高中物理必修二曲线运动知识点总结全

合集下载

高中物理人教版必修二知识点总结

高中物理人教版必修二知识点总结

高中物理人教版必修二知识点总结1高中物理必修二学问点总结:曲线运动1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

2.物体做直线或曲线运动的条件:(已知当物体受到合外力F作用下,在F方向上便产生加速度a)(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

4.平抛运动:将物体用肯定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

分运动:(1)在水平方向上由于不受力,将做匀速直线运动;(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.6.①水平分速度:②竖直分速度:③t秒末的合速度④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

8.描述匀速圆周运动快慢的物理量(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。

方向为在圆周各点的切线方向上9.匀速圆周运动是一种非匀速曲线运动,因此线速度的方向在时刻转变(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的(3)周期T,频率:f=1/T(4)线速度、角速度及周期之间的关系:10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只转变运动物体的速度方向,不转变速度大小。

11.向心加速度:描述线速度改变快慢,方向与向心力的方向相同,12.留意:(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断转变的变加速运动。

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式一、曲线运动的基本概念曲线运动是指物体在空间中沿着曲线轨迹运动的过程。

在高中物理必修二中,我们主要学习的是匀速圆周运动和抛体运动这两种曲线运动。

1. 匀速圆周运动匀速圆周运动是指物体在圆周轨道上以恒定的速度做曲线运动。

在这种运动中,物体的速度大小保持不变,但速度方向不断改变,因此物体始终受到向心力的作用。

2. 抛体运动抛体运动是指物体在水平方向上受到初速度,而在竖直方向上受到重力作用,从而形成的曲线运动。

抛体运动可以分为竖直上抛、竖直下抛、水平抛和斜上抛四种情况。

二、曲线运动的基本公式1. 匀速圆周运动公式(1)线速度公式:v = rω其中,v表示线速度,r表示圆周半径,ω表示角速度。

(2)向心力公式:F = mv^2/r其中,F表示向心力,m表示物体质量,v表示线速度,r表示圆周半径。

2. 抛体运动公式(1)竖直上抛公式:h = v0t 1/2gt^2其中,h表示物体上升的高度,v0表示初速度,g表示重力加速度,t表示时间。

(2)竖直下抛公式:h = 1/2gt^2其中,h表示物体下落的高度,g表示重力加速度,t表示时间。

(3)水平抛公式:x = v0t,y = 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,g表示重力加速度,t表示时间。

(4)斜上抛公式:x = v0cosθt,y = v0sinθt 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,θ表示抛射角,g表示重力加速度,t表示时间。

三、曲线运动的应用曲线运动在生活中有着广泛的应用,如:1. 匀速圆周运动:汽车转弯、地球绕太阳公转等。

2. 抛体运动:投篮、投掷标枪等。

通过对曲线运动公式的学习,我们可以更好地理解生活中的各种曲线运动现象,为解决实际问题提供理论依据。

高中物理必修二曲线运动公式一、曲线运动的分类及特点在高中物理必修二中,我们学习到的曲线运动主要分为两大类:匀速圆周运动和抛体运动。

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。

在这种运动过程中,物体的速度和加速度都是随时间变化的。

因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。

2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。

通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。

3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。

这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。

二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。

它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。

参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。

2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。

它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。

通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。

三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。

通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。

切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的速度规律。

2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。

在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。

切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。

【高中物理】高中物理必修二第五章知识点:曲线运动

【高中物理】高中物理必修二第五章知识点:曲线运动

【高中物理】高中物理必修二第五章知识点:曲线运动
高中物理是高中学习的重要学科,整理了高中物理知识点,供广大高中生学习参考,希望有所帮助!
>>>
高中物理
必修二各章知识点汇总<&lt
高中英语
;<
第五章曲线运动
一、知识点
(一)曲线运动的条件:再分外力与运动方向无此一条直线上
(二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)
(三)曲线运动的分类:合力的性质(坯变速箱:元显恭甩运动、非匀变速箱曲线:匀速圆周运动)
(四)匀速圆周运动
1受力分析,所受到合力的特点:向心力大小、方向
2向心加速度、线速度、角速度的定义(文字、定义式)
3向心力的公式(多角度的:线速度、角速度、周期、频率、转回)
(五)平抛运动
1受力分析,只受到重力
2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式
3速度与水平方向的夹角、加速度与水平方向的夹角
(五)离心运动的定义、条件
二、实地考察内容、建议及方式
1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)
2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(挑选、填空题)
3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表示方式、合力提供向心力(计算题)
3运动的制备与水解:分后运动与和运动的等时性、耦合性(挑选、填空题)
4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算)
5Vergt运动:临界条件、最小静摩擦力、匀速圆周运动有关排序(挑选、排序)。

