重叠问题(容斥原理,包含与排除)
四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路
四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路在一列数中,如果任意两个相邻的数的差都相等,那么这个数列就是等差数列,等差数列中所有数的个数叫做项数,数列的第一个数叫做首项,最后一个数叫做末项,任意两个相邻数的差叫做公差,求所有数的和叫做等差数列求和。
在等差数列中,我们主要学习项数、首项、末项、公差与数列和之间的关系,它们的关系是:(1)求等差数列的和:和=(首项+末项)×项数÷2(2)求项数:项数=(末项-首项)÷公差+1(3)求末项:末项=首项+(项数-1)×公差(4)求首项:首项=末项-(项数-1)×公差例题1例题2等差数列中,末项=首项+公差×(项数-1);首项=末项-公差×(项数-1)例题3项数=(末项-首项)÷公差+1例题4例题5等差数列求和,其实就是把原来的数列再倒过来排一下,然后求出两个数列的和,再除以2,即和=(首项+末项)×项数÷2。
容斥问题,即重叠问题,是指几个量之间的包含与排除关系。
重叠问题中有二次重叠和三次重叠。
容斥原理下面我们就通过一些具体的例子来说明例题1两个量之间的重叠问题中,如果是全部参与,则总人数等于分别参加两项的的人数和减去两项都参加的人数;两个量之间的重叠问题中,如果是部分参与,则总人数等于参加的人数加上没参加的人数。
例题2三个量的重叠问题中,如果是全部参与,则总人数等于参加三项的人数和减去同时参加两项的人数和,再加上同时参加三项的人数;三个量的重叠问题中,如果是部分参与,则总人数等于至少参加一项的人数与三项都没参加的人数之和。
例题3两个量的极值中,两项都参加的人最多,就是较少的一项,两项都参加的人数最少,就是求重叠部分;三个量的极值问题中,如果要不参加的最多,就是要参加的尽量少。
升第八讲容斥原理之重叠问题
第八讲:容斥原理之重叠问题导入文氏图■■■■■■■■■■■■■■■文氏图,也叫维恩图”是由英国著名数学家Venn发明的.维恩(公元1834 年8月4日「公元1923 年4月4日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他1883 年获得理学博士学位,同年被选为英国皇家学会会员.维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.■他作出一系列・简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,莱布尼茨(Leibniz )已系统地运用过这类逻辑图,但今天这种逻辑图仍称作维恩图”另外, 维恩在概率论和逻辑学方面也有很大贡献,他的著作一一《机会逻辑》和《符号逻辑》,在19 世纪末20世纪初曾享有很高的声誉.除了数学以外,维恩还有一项较为特别的技能一一制作机器.他曾制作过一部板球发球机,当澳洲板球队在1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.什么是容斥原理?这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除”掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有7个人爱喝茶,10个人爱喝咖啡,那能不能就说办公室里有17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算2次,计算人数的时候要把这一部分减去才行.比如,如果有3个人既爱喝茶又爱喝咖啡,那总的人数就应该是7 + 10 - 3 = 14 人.这就是我们今天要来研究的问题一一有重叠的计数问题,即包含与排除问题•研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.两个量之间的重叠例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?如右图所示,如果要计算三个部分的总数,直接计算A+B 就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以了•上述分析总结成公式就是:R总数=沖+丹一』、号重拄这个公式就是两个对象的容斥原理.练一练1、五年级有122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有65人,数学优秀的有87人•语文、数学都优秀的有多少人?2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38人,两题都答对的又15人,问全班又多少人?3、学校文艺组每人至少会演奏一种乐器。
小学三年级奥数第19讲 重叠问题(含答案分析)
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
重叠问题
