第五章 弯曲应力
材料力学弯曲应力PPT课件
M
Fl
F 解:1.画梁的剪力图和弯矩图
按正应力计算
max
M max Wz
6F1l bh2
F1
bh2
6l
107 100 1502 109 6
3750N
3.75kN
按切应力计算
max 3FS / 2A 3F2 / 2bh
F2 2 bh / 3 2106 100150106 / 3 10000N 10kN 35
截面为bh=30 60mm2 的矩形
求:1截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm 4
y 20mm : M y 33.3MPa
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲近似使用
12
试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面
要同时满足 t,max t , c,max c
25
例题
解:(1)求截面形心
52
z1 z
yc
80 2010 120 2080 80 20 120 20
05章 弯曲应力
S z = ∫ ydA = 0
A
注:通过截面形心(图形几何形状的中心)的坐标轴, 通过截面形心(图形几何形状的中心)的坐标轴, 形心 图形对其静矩等于零. 图形对其静矩等于零. 说明: 轴通过截面形心 轴通过截面形心, 轴和 轴的位置确定了. 轴和x轴的位置确定了 说明:z轴通过截面形心,即z轴和 轴的位置确定了.
MC = 90×160×1×0.5 = 60kN m
1. C 截面上 点正应力 截面上K点正应力
bh3 0.12×0.183 IZ = = = 5.832×105 m4 12 12 180 3 60×10 ×( 30)×103 MC yK 2 σK = = = 61.7M Pa 5 IZ 5.832×10
σ max
M max = ≤ [σ ] W
18/58
5.3 横力弯曲时的正应力
第五章 弯曲应力 回顾与比较 纯弯曲 纯弯曲的正应力 横力弯曲正应力 弯曲切应力 矩形截面梁 工字型截面梁 提高强度措施 小结
例题5-1: 例题 :
q=60kN/m
C 截面,单位 截面,单位mm 120 180
A
1m
B C
4/58
5.1 纯弯曲
第五章 弯曲应力 回顾与比较 纯弯曲 纯弯曲的正应力 横力弯曲正应力 弯曲切应力 矩形截面梁 工字型截面梁 提高强度措施 小结
梁变形后,其横截面仍保持平面, 梁变形后,其横截面仍保持平面,并垂直 于变形后梁的轴线, 于变形后梁的轴线,只是绕着梁上某一轴 转过一个角度.这一假设称平面假设 平面假设. 转过一个角度.这一假设称平面假设. 另外还假设:梁的各纵向层互不挤压, 另外还假设:梁的各纵向层互不挤压,即 梁的纵截面上无正应力作用. 梁的纵截面上无正应力作用.
第五章 弯曲应力
2 2
A
A
A
同理知
2 I y1 I y b A :
横截面对任一轴的惯性矩等于它对平行于该轴的形心 轴的惯性矩加上截面面积与两轴间距离平方的乘积。
例题 【例5-1】求T字形截面的 惯性矩。尺寸单位为cm。 【解】1)求T字形截面中 性轴z轴即形心坐标yC。 将截面分成I、II两部分。
腹板上剪应力为:
腹板上的剪应力沿腹板高 度按抛物线变化。
当y=0时, max
Q S z max Q [b( H 2 h 2) d h 2] 8I z d Izd Qb ( H 2 h2) min 当y=h/2时, 8Izd
当d≤b时,τmax≈ τmin ,可视为均匀分布。 翼缘上剪应力基本上沿水平方向,其值很小可不考虑。 由对各种不同形状的截面上的剪应力的讨 Q max S z max 论知,最大剪应力一般位于最大剪力截面 max I zb 的中性轴上,其计算公式可统一为:
第五章 弯曲应力
§5-1 梁弯曲正应力 §5-2 惯性矩计算 §5-3 梁弯曲剪应力 §5-4 梁弯曲时的强度计算 §5-5 塑性弯曲的概念 §5-6 提高梁抗弯能力的措施
§5-1 梁弯曲正应力
一、梁弯曲时横截面上的应力分布 一般情况下,梁受外力而弯曲时,其横截面上同时有 弯矩和剪力两个内力。弯矩由分布于横截面上的法向 内力元σdA所组成,剪力由切向内力元τdA组成,故横 截面上同时存在正应力和剪应力。
【例5-2】求图示阴影部分对中性轴z轴的惯性矩。 【解】因 I 阴z 2 I 1z
D4
64
d I1z
故 I 阴z
D4
64
4
2 I 1z
材料力学第五章
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