高中物理必修二曲线运动知识点总结全

高中物理必修二曲线运动知识点总结全

曲线运动知识点总结(MYX)一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。

2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。

4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。

若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。

5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。

【例1】如图5-11所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受力反向,大小不变,即由F变为-F.在此力作用下,物体以后()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线返回到A点【例2】关于曲线运动性质的说法正确的是()A.变速运动一定是曲线运动B.曲线运动一定是变速运动C.曲线运动一定是变加速运动D.曲线运动一定是加速度不变的匀变速运动【例3】关于曲线运动, 以下说法正确的是()图5-11A.曲线运动是一种变速运动B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。

那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。

(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。

②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结曲线运动作为物理学中的重要概念,是人们探索物体运动规律的基石之一。

在高中物理中,我们学习了很多关于曲线运动的知识点,下面将对这些知识进行总结和梳理。

1. 曲线运动的基本概念曲线运动是指物体在运动过程中相对轨迹是曲线的运动。

它的运动轨迹可以是任意曲线,比如直线、抛物线、圆等。

在曲线运动中,我们通常关注物体的位移、速度和加速度这三个重要的物理量。

2. 曲线运动的位移曲线运动的位移是指物体从初始位置到终止位置的位移。

与直线运动不同的是,曲线运动中的位移并不等于轨迹长度,而是由初始位置和终止位置之间的直线距离决定。

我们可以通过向量的加法和减法来计算曲线运动的位移。

3. 曲线运动的速度曲线运动的速度是指物体单位时间内通过的位移。

与直线运动相比,曲线运动的速度是瞬时速度的概念。

通过取物体在极短时间内的位移并求极限,即可计算出瞬时速度。

在曲线运动中,速度的方向和大小都是变化的,我们可以通过速度矢量来表示。

4. 曲线运动的加速度曲线运动的加速度是指物体单位时间内速度的变化率。

与直线运动不同的是,曲线运动中的加速度也是瞬时加速度的概念。

通过取物体在极短时间内速度的变化并求极限,即可计算出瞬时加速度。

在曲线运动中,加速度的方向和大小也是变化的,我们可以通过加速度矢量来表示。

5. 曲线运动的力学公式在曲线运动中,我们可以借助牛顿第二定律和基本运动公式来求解物体的运动规律。

对于曲线运动中的力学问题,我们可以根据实际情况选择不同的公式进行运用。

比如,当曲线运动为匀速圆周运动时,我们可以使用向心力和惯性力相等来求解物体向心加速度和向心力;当曲线运动为自由落体抛物线运动时,我们可以使用重力加速度和平抛运动公式来求解物体的竖直方向和水平方向的位移、速度和加速度。

曲线运动是高中物理课程中的重要内容之一。

通过对上述知识点的掌握,我们可以更好地理解和应用曲线运动的规律。

在学习过程中,我们还可以通过数学工具如微积分来进一步推导和研究曲线运动的原理和公式。

高中物理必修二曲线运动知识点归纳

高中物理必修二曲线运动知识点归纳

必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。

(完整word版)高一物理必修2知识点全总结

(完整word版)高一物理必修2知识点全总结

高一物理必修二知识点1。

曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动.2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动.也可以说是:合外力不变的运动。

4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向.①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变.(举例:匀速圆周运动)2。

绳拉物体合运动:实际的运动。

对应的是合速度。

方法:把合速度分解为沿绳方向和垂直于绳方向。

3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s, 求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河.min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。