重叠问题一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:知识点拨1.先包含——A B +重叠部分AB 计算了2次,多加了1次;在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一:两量重叠问题【巩固】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?例题精讲例题1 1两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---【巩固】 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【巩固】 四年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【巩固】 实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?【巩固】 某班组织象棋和军棋比赛,参加象棋比赛的有32人,参加军棋比赛的有28人,有18人两项比赛例题3 3例题2 2实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加.这个班有多少人参加了语文或数学兴趣小组?一个班48人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了.已知做完语文作业的有37人;做完数学作业的有42人.这些人中语文、数学作业都完成的有多少人?都参加了,这个班参加棋类比赛的共有多少人?【巩固】 47名学生参加数学和语文考试,其中语文得分95分以上的14人,数学得分95分以上的21人,两门都不在95分以上的有22人.问:两门都在95分以上的有多少人?【巩固】 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了.这个班既没参加美术小组也没参加音乐小组的有多少人?【巩固】 四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【巩固】 某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少人?例题4 4(第二届小学迎春杯数学竞赛)有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【巩固】 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?【巩固】 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有多少幅?【巩固】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?例题8 8例题6 6例题55在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有多少人? 甲、乙、丙三个小组学雷锋,为学校擦玻璃,其中68块玻璃不是甲组擦的,52块玻璃不是乙组擦的,且甲组与乙组一共擦了60块玻璃.那么,甲、乙、丙三个小组各擦了多少块玻璃? 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?。
四年级第十一讲包含与排除及答案(附例题答案)
101中学坑班2013年春季四年级第十一讲包含与排除及答案一、 知识要点日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题,容斥原理就是重叠问题的解题原理,也叫包含与排除原理。
在数学里,我们把具有某种相同性质的对象放在一起考虑,这些相同性质的对象便组成了一个“集合”,每个集合总是由一些成员组成的,集合中的这些成员叫做这个集合的元素。
名词解释:(1)由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 、B 的并集(又叫A 与B 的和)。
记作A B ,记号“ ”读作“并”,A B 读作“A 并B ”。
(2)A 、B 两个集合公共的元素,也就是那些既属于A ,又属于B 的元素,它们所组成的集合叫做A 和B 的交集,记作“A B ”,记号“ ”读作“交”,A B 读作“A 交B ”。
二、 典型例题例1、四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?解析:37+26-21=42人例2、四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人?解析:15 + 17—24 = 8(人)或者15-(24-17)=8或者17-(24-15)=8例3、图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
这个班共有学生多少人?解析:24+18-11=31人 31+5=36人例4、某班学生参加音乐组的有11人,参加美术组的有8人,参加英语组的有12人,既参加音乐组又参加美术组的有5人,既参加音乐组又参加英语组的有3人,既参加美术组又参加英语组的有4人,三个组都参加的只有1人,问:至少参加一个组的有多少人? 解析:11+8+12-5-4-3+1=20人例5、有82名参加数学与作文课外班的学生,其中参加作文班的有60人,参加数学班的有48人。
101四年级包含与排除
第十一课
包含与排除
随心教育
第十一课 包含与排除