第五章弯曲应力
AI 20 60 1200mm2
y'I
20
60 2
50mm
AII 60 20 1200mm2
y'II
20 2
10mm
第五章弯曲应力
整个截面的形心C至z’轴 的距离为:
y'C
Ai yi A
1200 50 120010 30mm 1200 1200
(2) 求各组成部分对中性轴z的
惯性矩 设两矩形的形心轴
为z1和z2,它们对中性轴z的 距离分别为:
aI CCI 20mm, aII C性轴z的惯性矩分别为:
I zI
I z1I
a2 I
AI
20 603 12
202 1200
840103 mm4
I zII
I z2II
a2 II
AII
60 203 12
202 1200
520103 mm4
(3)求整个截面对中性轴的惯性矩为:
Iz IzI IzII 840103 520103 1360103 mm4
第五章弯曲应力
§5-3 梁弯曲时的强度计算
梁纯弯曲时横截面上任一点处正应力的计算公式:
My
Iz
(5-3)
最大正应力位于最大弯矩所在截面上距中性轴最远的地方:
IZ1
A
y2 1
dA
IZ1
y a2dA
A
y2dA 2a ydA a2 dA
A
A
A
IZ1 Iz a2 A
同理:
I y1 I y 第b五2 章A弯曲应力
例5-2 已知一T字形截面,求其对中性轴Z的惯性矩
解:(1)确定形心和中性轴 的位置
第五章 弯曲应力
缩短。
2、平面假设:
梁弯曲变形后,其原来的横 截面仍保持为平面,只是相 邻横截面绕某一轴相对转了 一个小角度,且仍垂直于梁 变形后的轴线。
中性层:靠近底部的纵 向线伸长,靠近顶部的 纵向线缩短,根据变形 的连续性,中间必有一 层纵向线既不伸长也不 缩短。
中性轴:中性层与横截 面的交线 z 轴,横截面 z 就是绕中性轴转动的。
是拉应力还是压应力,可根据梁的变形情况直接判断。 (3) 由公式推导可知,公式不仅适用于矩形截面梁,而且还适用
于其它一些截面梁,如:圆截面梁、工字形截面梁、T字形
截面梁,等等。
p
(4)由于y、z轴就是横截面的形心主轴,从而可得到启示:当横
截面没有对称轴时,只要外力偶作用在形心主轴之一(例如
y轴)所构成的纵向平面内,上述公式仍适用。
(5)对于用铸铁、木材以及混凝土等材料制成的梁,在应用上述 公式时,都带有一定的近似性。
例5-1 T形截面外伸梁尺寸及受力如图所示。已知横截面对中性轴
的惯性矩Iz=5.33×106mm4。求跨中C截面上a、b、c点的弯
曲正应力。
F = 8kN A
D
0.6m
Fs / kN
解:首先作剪力图和弯矩图,由
( y)d d y
d
即: y
a
故 y
二、物理关系
Me 由于弯曲变形微小,可设各层纤维之间 没有挤压,亦即可认为各纵向纤维处于
单向应力状态。并设 Et Ec E
当 p时
E E y
b
故 y
z o
y
说明:
推导过程简单总结:(三方面)
由变形几何关系得到
第五章弯曲应力
弯曲应力/横力弯曲时的正应力
§5.3横力弯曲时的正应力
材料力学
弯曲应力/横力弯曲时的正应力
现实中常见的弯曲问题多为横力弯曲
横力弯曲的特点:
梁的横截面上不但有正应力还有切应力,
横截面不再保持为平面。
注意:
纯弯曲时的正应力计算公式 仍然适用于横力弯曲。
材料力学
弯曲应力/横力弯曲时的正应力
第五章 弯曲应力
材料力学
§5.1 纯弯曲
材料力学
弯曲应力/纯弯曲 横力 F 弯曲 a F (+) (-)
FS 图
纯弯曲
F
一. 纯弯曲和横力弯曲: 横力
弯曲
纯弯曲:梁弯曲变形时, 横截面上只有弯矩而无剪
a L
力(
M 0 , Fs 0
)。
横力弯曲:梁弯曲变形
Fa
-F
时,横截面上既有弯矩又 有剪力(
M 图
材料力学
弯曲应力/提高弯曲强度的措施
3.减小支座跨度或增加支座
F A L 0.125FL (+)
M 图
F BA 0.2L 0.6L 0.2L 0.025FL (+) 0.02FL
M 图
F BA 0.5L
9 512
B
0.5L
9 512
FL
FL
(+) 0.02FL
1 32 FL
(+)
M 图
h
材料力学
弯曲应力/纯弯曲时的正应力
圆形截面:
实心:
d z
Iz
空心:
64
d
4
D d z
IZ
D (1 )
材料力学第5章弯曲应力
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /
第五章弯曲应力解析
•梁的长度比横截面度量尺寸大得多(长梁),平截面假 定仅适应于长梁,若梁长度与横截面度量尺寸的比值 小于5,由弹性力学知,平截面假定就不适用. •平截面假定一般不适用于曲梁.