高中物理必修二 第一章 第一节 曲线运动

高中物理必修二 第一章 第一节 曲线运动

导学探究
2.物体做曲线运动的条件是什么? 答案 物体所受合力的方向与它的速度方向不在同一直线上. 3.上面两种情况下:轨迹、速度方向与合力方向三者有什么关系? 答案 轨迹、速度方向、合力方向三者不共线,合力指向轨迹的 凹侧,轨迹夹在速度方向与合力方向之间.
知识深化
1.物体做曲线运动的条件 合力方向(或加速度方向)与速度方向不共线是物体做曲ቤተ መጻሕፍቲ ባይዱ运动的 充要条件.
因为磁铁对小铁珠只能提供引力,磁铁在A处时,F与v0同向,小铁珠 做加速直线运动,运动轨迹为b; 当磁铁放在B处时,F与v0不在同一直线上,合力的方向指向轨迹的凹 侧,运动轨迹为c. 当物体所受合外力的方向与它的速度方向不在同一直线上时,物体做 曲线运动.
返回
Part 2 探究重点 提升素养
一、曲线运动的速度方向
1 2 3 4 5 6 7 8 9 10 11 12 13 14
8.(多选)(2022·张家口一中高一月考)关于物体做曲线运动的条件,下列 说法正确的是 A.物体受变力作用才可能做曲线运动
√B.物体受恒力作用也可能做曲线运动 √C.物体所受合力为零时不可能做曲线运动
D.物体只要受到合力作用就一定做曲线运动

当物体所受合力方向与速度方向不在同一条直线上时,物体做曲线运 动,并且合力指向轨迹的凹侧,故选D.
针对训练3
(2021·福州市高一期中)下列四幅图中,标出了一个沿MN做曲线运动的 质点在Q点的速度v和加速度a,其中可能正确的是

做曲线运动的物体,其速度方向沿着运动轨迹的切线方向;运动轨迹 夹在合外力方向和速度方向之间,且偏向合外力的方向;由牛顿第二 定律可知,加速度方向沿着合外力的方向.故选D.
例2 (2021·吕梁市高一期中)下列关于曲线运动的说法中,正确的是

高中物理必修二知识点总结

高中物理必修二知识点总结

第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。

高中物理必修二知识点总结(人教版)

高中物理必修二知识点总结(人教版)

P蜡块的位置v v xv y 涉及的公式:22y x v v v += xy v v =θtan θv v 水 v 船 θ 船v d t =m in ,θsin d x = 水船v v=θtand第五章 平抛运动§5-1 曲线运动 & 运动的合成与分解一、曲线运动1.定义:物体运动轨迹是曲线的运动。

2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。

3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。

②运动类型:变速运动(速度方向不断变化)。

③F 合≠0,一定有加速度a 。

④F 合方向一定指向曲线凹侧。

⑤F 合可以分解成水平和竖直的两个力。

4.运动描述——蜡块运动二、运动的合成与分解1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。

2.互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。

③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

三、有关“曲线运动”的两大题型(一)小船过河问题模型一:过河时间t 最短: 模型二:直接位移x 最短: 模型三:间接位移x 最短:[触类旁通]1.(2011 年上海卷)如图 5-4 所示,人沿平直的河岸以速度 v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进.此过程中绳始终与水面平行,当绳与河岸的夹角为α时,船的速率为( C )。

d v v 水v θ 当v 水<v 船时,x min =d , θsin 船v d t =, 船水v v =θcos A v 水v 船 θ 当v 水>v 船时,L v v d x 船水==θcos min , θsin 船v d t =,水船v v =θcos θθsin )cos -(min 船船水v L v v s = θ v 船 dαsin .v A αsin .vB αcos .vC αcos .v D解析:依题意,船沿着绳子的方向前进,即船的速度总是沿着绳子的,根据绳子两端连接的物体在绳子方向上的投影速度相同,可知人的速度 v 在绳子方向上的分量等于船速,故 v 船=v cos α,C 正确. 2.(2011 年江苏卷)如图 5-5 所示,甲、乙两同学从河中O 点出发,分别沿直线游到 A 点和 B 点后,立即沿原路线返回到 O 点,OA 、OB 分别与水流方向平行和垂直,且 OA =OB.若水流速度不变,两人在静水中游速相等,则他们所用时间 t 甲、t 乙的大小关系为(C)A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:设游速为v ,水速为v 0,OA =OB =l ,则t 甲=l v +v 0+l v -v 0;乙沿OB运动,乙的速度矢量图如图4所示,合速度必须沿OB 方向,则t 乙=2·l v 2-v 2,联立解得t 甲>t 乙,C 正确. (二)绳杆问题(连带运动问题)1、实质:合运动的识别与合运动的分解。