【核心观点】 日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分 数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况, 这 类问题就叫做重叠问题,容斥原理就是重叠问题的解题原理,也叫包含与排除原理。 在数学里, 我们把具有某种相同性质的对象放在一起考虑, 这些相同性质的对象便组成 了一个“集合” ,每个集合总是由一些成员组成的,集合中的这些成员叫做这个集合的元素。 (1)由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做集合 A、B 的并集(又叫 A 与 B 的和) 。记作 A B ,记号“ ”读作“并” , A B 读作“A 并 B” 。 (2)A、B 两个集合公共的元素,也就是那些既属于 A,又属于 B 的元素,它们所组成的 集合叫做 A 和 B 的交集,记作“ A B ” ,记号“ ”读作“交” , A B 读作“A 交 B” 。 【典型问题】 【问题 1】四(1)班同学中有 37 人喜欢打乒乓球,26 人喜欢打羽毛球,21 人既爱打乒乓 球又爱打羽毛球。问全班喜欢打乒乓球或羽毛球活动的有多少人? 【解析】
张威,中国农业大学博士毕业,数学金牌教练,曾在多家大型教育机构担任数学部主管及 数学带头教师。14 年被特聘为随心教育集团教学总监及中小学数学教材研发组组长。 张老师被多项数学比赛邀请为教练(希望杯教练,希望杯冬令营主教练,希望数学等级考试 委员会委员,华罗庚金杯优秀教练,IMC 国际数学竞赛主教练) ,国际杯赛教练,带队教练 等,参与各类比赛命题及研讨工作,以及小升初命题及研讨工作。在中小学数学行业中有很 高的威望。 张老师对小学数学及各类数学活动, 比赛有深刻的研究, 所写的讲义及教材已被多个竞 赛及重点中学选用, 所以不少竞赛题及小升初真题源于随心教育的讲义, 如 13 年的北大附, 101,五中,清华附,人大附等多个学校的真题就是我们的四、五、六年级的讲义原题或改 改数。13 年的 IMC,希望杯,走美等各个杯赛题也都能在随心的讲义上发现原型及原题。 正因为张老师对重点难点的准确把握,对教学系统的全面熟知,讲课清晰明了,深入浅出, 所以教学成果非常显著。 他能在半年内改善学员对奥数的认识并快速提高成绩, 坚持跟张老 师学习一年以上的学员, 70%-90%的学员都能在杯赛中获奖。 其中张老师所带龙班学员 100% 的获奖率,大部分都是一二等奖水平,导引班 90-100%的获奖率,虎班获奖率为 40-70%。 很多北京市名列矛的学生(金银牌得主,仁华一二三班学员,尖子 A 班学员,竞赛 123 班 学员)都慕名跟随张老师,共同构成了一个水平很高的龙班和金牌学员班,五大杯赛(希望 杯,走美总决赛,迎春杯,华杯赛,IMC)都从龙班或金牌学员班里选拔学生组成北京代表 队或国家代表队参加全国或国际比赛。 为提随心教育的中学数学教研能力及教学水平,13 年人大附中初一年级前五名中的 2 名同学李同学及陈同学就来自随心的龙班。 2014 年的五大杯赛中(数学解题能力展示,走美,希望杯,华杯赛,IMC) ,张老师的学生 战果累累。一:2014 年数学解题能力展示 18 人获一等奖;二:走美 16 人获一等奖;三: IMC 国际数学竞赛 6 人获一等奖;四:2013 年有 3 名学员考入八中少年班(共录 30 人) , 4 名考入人大附素质班(共 78 人)
4升5-8第八讲:容斥原理之重叠问题
第八讲:容斥原理之重叠问题一、导入文氏图文氏图,也叫“维恩图”,是由英国著名数学家 Venn 发明的.维恩(公元 1834 年 8 月 4 日─公元 1923 年 4 月 4 日)十九世纪英国著名的数学家和哲学家,生于英国赫尔.他 1883 年获得理学博士学位,同年被选为英国皇家学会会员.维恩最主要的成就是系统解释并发展了几何表示的方法,也就是发明了文氏图.他作出一系列简单闭曲线(圆或更复杂的图形),将平面分为许多间隔.利用这种图表,维恩阐明了演绎推理的基本原理.为了进一步明确起见,他还引入了一些数学难题作为实例.虽然在维恩之前,莱布尼茨(Leibniz)已系统地运用过这类逻辑图,但今天这种逻辑图仍称作“维恩图”另外,维恩在概率论和逻辑学方面也有很大贡献,他的著作-—《机会逻辑》和《符号逻辑》,在 19 世纪末 20 世纪初曾享有很高的声誉.除了数学以外,维恩还有一项较为特别的技能——制作机器.他曾制作过一部板球发球机,当澳洲板球队在 1909 年到访剑桥大学时,维恩的机器依然运作正常,并使他们其中一位成员打空四次.什么是容斥原理?这一讲我们主要学习和“包含”与“排除”有关的问题,这样的问题在生活中就有不少,比如吃瓜子.我们说吃掉了一斤瓜子,指的是带壳的瓜子,并非真的吃到肚子里一斤,因为这一斤中还“包含”着瓜子壳.如果要计算到底吃了多少,最简单的方法就是称一称瓜子壳,用原来的一斤“排除"掉瓜子壳的重量.瓜子的例子相对简单,一斤瓜子里一部分是瓜子仁,另一部分就是瓜子壳,两者各不相关.但本讲要学习的包含与排除问题要复杂一些,各部分之间会有重叠.比如一个办公室中每个人都至少爱喝茶或咖啡中的一种,已知有 7 个人爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱喝茶又爱喝咖啡的人计算 2 次,计算人数的时候要把这一部分减去才行.比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 − 3 = 14 人.这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题.研究这种问题通常需要画出示意图,这样的示意图又叫做文氏图,下面我们就用文氏图推导两个对象的容斥原理公式.两个量之间的重叠例1、某班有34名同学参加了学校的运动会,其中有17名参加了跳绳,有20 名参加了拔河,问:及参加了跳绳又参加了拔河的又多少人?如右图所示,如果要计算三个部分的总数,直接计算 A+B就会算多了,而多算的正好是共同部分,只要把多算的减掉就可以了.上述分析总结成公式就是:这个公式就是两个对象的容斥原理.17+20—34=37-34=3(人)答:即参加跳绳又参加拔河的同学有3人.练一练1、五年级有 122 名学生参加语文、数学考试,每人至少有一门功课的成绩是优秀,其中语文成绩优秀的有 65 人,数学优秀的有 87 人.语文、数学都优秀的有多少人?2、在一次数学测试中有两道题全班同学都至少答对一题,答对第一题的有33人,答对第二题的又38 人,两题都答对的又15 人,问全班又多少人?3、学校文艺组每人至少会演奏一种乐器。