§5-2 纯弯曲时的正应力
同圆轴扭转的应力公式推导过程一样,从变形几何关系、 物理关系和静力学关系三方面考虑.
M σdA
FS τdA
当梁较长时,正应力是决定梁是否破坏的主要因素, 切应力则是次要因素.
➢二、弯曲分类
梁AC、BD段的横截面上既有剪 A 力又有弯矩,称为剪切弯曲.
aP
C P
Pa
D
B
CD段梁的横截面上只有弯矩 而无剪力,称为纯弯曲.
+
A
C
D −B
此处仅研究纯弯曲时梁横截面 上正应力与弯矩的关系.
FN=0
M
FN
AdA
A
E
ydA
E
A
ydA
0
zM
Ox
y
σdA
y
因 E 0 故 ydA 0
A
由中值定理知
A ydA yC .A S z
—横截面图形对z 轴的静矩.
故 yC .A 0 yC 0 —横截面图形形心坐标.
即横截面形心在z轴上,故中性轴必通过横截面形心.
My=0
M
M y
第五章 弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 惯性矩计算 §5-4 剪切弯曲时的正应力 §5-5 弯曲切应力 §5-6 提高梁抗弯能力的措施
§5-1 纯弯曲
➢一、梁弯曲时横截面上的应力分布
一般情况下,梁受外力而弯曲时,其横截面上同时 有弯矩和剪力两个内力.弯矩由分布于横截面上的 法向内力元σdA所组成,剪力由切向内力元τdA组 成,故横截面上同时存在正应力和切应力.
第五章弯曲应力
变形前 变形后
ab= dx= o1o2 = ρdθ a'b' = (ρ + y)dθ
弯曲应力/ 弯曲应力/纯弯曲时的正应力
所以纵向纤维ab的应变为 所以纵向纤维 的应变为: 的应变为
∆ ab ( ρ + y)dθ − ρdθ yd θ y = = ε= = ρdθ dx ab ρ
轴向变形规律: 轴向变形规律: 轴向变形程度的大小与到中性层的距离成正 离中性轴越远,变形越大。 比,离中性轴越远,变形越大。
一.纯弯曲正应力的分布规律 1.纯弯曲变形几何关系 1.纯弯曲变形几何关系
m
o1
o
ρ
a´ a´ b´ ´
n
o2
dx
变形后 y b
a m
n
y——任意纵向纤维至中性层的距离 任意纵向纤维至中性层的距离 任意纵向纤维至 的曲率半径, 曲率中心, ρ——中性层o1o2的曲率半径, o——曲率中心, 中性层 曲率中心 纵向纤维ab: 纵向纤维
材料力学
弯曲应力/ 弯曲应力/纯弯曲
现象二: 现象二:
M M
M
纵向纤维间距离不变 说明横截面上没有切应力。 说明横截面上没有切应力。
材料力学
弯曲应力/ 弯曲应力/纯弯曲
现象三: 现象三:
M M
M
横截面变形后仍保持为平面, 横截面变形后仍保持为平面,且仍然垂直于 变形后的轴线,此即弯曲的平面假设。 变形后的轴线,此即弯曲的平面假设。
-F
时,横截面上既有弯矩又 有剪力( 有剪力( M ≠ 0, Fs ≠ 0 )。
(+) M-图 图
材料力学
弯曲应力/ 弯曲应力/纯弯曲
二. 纯弯曲实验观察 对 比 弯 曲 前 后 梁 的 变 化
第五章 弯曲应力
★
2 、措施
提高弯曲强度的措施
1)减小M(合理按排梁的受力情况):支座
★
2 、措施
提高弯曲强度的措施
1)减小M(合理按排梁的受力情况):布载
★
2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):矩形
★
2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):工字形、槽形、矩形、
圆形比较(W/A值)
习题讨论课
2)不同材料
组合截面梁
c
Ac
hc
sc
∑Fx=0
σt=Ety/ρ σc=Ecy/ρ
t
s d A = F
A
N
At
ht
t
st
FN=0
c
中性轴?