高中物理曲线运动知识点

高中物理曲线运动知识点

高中物理曲线运动知识点一、知识概述《高中物理曲线运动知识点》①基本定义:曲线运动呢,简单说就是物体运动轨迹是曲线的运动。

比如说扔铅球吧,铅球在空中划过一道弧线才落地,这就是曲线运动。

②重要程度:在高中物理里超重要的。

很多自然现象比如行星绕太阳转就是曲线运动,在高考题里也是常常出现的。

③前置知识:你要先理解直线运动,像匀速直线运动、匀变速直线运动,还有力的概念、矢量的概念这些基础知识。

④应用价值:在体育项目中很多的,像跳远运动员起跳后的轨迹就是曲线运动,航天工程里卫星的轨道设计也是基于曲线运动知识的。

二、知识体系①知识图谱:它是力学里的一部分,跟力、加速度等知识密切相关。

就像是枝枝叶叶中的一大片枝叶,和很多东西都有联系。

②关联知识:和牛顿第二定律联系可紧密了,因为有力才有加速度,有加速度物体才会做曲线运动。

还和万有引力相关,毕竟像卫星在天上转是受万有引力才做曲线运动的。

③重难点分析:重难点在于理解曲线运动的条件。

关键就是要弄明白当物体所受合外力与速度方向不在一条直线上的时候就会做曲线运动。

这个挺难理解的,我当时就想了好久,为什么合外力不在速度方向就拐弯了呢。

④考点分析:考试里,选择题、计算题都会考。

选择题可能考曲线运动的基本概念和条件,计算题可能结合动能定理等知识来考曲线运动中的物体速度、位移等问题。

三、详细讲解【理论概念类】①概念辨析:曲线运动就是物体运动轨迹为曲线的运动呗。

这轨迹可不是直的,是弯弯绕绕的。

②特征分析:它的速度方向时刻在变。

就像摩托车在弯道上跑,每个瞬间车头的指向就是它的速度方向,这方向一直改变。

而且它是变速运动,因为速度是矢量,方向变了速度就变了。

③分类说明:可以分为平抛运动这种只受重力、加速度恒为g的曲线运动,还有像匀速圆周运动这种加速度大小不变但方向一直在变的曲线运动。

④应用范围:在抛体运动里适用,像扔篮球什么的,还适用于天体运动领域研究星球轨迹等,不过这些分析都是简化后的理想模型,实际情况可能更复杂。

高中物理必修二知识点汇总

高中物理必修二知识点汇总

高中物理必修二知识点汇总1.曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)2.绳拉物体合运动:实际的运动。

对应的是合速度。

方法:把合速度分解为沿绳方向和垂直于绳方向。

3.小船渡河例1:一艘小船在200m 宽的河中横渡到对岸,已知水流速度是3m/s ,小船在静水中的速度是5m/s , 求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。

min cos d dt t v v θ=⇒=船船(此时θ=0°,即船头的方向应该垂直于河岸)解:(1)结论:欲使船渡河时间最短,船头的方向应该垂直于河岸。

人教版高中物理必修第2册 第五章第一节《曲线运动》

人教版高中物理必修第2册 第五章第一节《曲线运动》

延伸:如果质点受到的力大小不变,但方向恰 与F相反,则它从B点开始的运动轨迹又可能是
图中的哪条曲线? A
课堂练习
2. 关于曲线运动的速度方向,下列说法中正确的是( C )
A、在曲线运动中速度的方向总是沿着曲线并保持不变 B、质点做曲线运动时,速度方向是时刻改变的,它在某点的瞬时速度的方向与该点 运动的轨迹垂直 C、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向是在曲线 上该点的切线方向 D、曲线运动中速度的方向是不断改变的,但速度的大小不变
2.质点某一点(或某一时刻)的速度方向: 沿曲线在这一点的切线方向
vA
A
B
vB
C
vC
Байду номын сангаас
o
x
A

vx
vy vA
y
三、曲线运动的性质 曲线运动的速度方向时刻在改变 曲线运动的速度时刻在改变 曲线运动是变速运动
有加速度!
做曲线运动的物体,合外力一定不为零
实验探究:曲线运动的条件
一个在水平桌面上做直线运动的钢球,从旁边给它一个里,例 如在钢球运动路线旁边放一个此贴,观察钢球运动。