13、容斥问题
容斥原理这一讲我们主要学习“包含”和“排除”有关的问题,这样的问题在生活中有不少,例如正常的爱好,有人喜欢足球,有人喜欢篮球,有人篮球足球都喜欢,有人都不喜欢。
这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题。
研究这种问题通常需要画出示意图(如喝茶与喝咖啡图),这样的示意图又叫做文氏图。
+就会算多了,而多算的正好是部分如右图所示,如果要计算三个部分的总数,直接计算A B③,只要把多算的减掉就可以了。
上述分析总结成公式就是:、总数=、重叠A B A B A B+-这个公式就是两个对象的容斥原理。
例1、(1)一群小朋友共有50人,他们都喜欢吃辣椒或芥末中的一种或两种,喜欢吃辣椒的有36人,喜欢吃芥末的有20人,那么两种都喜欢吃的有多少人?(2)暑假里,小高和默默一起讨论金陵十八景。
他们发现十八景中的每一处都有人去过,而且有无处是两人都去过的。
如果小高去过其中的十二景,那么默默去过其中的几景?(3)在一群小朋友中,有12人看过动画片《黑猫警长》,有21人看过动画片《大闹天宫》,并且有8人是两部动画片都看过的。
已知每个小朋友至少都看过其中的一部,那么有几个小朋友只看过这两部动画片中的一部?练习1、四年级同学参加语文、数学考试,每人至少有一门功课的成绩是优秀。
其中语文优秀的有42人,数学优秀的有56人,语文、数学都优秀的有15人,请问四年级共多少名同学?例2、渔乡小学举行长跑和游泳比赛,共305人参加。
有150名男生和90名女生参加长跑比赛,有120名男生和70名女生参加游泳比赛,有110名男生两项比赛都参加了。
请问:只参加游泳而没参加长跑的女生有多少人?练习2、某校参加数学竞赛的有120名男生、80名女生,参加语文竞赛的有120名女生、80名男生。
已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,请问只参加一科竞赛的女生有多少人?例3、三位基金经理投资若干支股票,张经理买过其中66支,王经理买过其中40支,李经理买过其中23支。
包含与排除
四年级第二学期讲义第十一讲 包含与排除一、 知识要点日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题,容斥原理就是重叠问题的解题原理,也叫包含与排除原理。
在数学里,我们把具有某种相同性质的对象放在一起考虑,这些相同性质的对象便组成了一个“集合”,每个集合总是由一些成员组成的,集合中的这些成员叫做这个集合的元素。
名词解释:(1)由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 、B 的并集(又叫A 与B 的和)。
记作A B ,记号“ ”读作“并”,A B 读作“A 并B ”。
(2)A 、B 两个集合公共的元素,也就是那些既属于A ,又属于B 的元素,它们所组成的集合叫做A 和B 的交集,记作“A B ”,记号“ ”读作“交”,A B 读作“A 交B ”。
二、 典型例题例1、四(1)班同学中有37人喜欢打乒乓球,26人喜欢打羽毛球,21人既爱打乒乓球又爱打羽毛球。
问全班喜欢打乒乓球或羽毛球活动的有多少人?例2、四年级一班在期末考试中,语文得“优”的有15人,数学得“优”的有17人,老师请得“优”的同学都站起来,数了数有24人。
两科都得“优”的有几人?例3、图新小学四年级二班有24人参加了美术小组,有18人参加了音乐小组,其中11人两个小组都参加,还有5人什么组都没参加。
这个班共有学生多少人?例4、某班学生参加音乐组的有11人,参加美术组的有8人,参加英语组的有12人,既参加音乐组又参加美术组的有5人,既参加音乐组又参加英语组的有3人,既参加美术组又参加英语组的有4人,三个组都参加的只有1人,问:至少参加一个组的有多少人?例5、有82名参加数学与作文课外班的学生,其中参加作文班的有60人,参加数学班的有48人。
那么两种课外班都参加的有多少人?例6、全班有46名同学,仅会打乒乓球的有18人,会打乒乓球又会打羽毛球的有7人,不会打乒乓球又不会打羽毛球的有6人。
五年级容斥原理
容—包括 斥—排除
排队问题:从前面数,从后面数, 丽丽都排第6,这一排共有几个 人?
6+6-1=11(人)
答:共有11人。
即当两个计数部分有重复包含时,为了不重 复计数,应从它们的和中排除重复部分。
原理1
设A、B是两类有重叠部分的量,如图,A 与B重叠部分对应的量为ab,那么这两类的 总量可以用下面的方法计算: 总量=A+B-ab
答:乒乓球组都不会参加的有106人。
练习
全班46名同学,仅会打乒乓球的有28人, 会打乒乓球又会打羽毛球的有10人,不会打乒 乓球又不会打羽毛球的有6人,仅会打羽毛球 的有多少人?
练习时间:容斥原理
探索之旅
1、五年级96名学生都订了刊物,有64人订了 少年报,有48人订了小学生报,问两种刊物都 订的有多少人?