At
s dA s
Ac
dA = 0
习题讨论课
2)不同材料
c
Ac
hc
组合截面梁
sc
∑My=0
At
ht
t
st
( E ) zdA = 0
例(书例5-1)
★ 横力弯曲时的正应力
※ 弯曲强度特点
1)危险面往往有几处 2)同一截面危险点往往不只一个
★ 横力弯曲时的正应力
※ 有些材料 s t s c 拉压强度要分别校核
s t max
M s t = W t z max
M s c = W c z max
★
2 、措施
提高弯曲强度的措施
2) 增大W(合理截面):注意和思考 a) 工艺成
本(如空心截面) b) 考虑材质(如铸铁T形梁等)
★
第五章 弯曲应力
三类条件
物理关系
静力关系
1.变形几何关系
m a
n
a
m a o b m
n a o dx
b m
dx
b n
b n
假设oo层为中性层 变形前:aa = bb = oo = dx
m M a
o b m
n a M M
d M
dx
o b n
m o
b′
n o
b′
m
n
变形后:假设中性层oo层变形后的曲率半径为,则
max
M [ ] Wz max
(2) 设计截面尺寸
(3) 计算许用载荷
M Wz [ ]
M max Wz [ ]
例2. T形截面铸铁梁,已知[σt]=30MPa,[σc]=60MPa, 试 80 校核梁的强度。
9kN
A 1m
4kN
B D 1m
20
CLeabharlann 1m120讨论: 1.横截面是绕中性轴转动。 (中性层不伸长也不缩短,中性轴是中性层与横截
面的交线 。) 上部受压
当M > 0时 下部受拉 上部受拉 下部受压
当M < 0时
讨论: 2.纵向纤维的伸长或者缩短与它到中性层的
距离成正比。
m
n′
n a
y
a
y
b m
b
中性层 n′
中性轴 横截面
n
定量分析
与圆轴扭转问题相似,弯曲问题的理论分析也 必须包含三类条件。 变形几何关系
结论: 1.横截面上只存在正应力。
(纵向线与横向线保持直角。)
2.正应力分布不是均匀的。
(纵向线中既有伸长也有缩短的。)
第五章 弯曲应力
此梁为等截面直梁,故全梁最大弯曲正应力在最大弯矩
所在截面上,其值为
max
M max Wz
6M max bh2
6 7.5106 40 802
175MPa
第五章 弯曲应力
5.2 弯曲切应力简介
5.2.1 矩形截面梁的弯曲切应力 矩形截面梁的任意横截面上,剪力FS皆与横截面的对称
轴y重合(见图5-11(b))。设横截面的高度为h,宽度为b, 现研究弯曲切应力在横截面上的分布规律。
图5-8
第五章 弯曲应力
5.1.4 弯曲正应力公式的适用范围 弯曲正应力公式是在纯弯曲情况下推出的。当梁受到
横向力作用时,一般横截面上既有弯矩又有剪力,这种弯曲 称为横力弯曲。剪力会在横截面上引起切应力τ,从而存在 切应变γ=τ/G。由于切应力沿梁截面高度变化(见下一节), 故切应变γ沿梁截面高度也是非均匀的。因此,横力弯曲时,
第五章 弯曲应力
综上所述,对于各横截面剪力相同的梁和剪力不相同的 细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
第五章 弯曲应力 例5-1 图5-10(a)所示悬臂梁,受集中力F与集中力 偶Me作用,其中F=5kN,Me=7.5kN·m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
FN 2
dA
A1
式中A1为右侧面pn1的面积,正应力 可按弯曲正应力公式算出,
于是
FN 2
dA
A1
M dM y1 dAM dM
A1
Iz
Iz
A1
y1dAM
dM Iz
S
* z
第五章 弯曲应力
max
M x max Wz
中性轴
横力弯曲的正应力
纯弯曲
Mzy Iz
两个假设 l/h>5
正应力 剪应力
横力弯曲
纵向纤维 正应力 平面翘曲
例题