质点所受合外力的方向跟它的速
条 度方向不在同一直线上

即v≠0,F ≠ 0,且F与V的夹角既不
等于0°,也不等于180 °
实验探究:一般曲线运动的速度方向
实验探究:一般曲线运动的速度方向
实验结论: 曲线运动中质点在某一点(或某一时刻)的速度方向沿曲线在 这一点的切线方向。
理论探究:一般曲线运动的速度方向
从平均速度到瞬时速度
vA
vB
B A
割线 切线
质点在某一点的速度,沿曲线在这一点的切线方向。

高二物理必修二知识点详细归纳

高二物理必修二知识点详细归纳

高二物理必修二知识点详细归纳第四章曲线运动第一模块:曲线运动、运动的合成和分解『夯实基础知识』■考点一、曲线运动1、定义:运动轨迹为曲线的运动。

2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。

3、曲线运动的性质因为运动的速度方向总沿轨迹的切线方向,又因为曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,因为其方向持续变化,所以说:曲线运动一定是变速运动。

因为曲线运动速度一定是变化的,至少其方向总是持续变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。

4、物体做曲线运动的条件(1)物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。

(2)物体做平抛运动的条件物体只受重力,初速度方向为水平方向。

可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。

(3)物体做圆周运动的条件物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。

5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。

⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。

■考点二、运动的合成与分解1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,因为它们都是矢量,所以遵循平行四边形定则。

运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。

2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3、合运动与分运动的关系:⑴运动的等效性(合运动和分运动是等效替代关系,不能并存);⑵等时性:合运动所需时间和对应的每个分运动时间相等⑶独立性:一个物体能够同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律实行,不会因为其它方向的运动是否存有而受到影响。

物理必修二曲线运动

物理必修二曲线运动

物理必修二曲线运动
曲线运动是物理学中的一个重要概念。

物体运动轨迹是曲线的运动被称为曲线运动。

以下是关于曲线运动的一些关键知识点:
1. 条件:物体做曲线运动的条件是其所受合外力(加速度)的方向与速度方向不在同一条直线上。

如果合外力(加速度)的方向与速度方向相同,则物体做直线运动;反之,则物体做曲线运动。

2. 速度方向:做曲线运动的物体,其速度方向始终在轨迹的切线方向上,且方向不断变化。

因此,曲线运动是变速运动。

3. 加减速判断:当合外力(加速度)与速度方向夹角为锐角时,物体做加速运动;当夹角为钝角时,物体做减速运动。

4. 曲线运动的性质:由于曲线运动中速度方向不断变化,所以曲线运动一定是变速运动。

做曲线运动的物体的加速度和合外力均不为零。

5. 分类:根据合外力(加速度)是否恒定,曲线运动可分为匀变速曲线运
动和非匀变速曲线运动。

匀变速曲线运动中,合外力(加速度)大小和方向均保持不变;而非匀变速曲线运动中,合外力(加速度)的大小或方向发生变化。

在学习曲线运动时,可以结合实际生活中的例子,如平抛运动、圆周运动等,来加深对概念的理解。

同时,通过实验观察和理论分析相结合的方法,更有助于深入理解曲线运动的规律和特点。

高中物理必修2第五章曲线运动知识点总结

高中物理必修2第五章曲线运动知识点总结

精品文档第五章曲线运动知识点总结§ 5-1 曲线运动 & 运动的合成与分解一、曲线运动1. 定义:物体运动轨迹是曲线的运动。

2. 条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。

3. 特点: ①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。

②运动类型:变速运动(速度方向不断变化) 。

③F 合 ≠0,一定有加速度 a 。

④F 合 方向一定指向曲线凹侧。

⑤F 合 可以分解成水平和竖直的两个力。

4. 运动描述——蜡块运动涉及的公式:vvyv v x 2v y 2v xv yPtan蜡块的位置v xθ二、运动的合成与分解1. 合运动与分运动的关系: 等时性、独立性、等效性、矢量性。

2. 互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动, 一个是匀速直线运动, 一个是匀变速直线运动,其合运动是匀变速 曲线运动, a 合为分运动的加速度。

③两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

三、有关“曲线运动”的两大题型(一)小船过河问题模型一: 过河时间 t 最短:模型二: 直接位移 x 最短:v 船vvv船ddθv 水θ v 水当 v 水<v 船 时, x min =d ,tm ind d td,v 船, xv 船 sinsintanv 船cosv 水v 水v 船.精品文档模型三:间接位移x 最短:v 船v船dθAθv 水当 v 水>v 船时,x min dcostd,cos v 船 sinsmin(v水 - v船cos )Lv船sin v水L,v船v 船v 水(二)绳杆问题 ( 连带运动问题 )1、实质:合运动的识别与合运动的分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动知识点总结(MYX)一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。