例 3:
有50个学生,他们穿的裤子是白色或黑色的,上 衣是蓝色的或红色的。若有14人穿的是蓝色上衣、白 裤子,31人穿黑裤子,18人穿红上衣,那么穿红上 衣、黑裤子的学生有多少人?
操场上有50名同学在跑步或跳绳,其中女生有18 名,跳绳的同学有31名,跑步的男生有14名,跳绳 的女生有多少名?
例4 : 1、罗明、李阳和赵刚每人都有几本书,罗明 和李阳共有33本,罗明和赵刚共有39本,李阳 和赵刚共有34本。问:他们三人各有几本书?
语文 优秀 的人 数: 65人 两科 都优 秀的 人数: 30 数学 优秀 的人 数: 87人
65+87-30=122(人)
答:五年级一共有122人。
?人
练习: 1 、五年级学生参加了数学和语文考试,其中语文 得100分的12人,数学得100分的17人,两门都没得 100 分的有 26 人,两门都得 100 分的有 8 人,求这个 班共有多少人?
小学奥数容斥原理之重叠问题一精选例题练习习题含知识点拨
教学目标1 . 了解容斥原理二量重叠和三量重叠的内容;2 .掌握容斥原理的在组合计数等各个方面的应用.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把 两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数, 用式子可表示成:A U B = A + B - A 「B (其中符号“、.”读作“并”,相当于中文“和”或者“或”的意思;符号“•'” 读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理,图示如下A 表示小圆 部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A^B ,即阴影面积.图示如下:A 表示小圆 部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A PI B ,即阴影面积. 先包含——A + B重叠部分A^B 计算了 2次,多加了 1次;2.再排除——A + B — A p|B把多加了 1次的重叠部分A^B 减去.包含与排除原理告诉我们,要计算两个集合A 、B 的并集A U B 的元素的个数,可分以下两步进行:第一步:分别计算集合A 、B 的元素个数,然后加起来,即先求A + B (意思是把A 、B 的一切元素都“包含”进 来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C = A A B (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和=A 类元素的个数+ B 类元素个数+ C 类元素个数-既是A 类又是B 类 的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元 素个数.用符号表示为:A U B U C = A + B + C — A p|B — B Pl C — A p|C + A^B^C .图示如下: 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1 .先包含:A + B + C重叠部分A PI B 、B PI C 、C PI A 重叠了 2次,多加了 1次.2 .再排除:A + B + C — A p|B — B A C — A p|C重叠部分A^B^C 重叠了 3次,但是在进行A + B + C - A^B — B^C —A Q C 计算时都被减掉了.3 .再包含:A + B + C — A p|B — B p|C — A p|C + A[}B[yC .在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-1.容斥原理之重叠问题(一)4V例题精靛讲两量重叠问题【例1】小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
包含与排除
第六单元包含与排除第一课时基础篇【知识要点】1、概念;包含与排除问题也叫重叠问题。
它是集合方面的知识2、容斥原理(1)总量=A+B-AB(2)总量A+B+C-AB-BC-CA+ABC【准备知识】1、六(5)班同学中,有36人参加兴趣小组,有42人参加语文兴趣小组,有26人两样都参加。
六(5)班有多少人?2、六(6)班有56人,其中36人参加数学组,42人参加语文组,两样都参加的有多少人?例1、1到500的全部自然数中,不是7的倍数,也不是9的倍数的数有多少?想:(1)7的倍数;500÷7=71……3 即=71(个)9的倍数;500÷9=55(个)7,9的倍数500÷(7×9)=7(个)即77+55-7=119(个)(2)不是7,9的倍数;500-119=381(个)练:1.在1到200的自然数中,能被3或5整除的数共有多少个?2.在1~1000的自然数中,不能被5或7整除的数共有多少个?3.在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?例2.李老师出了两道数学题,全班40人中,第一题有30人做对,第二题有12人末做对,两题都做对的的20人.问第二道题对第一题不对的有几个人?两题都不对的有几个人?想;(1)画图(2)A表示对1错2, B表示错1对2,C表示1,2都对, D表示1,2都错(3)列式;A+B+C+D=40 A+C=30A+D=12 D=20(4)类比法;比较(2)与(4)(3)与(5)A=10,D=2 即B=8整理;答对2错1的8人,两题都有错的有2人练;1.有40名运动员,其中有25人会摔跤,有20人会击剑,有10人击剑、摔跤都不会,问既会摔跤又会击剑的运动员有多少人?2.100个人参加测试,要求回答五道题,并且规定凡答对3题或3题以上的为测试合格.测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的有79人,答对第五题的有74人,那么至少有多少人及格?3.在100名学生中,爱好音乐的有56人,爱好体育的有75人.那么既爱好音乐又爱好体育的人,最少有多少人?最多有多少人?作业;1.某班有36个同学,在一次测验中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人.那么两题都不对的有多少人?2.五一班期末考试语文得“优”的有15人,数学得“优”的有18人,两门功课都得“优”的有8人,两门功课都没得“优”的有20人,这个班共有多少人参加期末考试?3.六年级90名学生,每人至少订《少年报》和《小学生学习报》不的一种.有2/3的人订了《少年报》,有1/2的人订了《小学生学习报》.两种报刊都订的有多少人?第二课时较复杂的容斥问题【准备知识】将A,B,C,(AB),(AC),(BC),(ABC)标在图中,说给同座位同学听。