长为L的矩形截面悬臂梁,在自由端作用一集中 力F,已知b=120mm,h=180mm、L=2m,F=1.6kN, 试求B截面上a、b、c各点的正应力。
A
F a
C D
F
a
B
F
纯弯曲: 横截面上弯矩为常量,而切力为零。
应力分布研究方法: 实验观察
F
Fa
作出假设
理论分析
实验验证
F
F
实验现象
1、梁上的纵向线都弯曲成圆弧曲线,靠近梁凹侧一边的 纵向线缩短,而靠近凸侧一边的纵向线伸长 2、梁上的横向线仍为直线,各横向线间发生相对转动, 不再相互平行,但仍与梁弯曲后的轴线垂直 3、在梁的纵向线伸长区,梁的宽度减小,而在梁的纵向 线缩短区,梁的宽度增大
2 h 1 h 4 y2 bh * S z b( y ) y ( y ) (1 2 ) 2 2 2 8 h
3 Fs 2 (h 4 y 2 ) 2bh3
从上式可知,剪应力分布是沿 梁的高度按抛物线规律分布.
h 处, 0; 在 y 0 处,剪应力最大,即: 2 3 Fs 3 Fs max 2bh 2 A Fs 最大剪应力是平均剪应力 平 的 1.5倍。 A
A
L2
()
B
L2
F
h6
a
b
C
h2
h
c b
bh3 IZ 12
FL
1 h FL M y a B a 2 3 3 1.65MPa bh IZ 12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力*§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念*§5-6 提高梁抗弯能力的措施§5-1 梁弯曲正应力一、梁弯曲时横截面上的应力分布一般情况下,梁受外力而弯曲时,其横截面上同时有弯矩和剪力两个内力。
弯矩由分布于横截面上的法向内力元σdA所组成,剪力由切向内力元τdA组成,故横截面上同时存在正应力和剪应力。
MσdAτdA Q当梁较长时,正应力是决定梁是否破坏的主要因素,剪应力则是次要因素。
二、弯曲分类P P a aAC DB ACD +−BC D+P PPa 梁AC 、BD 段的横截面上既有剪力又有弯矩,称为剪切弯曲(横力弯曲)。
CD 段梁的横截面上只有弯矩而无剪力,称为纯弯曲。
此处仅研究纯弯曲时梁横截面上正应力与弯矩的关系。
三、纯弯曲实验1.准备A BC DE F G H 在梁侧面画上AB 、CD 、EF 、GH 四条直线,且AB ∥CD 、EF ∥GH。
在梁两端对梁施加纯弯矩M 。
A B C D E F G H M MA BC DE F G H 2.现象•变形后横向线AB 、CD 发生了相对转动,仍为直线,但二者不再平行;仍与弧线垂直。
•纵向线EF 、GH 由直线变成曲线,且EF 变短,GH 变长;•曲线EF 、GH 间的距离几乎没有变化;•横截面上部分沿厚度方向变宽,下部分变窄。
3.假定•梁的任意一个横截面,如果在变形之前是平面,在变形后仍为平面,只是绕截面的某一轴线转过了一个角度,且与变形后的轴线垂直。
——平截面假定。
•梁上部分纤维受压而下部分纤维受拉,中间一层纤维既不受拉也不受压,这一层叫中性层或中性面。
•中性层与横截面的交线叫中性轴。
梁弯曲变形时横截面绕中性轴转动。
中性层纵向对称面中性轴•梁的纵向纤维之间无挤压力作用,故梁的纵向纤维只受拉伸或压缩作用——单向受力假设。
•梁中的纵向应变和横截面上的正应力沿横截面厚度方向不变,而只与高度方向的位置有关,故梁内处在同一高度的一层纤维的正应力相等。
中性层厚度高度长度纵向对称轴横截面中性轴3.假定4.限制条件•先考虑等截面梁,梁的横截面至少有一个对称轴,即梁至少有一个对称面,并且所有外力都在这个平面内。
这样保证了对称平面内的纤维变形后仍在这个平面内。
因此,中性轴必与纵向对称轴垂直。
•梁的材料服从虎克定律,受拉和压时,弹性模量一样。
•梁的横截面尺寸能保证梁在受弯曲时不致翘曲。
•纵向纤维之间无挤压力假定一般不适用于剪切弯曲。