2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。

4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。

若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。

5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。

【例1】如图5-11所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受力反向,大小不变,即由F变为-F.在此力作用下,物体以后()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线返回到A点【例2】关于曲线运动性质的说法正确的是()A.变速运动一定是曲线运动B.曲线运动一定是变速运动C.曲线运动一定是变加速运动D.曲线运动一定是加速度不变的匀变速运动【例3】关于曲线运动, 以下说法正确的是()图5-11A.曲线运动是一种变速运动B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。

那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。

(2)运动的合成与分解的几种情况:①两个任意角度的匀速直线运动的合运动为匀速直线运动。

②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。

③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。

【例4】雨滴由静止开始下落,遇到水平方向吹来的风,下列说法中正确的是()A.风速越大,雨滴下落的时间越长B.风速越大,雨滴着地时的速度越大C.雨滴下落的时间与风速无关D.雨滴着地时的速度与风速无关【例5】一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小。

如图甲、乙、丙、丁分别画出了汽车转弯时所受合力F的四种方向,正确的是( )A.甲图B.乙图C.丙图D.丁图二、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min dt v =船,合速度方向沿v 合的方向。

2、位移最小:①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ=水船,最小位移为min l d=。

②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ=船水,过河最小位移为min cos v dl d v θ==水船。

【例6】一条河宽100m ,水流速度为3m /s ,一条小船在静水中的速度为5m /s ,关于船过河的过程,下列说法正确的是( )A .船过河的最短时间是20sB .船要垂直河岸过河需用25s 的时间C .船不可能垂直河岸过河D .只要不改变船的行驶方向,船过河一定走一条直线【例7】河宽m d 100=,水流速度s m /31=υ,船在静水中的速度是s m /42=υ,求: (1)欲使船渡河时间最短,船应怎样渡河?最短时间是多少? (2)欲使船航行距离最短,船应怎样渡河?渡河时间多长?③绳端问题绳子末端运动速度的分解,按运动的实际效果进行可以方便我们的研究。

例如在右图中,用绳子通过定滑轮拉物体船,当以速度v 匀速拉绳子时,求船的速度。

船的运动(即绳的末端的运动)可看作两个分运动的合成:a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。

即为v ;b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。

这样就可以求得船的速度为αcos v, 当船向左移动,α将逐渐变大,船速逐渐变大。

虽然匀速拉绳子,但物体A 却在做变速运动。

【例8】如图5-1示,在河岸上用细绳拉船,为了使船匀速靠岸,拉绳的速度必须是( ) A .加速拉 B .减速拉 C .匀速拉D .先加速后减速拉三、抛体运动图5-11、平抛运动定义:将物体以一定的初速度沿水平方向抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做平抛运动。

平抛运动的性质是匀变速曲线运动,加速度为g 。

类平抛:物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。

2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动(自由落体)。

水平方向(x ) 竖直方向(y )①速度 0x v v = y v gt =合速度:t v = ②位移 0x v t = 212y gt = 合位移:x = 0tan 2y gt x v α==※3、重要结论:①时间的三种求法:0yv x t v g=== ,在空中飞行时间由高度决定。

②t v =0v 和h 有关。

③tan 2tan θϕ=,末速度偏角为位移偏角正切值的2倍, t v 的反向延长线平分水平位移。

4、斜抛运动定义:将物体以一定的初速度沿与水平方向成一定角度抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做斜抛运动。

它的受力情况与平抛完全相同,即在水平方向上不受力,加速度为0;在竖直方向上只受重力,加速度为g 。

速度:0cos x v v θ= 位移:0cos x v t θ=0sin y v v gt θ=- 201sin 2y v t gt θ=-时间: 0sin 2cos x v t v gθθ== 水平射程:2sin 2v x y θ= 当45θ=︒时,x 最大。