(29)包含与排除(上下)
(二十九)包含与排除(上)《奥赛天天练》第二十一讲《包含与排除》。
包含与排除问题也叫重叠问题,从三年级奥数课堂开始由浅入深逐步学习,此类问题说明及容斥原理具体内容,请查阅:三年级奥数解析(三十九)重叠问题与容斥原理四年级奥数解析(二十九)容斥原理这一讲将在三、四年级学习的基础上,进一步学习运用容斥原理二解答稍复杂的包含与排除问题。
【容斥原理二】如果被计数的事物有A、B、C三类,则:三类元素总个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类又是C类的元素个数。
【原理证明】如下图,三个圆片两两重叠,用红色圆片面积表示A类事物元素个数、黄色圆片面积表示B类事物元素个数、蓝色圆片面积表示C类事物元素个数,三个圆片覆盖的总面积就表示三类元素的总个数:A、B、C三个圆片共同重叠的正中间的一块,覆盖了三层圆片,重叠了2次;剩下的重叠部分都覆盖了两层圆片,重叠了1次。
三个圆片覆盖的总面积就等于三个圆片的面积之和减去重叠部分的面积,重叠1次的减去重叠面积,重叠2次的减去重叠面积的2倍。
但用三个圆片的总面积依次减去AB的重叠部分、AC的重叠部分和BC的重叠部分,重叠1次的面积正好减去了,可三个圆片共同重叠的部分既属于AB的重叠部分,也属于AC的重叠部分,同时属于BC的重叠部分。
这一块儿面积重叠2次,却减去了3次,多减了1次,要补上去。
所以:三类元素总个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类又是C类的元素个数。
《奥赛天天练》第21讲,模仿训练,练习1【题目】:在参加数学竞赛的46人中,做对第二题的有32人,做对第4题的有24人,两道题都做对的有20人,两道题都没有做对的有几人?【解析】:如下图:用做对第2题与做对第4题的人数和,减去两题都做对的人数(重叠部分),求出的就是这两题中至少做对了一题的人数:32+24-20=36(人)。
五年级奥数重叠问题
重叠问题知识集锦在很多计数问题中,常常要把所要计数的对象分为若干个不重复又不遗漏的类型,使得每类便于计数。
但是实际的问题却往往较为复杂,而且容易混为一团,难以区分,而要准确无误的计算事物的个数就得运用容斥原理,这类问题往往被称为重叠问题,也叫包含于排除问题。
例题集合例1 一个班有学生42人,参加体育代表队的有30人,参加文艺代表队的有25人,并且每个人至少参加了一个队,这个班两队都参加的有几个人?练习1 三年级有200名学生全部都参加了小组活动。
报名参加体育小组的有180人,参加文娱小组的有160人。
问体育和文娱两个小组都参加的有多少人?例2 四年级某个班的同学都参加兴趣小组的活动,已知有28人参加歌唱小组,26人参加美术小组,两个小组都参加的有9人。
该班共有多少人?练习2 某班56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没参加的有25人,那么同时参加语文、数学竞赛的有多少人?例3 有100位旅客,其中10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语.那么这100位旅客中既懂英语又懂俄语的有多少人?练习3 有40名运动员,其中有25人会摔跤,有20人会击剑,有10人摔跤、击剑都不会。
问既会摔跤又会击剑的运动员有多少名?例4 某公司除6人没有参加业余培训学习外,其余员工都参加了学习。
参加计算机学习的有27人,参加外语学习的有32人,两种科目都参加的有11人。
该公司共有多少名员工?练习4 学校文艺组的成员每人至少会演奏一种乐器.已知会拉风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人.这个文艺组一共有多少人?例5 燕燕要制作一架飞机模型,只差下图所示的a的边长,一时求不出来,被难住了。
已知正方形与三角形一部分重叠着,乙三角形面积比甲三角形面积大5平方厘米.请你帮她算一下(单位:厘米).练习5 桌面上放有一张长12厘米、宽8厘米的长方形纸片和一张边长为7厘米的正方形纸片(如图所示).两张纸片覆盖住桌面的面积是多少平方厘米?课堂练习1、育苗学校四年级某班参加体育课外活动,第一小队同学排成一列横队,从左往右数,小明是第8个,从右往左数小明是第9个。
重叠问题
重叠问题解答重叠问题常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。
这个原理叫做包含与排除原理,也叫容斥原理。
容斥原理包含以下两条基本计算公式:①容斥原理一,如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A类元素个数+B类元素个数—同时属于A类和B类的元素个数。
总数=A+B-AB②容斥原理二,如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素+B类元素个数+C类元素个数—同时属于A类和B类的元素个数—同时属于A类和C类的元素个数—同时属于B类和C类的元素个数+同时属于A、B、C 三类的元素个数。
