发生的频率来估计概率。

比如,抛硬币试验,抛了 1000 次,正面朝上的次数约为 500 次,那么正面朝上的频率就是 500÷1000 = 05,我们就可以用 05 来估计抛硬币正面朝上的概率。

3、用树形图或列表法求概率当一次试验涉及两个或两个以上因素时,可以用树形图或列表法来列举所有可能的结果,从而计算概率。

例如,同时掷两枚质地均匀的骰子,计算两枚骰子点数之和为 7 的概率。

初中概率知识点总结

初中概率知识点总结

初中概率知识点总结
1. 事件与概率
- 事件是指某个结果的集合,概率是指这个事件发生的可能性。

- 概率的取值范围是0到1,0代表不可能事件,1代表必然事件。

2. 等可能事件
- 对于等可能事件,每个事件发生的可能性是一样的。

- 等可能事件的概率可以通过计算事件发生的次数与样本空间
中的总数的比值得到。

3. 互斥事件
- 互斥事件是指两个事件不能同时发生的情况。

- 互斥事件的概率可以通过将两个事件发生的概率相加得到。

4. 独立事件
- 独立事件是指一个事件的发生不受其他事件发生与否的影响。

- 独立事件的概率可以通过将各个事件发生的概率相乘得到。

5. 抽样与统计调查
- 在抽样调查中,通过对部分样本进行观察和研究,以得出总体特征或规律。

- 抽样调查中的概率抽样是指每个样本被选中的概率相等。

6. 相关事件
- 相关事件是指两个事件发生与否存在某种关联性。

- 相关事件的概率可以通过根据给定的条件来计算。

7. 条件概率
- 条件概率是指在给定另一事件已经发生的条件下,某一事件发生的概率。

- 条件概率的计算可以利用总体样本中的频率或者基于互斥事件和相关事件的概率来推导。

8. 概率分布
- 概率分布是指对某个随机事件的可能结果及其概率进行表示和总结的方式。

- 常见的概率分布包括二项分布、正态分布等。

以上是初中概率知识的简要总结。

概率知识在日常生活中有着广泛的应用,对于进一步学习数学以及理解世界中的不确定性具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章概率初步知识点归纳
【知识梳理】 济宁附中李涛
1、事件类型:
○1必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
○2不可能事件: 有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件. ○3不确定事件: 许多事情我们无法确定它会不会发生,称为不确定事件(又叫随机事件). 说明:(1)必然事件、不可能事件都称为确定性事件.
(2)事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ① 必然事件发生的概率为1,即P(必然事件)=1; ② 不可能事件发生的概率为0,即P (不可能事件)=0; ③ 如果A 为不确定事件,那么0<P(A)<1
2、概率定义
(1)概率的频率定义:
一般地,在大量重复试验中,如果事件A 发生的频率
m
n
会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

(2)概率的一般定义:就是刻划(描述)事件发生的可能性的大小的量叫做概率.又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。

是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。

3、概率表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示。

事件A 的概率p ,可记为P (A )=P
4、概率的计算 ①等可能事件的概率
• 古典概型
古典概型讨论的对象是所有可能结果为有限个等可能的情形,每个基本事件发生的可能性是相同的。

历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。

计算古典概型,
公式:
分析方法:
(1)列举法(适应一个过程):列出所有等可能基本事件结果,再数清所求事件所含的基本事
件个数,最后相除。

以下补充是初三学习内容:
(2)列表法(适应两个过程):当一次试验要设计两个因素,可能出现的结果数目较多时,为
不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.
特别注意放回去与不放回去的列表法的不同.
如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?
放回去 P (1和2)=
9
2 不放回去P (1和2)=62
(3,3)
(3,2)
(3,1)
3
(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次
结果3
2
1
第二次
(3,2)
(3,1)
3(2,3)
(2,1)2
(1,3)(1,2)
1第一次
结果3
2
1第二次
(3)树状图法(适应一个两个或多个过程):当一次试验要设计三个或更多的因素时,用列
表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 还是以上例题:(1)放回去,树状图如下:
由树状图可知,总共有9种等可能结果,而两次抽到数字为数字1和2或者2和
1的结果有两种。

∴ P (1和2)=
9
2
不放回去, 树状图如下:
∴ P (1和2)=
6
2
注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易.
•几何概型
几何概型讨论的对象是所有可能结果有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。

布丰投针问题是应用几何概型的一个典型例子。

公式:
目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获用频数估计概率;第三类问题则是简单的古典概型,几何概型,理论上用公式容易求出其概率。

2、概率应用
(1)通过设计简单的概率模型,在不确定的情境中做出合理的决策;
(2)概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性可以解决一些实际问题。

【易错点解析】
易错点1:随机事件概率的有关概念
例1 题目1:(2011·常德13)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超.有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是
A.李东夺冠的可能性较小
B.李东和他的对手比赛l0局时,他一定赢8局
C.李东夺冠的可能性较大
D.李东肯定会赢
【答案】C
【分析】题目1考查对随机事件发生的可能性大小的理解,学生对“李东夺冠的可能性是80%”这一随机事件发生的可能性理解不清,学生会错误地选择答案B ,其实80%只能意味着夺冠的可能性较大。

易错点2:计算简单随机事件的概率 例2 题目1:(2011·衡阳12)某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为 。

【答案】12
1
【分析】题目1以交通信号灯为背景,考查求简单随机事件的概率,可得出概率
12
1
525305=++=
P ,属于中考中的容易题。

【中考考点解读】
考点一、确定事件(必然事件、不可能事件)和不确定事件(随机事件).
(要会判断---用排除法)
考点二、概率的意义与表示方法
考点三、确定事件和随机事件的概率之间的关系 1、确定事件概率
(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 2、确定事件和随机事件的概率之间的关系
考点四、等可能性事件概率求法 古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

2、古典概型的概率的求法
一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A
包含其中的m 中结果,那么事件A 发生的概率为P (A )=n m
3.几何概型的概率的求法(面积比) 考点五、利用频率估计概率 利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

相关文档
最新文档