【例9】关于平抛运动,下列说法中正确的是( )A .平抛运动是匀速运动 B.平抛运动是匀变速曲线运动C .平抛运动不是匀变速运动 D.作平抛运动的物体落地时速度方向一定是竖直向下的 【例10】做平抛运动的物体,在水平方向通过的最大距离取决于( ) A .物体的高度和受到的重力 B .物体受到的重力和初速度 C .物体的高度和初速度D .物体受到的重力、高度和初速度【例11】正在水平匀速飞行的飞机,每隔1秒钟释放一个小球,先后共释放5个.不计阻力则( ) A .这5个球在空中排成一条直线 B .这5个球在空中处在同一抛物线上C .在空中,第1、2两球间的距离保持不变D .相邻两球的落地点间距离相等【例12】对于平抛运动,下列条件中可确定物体初速度的是( ) A .已知水平位移 B .已知下落高度C. 已知物体的位移 D .已知落地速度的大小【例13】在高h 处以初速度v 将物体水平抛出,它们落地与抛出点的水平距离为s ,落地时速度为1v ,则此物体从抛出到落地所经历的时间是(不计空气阻力)( )y x 0gt tan θv v v ==A 、B 、C 、()g v v 01- D 、【例14】“研究平抛物体的运动”实验的装置如图所示,在实验前应( )A .将斜槽的末端切线调成水平B .将木板校准到竖直方向,并使木板平面与小球下落的竖直平面平行C .小球每次必须从斜面上同一位置由静止开始释放D. 在白纸上记录斜槽末端槽口的位置O ,作为小球做平抛运动的起点和所建坐标系的原点四、圆周运动1、基本物理量的描述①线速度大小:v=△L/△t 单位m/s 匀速圆周运动:2rv T π= ②角速度大小:ω=△θ/△t 单位rad/s 匀速圆周运动:2Tπω=③周期T : 物体运动一周需要的时间 。

单位:s 。

④频率f : 物体1秒钟的时间内沿圆周绕圆心绕过的圈数。

单位:Hz 1f T=⑤转速n :物体1分钟的时间内沿圆周绕圆心绕过的圈数。

单位:r/s 或r/min 说明:弧度rad ;角速度/rad s ;转速 /r s ,当转速为/r s 时,f n = 2、两种传动方式的讨论 传动类型图示说明结论共轴传动如图所示,A 点和B 点虽在同轴的一个“圆盘”上,但是两点到轴(圆心)的距离不同, 当“圆盘”转动时,A 点和B 点沿着不同半径的圆周运动. 它们的半径分别为r 和R ,且r <RA B ωω=A BT T =A B v r v R= 皮带(链条)传动如图所示, A 点和B 点分别是两个轮子边缘上的点, 两个轮子用皮带连接起来, 并且皮带不打滑。

A B v v =A B R r ωω=A B T rT R= 大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则( ) A. a 点与b 点的线速度大小相等B. a 点与b 点的角速度大小相等C. a 点与c 点的线速度大小相等D. a 点与d 点的向心加速度大小相等【例16】一石英钟的分针和时针的长度之比为 3 : 2 ,均可看作是匀速转动,则( ) A .分针和时针转一圈的时间之比为 1 : 60B .分针和时针的针尖转动的线速度之比为 40 : 1C .分针和时针转动的周期之比为 1 : 6D .分针和时针转动的角速度之比为 12 : 1【例17】质量为m 的飞机,以速率v 在水平面上做半径为r 的匀速圆周运动,空气对飞机作用力的大小等于( )A 、242r v g m + B 、242r v g m - C 、mg D 、r v m 23、向心加速度(1)定义:做匀速圆周运动的物体,加速度指向圆心。

(2)物理意义:线速度方向改变的快慢。

(3)方向:沿半径方向,指向圆心。

(4)大小:22224v a r r r Tπω=== (5)性质:匀速圆周运动是一个加速度大小不变、方向时刻变化的变加速曲线运动。

4、向心力(1) 定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。

(2) 大小:22224=m v F m r m r r Tπω==向 (3)方向:指向圆心。

特点:是效果力,不是性质力。

向心力是做圆周运动的物体受到的沿着半径指向圆心的力,它可以由某一个力单独承担,也可以是几个力的合力,还可以是物体受到的合外力在沿半径指向圆心方向上的分量。

作用效果只是改变物体速度的方向,而不改变速度的大小。

性质力:重力、弹力、摩擦力(拉力,压力,支持力)、电场力、磁场力(安培力,洛伦兹力) 效果力:动力、阻力、下滑力、向心力 (4) 性质:变加速运动。

相关文档
最新文档