(这条原理比较复杂,高年级才会用到。
)总数=A+B+C-AB-AC-BC+ABC一.求长度(画线)1.二者重叠:现总长=原总长—重叠部分原总长=现总长+重叠部分重叠部分=原总长—现总长2.多者重叠:现总长=原总长—重叠数×(数量—1)原总长=现总长+重叠数×(数量—1)重叠数=(原总长—现总长)÷(数量—1)二.求数量(画韦恩图)关键:参加——包含只参加——不包含1. 总数=A+B-AB2. 重叠数=A+B-总数3. A=总数-B+AB B=总数-A+AB重叠问题练习1.有四块各长80厘米的木板,钉成一块木板。
中间钉在一起重叠的部分是10厘米,钉成的木板长是多少厘米?2.老师出了二道测试题,全班每个同学都至少答对了一题,答对第一道题的有30人,只答对第二道题的有28人,二道都答对的有16人,问全班共几人?只答对第一题的有几个人?3.小朋友去喝冷饮,可以选择可乐和雪碧,允许选择一种或者二种,也可不选。
选择可乐的有18人,不选雪碧的有15人,二种都选的有10人,二种都没选的有几人?4 . 四根长都是8厘米的绳子,把它们打结连在一起成为一根长绳。
打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订,那么:1、只订《少年报》而没有订《数学报》的有多少人?2、只订《数学报》而没有订《少年报》的有多少人?3、有多少人两种报都没订?6. 一次老师给全班同学做两道智力趣题,结果全班10人两题都对,8人两题都错,第二道题有15人错,问第一道对而第二道错的同学有多少人?7.100位旅游者中,70人懂中文,52人懂英语,还有10人两种语言都不懂。
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。
参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。
六年级~9容斥原理
(一) 容斥原理包含与排除问题也叫重叠问题,它实际上是一种集合方面的问题。
解答这类问题的主要根据是容斥原理1.容斥原理一:设A 、B 是两类有重叠部分的量(如图). 如果A 对应的量为a , B 对应的量为b , A 与B 重叠部分对应的量为ab,那么这两类量 的总量可以用下面的公式计算:总量=a +b —ab.2.容斥原理二:设A,B,C 是三类有重叠的部分的量,如果A 对应的量为a ,B 对应的量为b ,C 对应的量为c , A 与B 重叠部分对应的量为ab. B 与C 重叠部分对应的置为bc,C 与A 重叠部分对应的量为ca,A 、B 、C 三部分重叠部分对应的量为abc,那么,这三类量的总量可以用下面的公式计算:总量=a + b + c —ab-bc-ca+abc例1:在1到500的全部自然数中,不是7的倍数,也不是9的倍数的 数共有多少个?例2:六年级一班有45名同学,每人都参加体育训练班,其中足球班报25人,篮球班报20人,游泳班报30人,足球、篮球都报者有10人,足球、游泳都报者有10人,游泳、篮球都报者有12人。
问三项都报者有多少人?例3:某校六年级二班有49人参加数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加;语文小组有10人参加,老师告诉同学既参加数学小组又参加语文小组 的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。
例4某班同学参加升学考试.得满分人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。
问这个班最多是多少人?最少是多少人?例5:向50名同学调查春游去颐和园还是去动物园的态度,赞成去颐和园的人数是全体的53,其余不赞成;赞成去动物园的比赞成去颐和园的学生多3人,其余的不赞成,另外 对去两处都不赞成的学生数比对去两处都赞成的学生数的31多1人,同时去颐和园和去动物园都赞成和都不赞成的学生各有多少人?例6 李老师出了两道数学题,全班40人中,第一题有30人做对, 第二题有12人未做对,两题都做对的有20人。
《有趣的小学数学—重叠关系》
重叠关系【知识点】1、解答重叠问题要用到数学中的包含与排除原理(也叫容斥原理),即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
2、解答重叠问题的应用题时,必须从条件入手进行认真的分析,有时需要画出韦恩图(如下),借助图形进行思考。
如果被计数的事物有A 、B 两类,如下图所示:两类元素个数的总和=A 类元素个数+B 类元素个数-两类重复的个数 字母表示:B A B A B A -+=例题1:同学们排队做操,每行人数同样多。
小明的位置从左数起是第4个,从右数是第3个,从前数是第5个,从后数是第6个。
做早操的同学共有多少人?【答案】60人【分析】根据题意,画出下图,由图可看出:小明的位置从左数起是第4个,从右数是第3个,说明横行有4+3-1=6个人;从前数是第5个,从后数是第6个,说明竖行有5+6-1=10个人。
所以做早操的同学共有6×10=60个人。
例题2:把两块一样长的木板如下图这样钉在一起,使其成了一块木板。
如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米。
这两块木板各长多少厘米?【答案】68厘米【分析】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
列式如下:(120+16)÷2=68(厘米)例题3:三年级一班订《数学报》的有32人,订《阅读报》的有30人,两种报纸都订的有10人,全班每人至少订一种报纸。
三年级一班有学生多少人?【答案】52人【分析】根据题意,画出右图:从图中可以看出,中间的重叠部分表示两种报纸都订的10人,这10人既被包括在《数学报》的32人内,又被包括在订《阅读报》的30人内,重复算了一次,所以要算出全班人数。