•梁的长度比横截面度量尺寸大得多(长梁),平截面假定仅适应于长梁,若梁长度与横截面度量尺寸的比值小于5,由弹性力学知,平截面假定就不适用。
•平截面假定一般不适用于曲梁。
四、梁纯弯曲的正应力同圆轴扭转的应力公式推导过程一样,从变形几何关系、物理关系和静力学关系三方面考虑。
1.变形几何关系M MO 1O 2O 1O 2y yρd φabdxa'b'设为中性层,ρ为其曲率半径。
O O 21变形后dxd O O ==ϕρ21ϕρd y b a )(+=′′变形前ϕρd dx ab ==ab 纵向线应变为()a b ab y d d ab d y ρφρφρφερ′′−+−===弯曲时,梁横截面上各点的纵向线应变ε与该点至中性轴的距离y 成正比。
在同一横截面上ρ为常数。
ρ (1)yερ=四、梁纯弯曲的正应力1.变形几何关系2.物理关系(应力应变关系)ρεσy E E ==横截面上任一点处的正应力与该点到中性轴的距离y 成正比,在距中性轴等距离的各点上正应力相等。
因为纵向纤维之间无正应力,每一纤维都是单向拉伸或压缩。
当应力小于比例极限时,由胡克定律知•弯矩为正时,正应力以中性轴为界下拉上压;•弯矩为负时,正应力上拉下压;MM四、梁纯弯曲的正应力3.静力关系取纯弯曲梁的一个横截面,建立坐标系O-xyz ,y 轴为纵向对称轴,z 轴为中性轴,其具体位置待定。
σdA y O x y zM M 没有轴向力•内力元σdA 的合力即轴力为零0===∫∫∫A A A ydA EydA E dA ρρσ因const 0E ρ=≠0=∫A ydA 故由中值定理知.C AydA Ay =∫—横截面图形对z 轴静矩。
00.=⇒=y A y C C 故—横截面图形形心坐标。
.z C A y S =四、梁纯弯曲的正应力0.=⇒=y A y C C 即横截面形心在z 轴上,故中性轴必通过横截面形心, 同时中性轴与截面纵向对称轴垂直。
()0:yMF =∑Ad 0A z σ⋅=∫A d E y A z ρ⋅∫0yz I ∴=y 轴为截面的对称轴(形心主惯性轴),故上式成立。
A d E yz A ρ=∫yz EI ρ=0=•内力元σdA 对y 轴之矩总和σdAy O xy z MM3.静力关系•内力元σdA 对z 轴之矩总和构成横截面上的弯矩M MdA y E dA y A A ∫∫==2ρσ∫=Az dA y I 2令—横截面对z 轴的惯性矩,代表横截面一个几何性质。
ρI E M z=则z EI —抗弯刚度,愈大,梁愈不易变形。
将上式代入应力应变关系式得:I Myz=σσ—横截面上任意点的正应力;M —横截面上的弯矩;I z —横截面对中性轴z 的惯性矩。
y —横截面上任意点到中性轴的距离;I y M σz maxmax =令——抗弯截面模量y I W zz max=则W Mσz=max σdAyO xy z MM3.静力关系zOxyMMσσmax 4.结论横截面上的正应力σ与该截面上的弯矩M 成正比,与横截面的惯性矩I z 成反比,正应力的数值沿横截面高度成线性分布。
在中性轴上正应力为零,离中性轴愈远正应力愈大,在横截面上下边缘取得σmax 。
σmaxσmaxMM将弯矩M 和坐标y 按规定的正负代入,所得到的正应力若为正,即为拉应力,若为负则为压应力。
也可由弯曲变形直接判定。
只要梁有一纵向对称面,且载荷作用于这个平面内,上面的公式就可适用。
I My z=σ五. 梁横力弯曲时横截面上的正应力*在工程实际中,一般都是横力弯曲,此时,梁的横截面上不但有正应力还有剪应力。
因此,梁在纯弯曲时所作的平面假设和各纵向纤维之间无挤压的假设都不成立。
虽然横力弯曲与纯弯曲存在这些差异,但是应用纯弯曲时正应力计算公式来计算横力弯曲时的正应力,所得结果误差不大,足以满足工程中的精度要求。
且梁的跨高比l/h 越大,其误差越小。
zI My =σ(0.2)hl≤例:已知l =1m ,q =6kN/m ,10号槽钢。