必须从32+30=62人中去掉被重复算过的10人,所以全班人数应是62-10=52人,列式为:32+30-10=52(人)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
包含与排除
例题1,(1)五年级一班参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,两项活动都参加的有13人,全班每人至少参加一项活动。
问这个班有多少人?
(2)三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。
这两队都没有参加的有10人。
请算一算,这个班共有多少人?
1,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。
这个文艺组一共有多少人?
2,某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。
这个班共有多少人?
3,第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。
第一小组共有多少人?
例题2,(1)五年级一班有42人,参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,全班每人至少参加一项活动。
问这个班两项活动都参加的有多少人?
(2)一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?
(3)3,某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?
1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?
2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
问这两种棋都会下的有多少人?
3,学校开展课外活动,共有250人参加。
其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。
问这250名同学中,象棋组、乒乓球组都不参加的有多少人?
例题3,(1)四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?
(2)全班46名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有10人,不会打乒乓球又不会打羽毛球的有6人。
仅会打羽毛球的有多少人?
1,40人都在做加试的两道题,并且至少做对了其中的一题。
已知做对第一题的有30人,做对第二题的有21人。
只做对第一题的有多少人?
2,五年级122名同学参加语文、数学考试,每人至少有一门得优。
已知语文65人得优,数学78人得优,求只有语文一门得优的人数。
3,某班有66名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有16人,不会打乒乓球又不会打羽毛球的有10人。
仅会打羽毛球的有多少人?
例题4,光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
1,科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。
其他年级参展的作品共有多少件?
2,六(1)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅画不是三年级的,有19幅画不是四年级的,三、四两个年级参展的画共有8幅。
其他年级参展的画共有多少幅?
3,实验小学举办学生书法展,学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。
一、二年级参展的作品总数比三、四年级参展作品的总数少4幅。
一、二年级参展的书法作品共有多少幅?
例题5:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
1,在1到200的全部自然数中,既不是5的倍数又不是8的倍数的数有多少个?
2,在1到130的全部自然数中,既不是6的倍数又不是5的倍数的数有多少个?
3,a,b是自然数,若a=b×b,则称a是完全平方数;若a=b×b×b,则称a是完全立方数。
在1至1000之间既不是完全平方数,也不是完全立方数的整数有多少个?
4.在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:①标签号为2的倍数,奖2支铅笔;②标签号为3的倍数,奖3支铅笔;③标签号既是2的倍数,又是3的倍数可重复领奖;④其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多
少支?
5.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
例6,在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的有1人,只要汽水和雪碧的有1人。
问:共有多少个小朋友去了冷饮店?
1,五奥三班有54人,每人至少都爱好一种球类。
爱好乒乓球的有40人;爱好足球的有20人,爱好排球的有30人,既爱好乒乓球又爱好排球的有18人,既爱好乒乓球又爱好足球的有14人,既爱好足球又爱好排球的有12人。
问三种球都爱的有多少人?
2,一个工厂有一批工人,每人至少会一门技术。
其中会开铣床的有235人,会开车床的有218人,会开刨床的有207人。
既会开铣床又会开刨床的有63人,既会开车床又会开铣床的有112人,既会开车床又会开刨床的有71人,三种都会的有19人。
这个工厂一共有多少名工人?
3,某班有46人,其中40人会骑车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则这个班至少有多少人以上四项都会。