求最大拉应力和压应力。
解:(1)作弯矩图mN 3000212max ⋅==ql M (2)由型钢表查得,10号槽钢4cm 6.25=z I cm 8.4=b cm 52.11=y (3)求最大应力zI y M 1max max ,t =σzI y M 2max max,c =σ48-2m 1025.6)m 1052.1)(m N 3000(××⋅=−MPa 1.178=[]48-2m 1025.6m10)52.18.4()m N 3000(××−⋅=−MPa 4.384=第五章弯曲应力§5-1 梁弯曲正应力§5-2 惯性矩计算§5-3 梁弯曲剪应力§5-4 梁弯曲时的强度计算§5-5 塑性弯曲的概念§5-6 提高梁抗弯能力的措施一、截面的静矩与形心截面对y 轴的静矩d y AS z A =∫C d z AS y A y A==∫截面对z 轴的静矩截面对形心轴的静矩恒等于零;截面对某轴的静矩为零,则该轴过截面形心。
组合截面的静矩等于截面各部分对同一轴静矩的代数和。
C 11n nz zi i ii i S S A y ====∑∑1ny y i i S S ==∑C 1ni ii A z ==∑C z A=§5-2 惯性矩计算•组合截面的静矩三、惯性矩和惯性半径1. 惯性矩截面对z 轴的惯性矩2A d z I y A=∫2Ad y I z A=∫惯性矩与极惯性矩的关系2Ad A ρ∫截面对y 轴的惯性矩I ρ=22A()d y z A =+∫z yI I =+二、极惯性矩2d AI Aρρ=∫§5-2 惯性矩计算2. 惯性半径y y I i A=z z I i A=截面对y 、z 轴的惯性半径四、惯性积截面对y 、z 轴的惯性积Ad yz I yz A=∫如y 、z 轴之一为截面对称轴,则I yz = 0五、常见截面的惯性矩和惯性半径w 1. 矩形截面(矩形截面高h ,宽b ,z 轴过截面形心平行矩形底边)y dyy O z b h z I =2A d y A ∫222(d )hh y b y −=∫312bh =312z bh I =z z I i A =3/12bh bh =3h =23z h i =312y hb I =23y b i =w 圆形截面dAz y dA I A A P ∫∫+==)(222ρ因y 、z 轴均通过圆截面直径,6424D I I I Pz y π===故D O yz ρ(z,y )32422D dA z dA y A A π=+=∫∫w 圆环形截面()4464z y d D I I π==−d D α=D d()44164z y D I I πα==−令则:(圆直径为D ,z 轴过圆心)(圆内径为d ,外径为D ,z 轴过圆心)4z y Di i ==五、常见截面的惯性矩和惯性半径224z D d i +=2Ad z I y A =∫2A1+A2++And y A⋅⋅⋅=∫12n z z z I I I =++⋅⋅⋅+222A1A2And d d y A y A y A =++⋅⋅⋅+∫∫∫截面对轴的惯性矩或惯性积等于该截面各部分对同一轴的惯性矩或惯性积代数和。
六、组合截面的惯性矩和惯性积bBh H333(112z BH bh I BH=−例如:回字框截面七、惯性矩的平行移轴定理设任意形状的横截面,其面积为A ,y 轴、z 轴通过形心(称为形心轴),对z 轴的惯性矩为I z 。
现有z 1轴与z 轴平行,y 1轴与y 轴平行,形心C 在坐标系O-y 1z 1中的坐标为(b ,a )。
∫=A z dA y I 211Ab I I y y 21+=同理知:dA(z,y )C(b,a )Oy 1z 1yzA a ydA a dA y AA 222++=∫∫Aa I A a S a I z z z 222+=++=∫+=AdA a y )(2横截面对任一轴的惯性矩等于它对平行于该轴的形心轴的惯性矩加上截面面积与两轴间距离平方的乘积。